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Abstract— Circuits which are designed to be dependable are 

evaluated after gate-level design. To demonstrate the influence 

of implementation technology on dependability parameters, we 

developed a simple method which transforms the evaluation 

problem into conceptual hardware and then to SAT instances. 

The method can accommodate any combinational fault model. 

The performed evaluation demonstrated that the dependability 

parameters of the implementations correlate to a significant 
degree. 
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I.  INTRODUCTION 

The principal way to improve the dependability 
of a circuit is to introduce redundancy. One possible strategy 
is to detect errors in output signals and take appropriate 
measures during circuit operation. This technique is called 
Concurrent Error Detection (CED [1]). 

Redundancy must be introduced with care, as redundant 
blocks are also prone to faults, and the point of diminishing 
return can be reached easily.  Numerous schemes were 
devised to balance redundancy and dependability. 
To evaluate variant designs, we need to know how much 
dependability we get for a given investment into redundant 
circuits. Initially, dependability meant roughly what is today 
called robustness. In this paper, we adhered to the original 
meaning from [2], where dependability parameters were 
introduced to quantify dependability. 

The standard design flow is to design the circuit first, 
to construct its redundancy afterwards, and then to evaluate 
its dependability parameters. The underlying assumption is 
that the actual design, the technology used and its resulting 
fault models influence the dependability parameters to a 
large degree. In many studies, the ubiquitous stuck-at (S@) 
models were used. 

Recent Automatic Test Pattern Generation (ATPG) 
programs [3] and procedures based on solving the 
Satisfiability Problem (SAT) [4] permit analysis with 
a variety of fault models suitable for a particular circuit 
implementation technology. This in turn enables us to see the 
influence of technology on dependability. In other words, we 
ask whether there are circuits hard to make dependable or 
technologies hard to make dependable. 

To study this question, we needed a simple framework. 
Recently, two approaches to robustness analysis and other 
tasks dealing with faults exist. The first one, represented 

by [5] and [6], transforms the task instance to an ATPG task 
instance. The ATPG program then may or may not convert it 
internally to one or more SAT instances [7], [9]. The other 
approach, most notably represented by [4] and [10], converts 
an instance of the task to conceptual hardware (hardware 
which is not intended for synthesis) and then constructs SAT 
instances from that hardware. 

Both approaches can be seen as special cases of a more 
general method, which can be summarized as follows. 
Firstly, transform the task instance into a piece of conceptual 
hardware together with assertions about the hardware. 
Secondly, use formal verification methods to prove or 
disprove the assertions (e.g. [3], [11]). If required, transform 
the assertions into conceptual hardware as well [8]. Thirdly, 
transform the answers back to the answers to the original 
task instance.  

This is a powerful framework, which can even produce 
answers about sequential behavior in the presence 
of multiple faults. For our study, combinational circuits (or 
full-scan circuits) were sufficient. Furthermore, only fault 
classification was required, without the need to analyze 
multiple fault impact. 

Therefore, we present a simple framework for this 
limited situation, which constructs conceptual hardware 
representing the circuit and the assertions directly. We 
borrowed the term miter from ATPG [7], although monitor 
from [8] and other sources has a similar meaning. 

We present a method to determine the value of an 
arbitrary Boolean formula over input vectors, error-free 
output vectors, and error-stricken output vectors of a 
combinational circuit. The formula can be quantified over all 
input vectors or their subset.  

Although we cannot overcome the exponential worst 
case complexity of the SAT problem, we have practical 
solvers for the Boolean Satisfiability Problem, which solve 
both satisfiable and unsatisfiable instances effectively. The 
method also benefits from the fact that the SAT instances 
encountered during ATPG, and, as it was discovered, 
robustness analysis, are far simpler to solve than the worst 
case [11], [12], [13]. 

We present the method as an extension of SAT ATPG 
first in its general form. Then we review the class 
of dependable circuits studied and present their fault 
classification. We demonstrate application of the proposed 
method on this problem, and finally show and discuss 



classification results for two different implementation 
technologies. 

II. PREDICATE EVALUATION 

A. The SAT-Based ATPG 

Let the circuit in question realize a Boolean function F(x) 
over input x. The circuit has n primary inputs and m primary 
outputs. In the application presented below, it is provided 
by the CED code, where an erroneous output is indicated 
by one extra output signal. 

 
Figure 1.  A circuit F with n inputs and m+1 outputs 

Denote Fflt(x) the Boolean function characterizing the 
circuit with a given fault. The question whether the fault can 
be detected is answered by the predicate 

x, F(x) ≠ Fflt(x) (1)  

This is understood as a circuit, see Figure 2. The fault-
free and faulty circuits provide F(x) and Fflt (x), respectively. 
The predicate itself is also expressed as a circuit called the 
miter [3].  

The characteristic function of the entire circuit is then 
constructed in Conjunctive Normal Form (CNF) and its 
satisfiability is solved. If the instance is unsatisfiable, the 
fault cannot be tested. If it is satisfiable, all solutions are 
input vectors testing the fault. 

 
Figure 2.  Circuit description of the ATPG SAT instance 

For details on the SAT-based ATPGs, see [7], [8], [9]. 

B. General Predicates 

Let x, F(x) and Fflt(x) have the same meaning as above.  
Let 

x, G(x, F(x), Fflt(x))  (2)  

be any Boolean predicate over x, F(x) and Fflt(x). Then G can 
also be understood as a circuit, see Figure 3.  As it has the 
same role as in ATPG or model checking, we call it the 
generalized miter. Its characteristic function can be 
constructed as in the ATPG case, and the SAT instance is 
solved. 

 
Figure 3.  The generalized miter for predicate G 

A universally quantified predicate 

x, H(x, F(x), Fflt (x))  (3) 

can simply be converted to 

x, H(x, F(x), Fflt(x)))  (4) 

The construction of H might seem difficult. When seen 
as a circuit, however, it suffