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Abstract

We present experimental evidence that logic synthesis procedure, especially those based
on resynthesis, do net perform well when the original (designer-given) structure of input
description is lost. As such performance has not been observed otherwise, we must conclude
that such operation is outside of the intended range, and that synthesis examples with their
original structure lost are not valid for evaluation of synthesis procedures. We also outline
other causes that may render an example invalid. We, however, document that such losses
did occur with circuit examples circulating in the logic synthesis community. Therefore, we
have to suggest what constitutes prudence in examples collection.

1 Introduction

Electronic Design Automation (EDA) tools, or more precisely, their automated synthesis proce-
dures, are complex layered heuristics. The only way to evaluate them is the way of experiments.
For such evaluations, collections of instances (benchmark sets) have been published and are in
constant use. The oldest such sets still active are from mid-eighties [4], the last one we are
aware of is recent [20]. During that time, almost everything in logic synthesis changed. Circuit
implementation moved from Programmable Logic Arrays (PLA) to multilevel gate structures
and Look-Up Tables (LUTs). Logic synthesis procedures based on Disjunctive Normal Form,
its minimization, and decomposition gave way to iterative resynthesis. Yet, even the oldest
benchmark sets are still in use and cited in research papers.

Today, a five-percent improvement in experimental evaluation on such examples is considered
worth a conference contribution [32]. On the other end of spectrum, rather alarming results have
been obtained experimentally [7][12]. The examples used were not benchmarks, but circuits
similar to those met in practice.

The question is, whether these results – good or bad – are significant for the ‘primary
customer’, which is practical design. At the first glance, the answer is yes, the results are
significant because the examples are practical designs. Under more thorough investigations, it
becomes apparent that they are practical designs of the PLA era, that the combinational circuits
were extracted in the context of ancient work flows, or that their descriptions underwent massive
transformations.

A great remedy would be to know how far can a circuit description deviate from its designer’s
source code, and in what directions. What is acceptable similarity, in the experiments mentioned
above? Such knowledge is not available. In the further text, we are going to outline why it is
so.

In [13] and [9], we conducted experimental studies to explain why the results in [7] and [12]
were so poor. From their summary below, it will follow that the margin in allowable changes
(transformations) in a description of a circuit is perhaps much smaller than practiced in current
experimental evaluation. Lacking firm limits in those changes, one must be prudent in choosing
and maintaining circuit examples with the intent to use them as benchmarks.

2 The class of practical combinational circuits

Experimental algorithmics [24][18] asks for a collection of instances for evaluation. One of the
most straightforward methods to acquire such a collection is to characterize the class of permis-
sible instances and then randomly generate a set of instances satisfying the characterization.



Such characterization seems not to be possible with circuits. The attempts to characterize
Boolean functions used in engineering started with the use of Boolean algebra for logic syn-
thesis [31]. The idea that practical functions are decomposable appears again in [25] and most
notably in [27], where it is generalized to the conjecture that human design follows detectable
patterns. Other properties such as group invariance [29] and information flow [22] have been
tested, without decisive conclusions.

Boolean functions are only a part of the picture; a circuit description has structure, such
as Boolean network. Iterative procedures depend on that structure, in often strange ways
[26][32][10][15]. A provably practical Boolean function can thus have impractical descriptions,
which a designer would not write down and the tools would not process effectively.

Both the papers [7] and [12] suggest to use altered descriptions of circuits as benchmarks. The
former paper sees the complexity added to the circuit as a surrogate for redundancy introduced
by a less-competent designer.

3 Experiments with structure loss

The examples in [7] and [12] have the original structure wiped out by collapsing the description
into a Sum of Products (SOP) and forcing the tools to understand that SOP as a structural
description. This is a special case of deriving an example by transformation that preserves the
function of a circuit and produces an example with altered (suppressed) structure.

Already in [13] we documented that the classical decomposition-based synthesis, which starts
with two-level minimization, provides much better results than the iterative tools used in the
original studies. The only requirement was that the decomposition used is general enough to
produce the design patterns required for acceptable solutions.

Iterative procedures gradually transform the description of a circuit. The intermediate de-
scriptions can be seen as states of a local search procedure. Sub-par results then can be the
results of trapping the search in local optima, which in turn can be improved by slower conver-
gence and greater iterative power of the search. We realized this approach by randomization
and repeating the procedure [14]. For some circuits, even an enormous investment of computing
time did not ensure acceptable results.

During initial experiments, we noticed that, in some cases, the output circuit size is corre-
lated with the size of the input circuit description. Randomizing the transformation used to
suppress structure, we were able to produce different versions of input, and to characterize that
dependency. We used 490 circuits from the following sources:

• LGSynth’93 benchmark set [23], 129 circuits; at the time, we were not aware of the ma-
nipulation of the set

• MCNC benchmark set [34], 103 circuits
• Altera OpenCores, converted to BLIF by Alan Mishchenko using Quartus II with standard

settings, 110 circuits; may contain adders
• ISCAS’85 benchmark set [4], 11 circuits
• ISCAS’89 benchmark set [3], 50 circuits
• LGSynth’91 benchmark set [35], 2 circuits
• Illinois set, 7 circuits [6]
• LEKU examples by Cong and Minkovich, 8 circuits
• ITC’99 benchmark set [8], 22 circuits
• manually encoded n-bit adders, 16 circuits

In the first round of experiments, we produced a number of different SOPs transformed into
structural description for each circuit, as in [7] and [12]. For 270 circuits, the number of SOPs
was sufficiently large to provide reliable characterization, giving 7414 input descriptions (data
points).

We processed the description by a number of synthesis tools, from which we report the results
for ABC with the command sequence dch,if,mfs as typical for the set.

5801 cases (78%) belonged to circuits, where Spearman correlation between input size and
output size was above 0.5. We further characterized the dependency by linear and convex
nonlinear approximation in the logarithmic domain, which gave the values of first derivative.
The value of 1 thus mean linear dependency, and lower values denote sublinear dependency.
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Figure 1: The impact of transforming circuit examples into SOP, and the derivative of the input
size – output size dependency for dch,if,mfs

The situation can be seen in Figure 1. In 3097 cases (42%), the derivative is above 0.8. It
indicates that the tool was unable to reach a reasonable solution; it just reduced the size by an
(almost) constant factor. This cannot happen in normal use, or it would be noticed. Hence,
synthesizing structural SOPs must be considered to be outside the intended operating region,
and therefore not much relevant for tool evaluation.
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Figure 2: The impact of transforming circuit examples into SOP, and the derivative the input
size – output size dependency for 20 iterations of dch,if,mfs

Figure 2 documents how iterative resynthesis [11] improves the situation. The number of
cases with low derivative increased from 16% to 54%, while the number of cases with high
derivative decreased from 42% to 29%.

In further experiments, we used a different kind of structure to replace the original one: a
multiplexer structure derived from a Binary Decision Diagram (BDD). The results were similar
in nature, with 55% of the cases exhibiting high derivative. The important fact is, that the
corresponding derivatives from both transformation methods are uncorrelated. Spearman cor-
relation is 0.044, and even 0.014 if we allow the approximations to extrapolate in order to have



more data points.
To conclude, the size of the solution was strongly correlated with the size of the input

description. The slope of the dependency is given by
• the circuit,
• the synthesis procedure under test,
• the kind of replacement structure (SOP or multiplexers), and
• the size of the input itself.

The results can be interpreted to document that any procedure tolerates the loss of structure
to some extent depending on other characteristics. Beyond that limit, it merely improves the
circuit by a roughly constant factor.

For experimental evaluation, it follows that
• synthesis procedures have adapted in time to the nature of input, which is human design;
• various sources of redundancy are not interchangeable; genuine incompetent designer can-

not be substituted by circuit transformation.
From both the sections above, it seems that the researcher’s position with regard to bench-

marks is much more limited than it seemed before. With our inability to characterize practical
input, and with the tools’ sensitivity to original structure, the only way seems to be prudent.

4 Loss of fidelity

When we become more prudent as dictated by the above outlined situation, several flaws appear
in current benchmark sets and their treatment.

4.1 Context

Combinational synthesis is but a small part of a contemporary synthesis tool. The input that
is genuine is the designer’s HDL; between that and the input to logic synthesis procedure, a
number of steps exist, which can work in different ways, depending on the following capabilities
of the procedure:

• to work with hierarchical descriptions,
• to process completely independent parts of the circuit (components) effectively,
• to produce efficient implementation for specific circuits (e.g., adders), even if they are not

marked as special,
• to do so even if the mapping from HDL constructs is “simple-minded”, as in [20].

To have the HDL processing and elaboration under control, we need an open elaboration tool,
such as [2] promises to be, and to document the derivation of actual synthesis examples from
the original HDL code. Any evaluated synthesis procedure should state the context in which it
is supposed to work.

4.2 Language of description and its semantics

The base notion behind circuit description in most academic tools is the Boolean network. This
is also the case for combinational circuit described structurally in HDLs. With this in mind,
it seems easy to translate descriptions between such languages. The difficulty, however, lies in
node functions. Some languages, e.g., BENCH [5], have a built-in repertory of node functions.
Others, e.g. the structural view in EDIF [1], do not describe node function at all; it must be
guessed from the type name. In hierarchical HDLs, one has to decide which level of hierarchy
describes node function and which have to be flattened. The ability to express incompletely
defined function also varies. Hence, translation is not a trivial task, and in situation where mere
reordering of declaration may change performance, cannot be considered prudent.

4.3 Instance processing and transformation

Certain benchmarks were processed by synthesis or simplification, with the belief that the tools
provide ideal transformation without any loss of information. One such transformation occurred
between the IWLS’91 [35] and IWLS’93 [23] sets. The aim was to use an industrial standard
language (EDIF) instead of academic formats. The above outlined difficulty with language



semantics forced conversion from the large Boolean network nodes found in the former BLIF
description into primitive gates. Where such large nodes did not occur, the tool preserved input
complexity. In other cases, however, the size increased by an order of magnitude.
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Figure 3: A comparison of circuits in the LGSynth91 and LGSynth93 sets. Dotted lines mark
the 100:1, 10:1, and 1:1 size ratio.

Figure 3 shows the consequences of the manipulation. For majority of circuits, their size
measured in literals was not much affected, with the exception of the four circuits highlighted in
the graph. They were enlarged to the extent that they no longer represent the same benchmark,
and we doubt if their structure is still representative for practical circuits. We were unable to
replicate the effect of the manipulation even by old tools of the period. Practically all recent
tools are unable to repair the harm in these cases, but usually are able to synthesize acceptable
results from the original LGSynth91 circuit description.

We also studied the impact of the above mentioned manipulation to synthesis. Circuits from
both sets were synthesized using the ABC system with the commands sequence dch,if,lutpack and
are compared in Figure 4. The descriptions of circuits s27 and s298 contained Don’t Care states
in the form of a library cell named DC. These circuits could not have been synthesized. The
problematic circuits alu4 and cordic remained problematic, although the synthesis improved the
ratio to LGSynth91. Surprisingly, new problems with circuits frg1, too large, and z4ml appeared.
It confirms that size alone is not sufficient to characterize the circuits. Furthermore, it forces
us to mark the entire set as unreliable, because the altered structure of other circuits in the set
can be difficult for other tools, and would not test the tools for anything that can be present in
practical circuits.

We tried to provide difficult examples using non-standard work flow (collapsing, [12]). In
the light of our later findings, this is not prudent. So is the hope of Cong and Minkovich [7],
that the complexity introduced by collapsing may replace the overhead found in less competent
designs.

[21] produces examples by application of random transformations to a circuit. The reported
impact on SIS [30] performance is two- to four-fold. We still do not know if these examples test
anything relevant.

In experimental algorithmics [24], examples may be generated randomly, within a class char-
acterized by selected parameters. This cannot be done for circuits, and hence random generators
using this approach [19] do not seem appropriate.

4.4 Documentation and optimum solutions

The function of a benchmark circuit has been mostly considered unimportant. Yet for many of
the benchmarks, a high quality – possibly manual – solution did exist. Such a solution can be
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Figure 4: A comparison of circuits in the LGSynth91 and LGSynth93 sets after synthesis; s27
and s298 missing. Dotted lines mark the 100:1, 10:1, and 1:1 size ratio.

used as a valuable reality check.
As an example, take the famous alu4 benchmark. For decades, it is known that the de-

scription is highly redundant [16]. The results provided by standard tools, having around 1000
gates, were considered normal. After a long effort, we verified that alu4 is the 74181 circuit from
Texas Instruments. A high quality manual solution is available since 1970 [33], which has the
equivalent of 85 two-input gates. Had this been known, many researchers would have realized
that their results are almost irrelevant.

A rare example of post factum documentation is [17]; it permits to make links between the
broader class of an example and the tools’ behavior.

4.5 Original purpose

So far, we wrote about experimental evaluation in general, with the primary purpose to prove
performance improvement. In the process of tools development, however, examples can be
used that are specially crafted in order to test specific situations or specific parts of the tools.
One such example is the ex1010 circuit, which circulates in various forms for a quarter of a
century. Only in historical literature [28], we learn that this is a synthetic instance, generated
randomly, and originally created to test two-level minimization. Even the original report finds
that minimization procedures behave differently on real and synthetic examples, and tabulates
them separately.

Similarly, examples for Automatic Test Generation (ATPG) [4] [3] may have been selected
because they were difficult for ATPG tools. It is not clear how relevant they are for synthesis.

5 Conclusions

Intentional and unintentional experiments with loss of circuit structure teaches us to preserve
circuits used for experimental evaluation as much as possible. Because we are unable to char-
acterize the ‘practical circuit’, we cannot be sure which alteration – by synthesis, translation or
random transformation – is harmless. Therefore the whole ‘life’ of an example must be docu-
mented, starting with the original HDL code and including any subsequent processing. Optimum
solutions are valuable for experimental evaluation, so that they must be maintained.
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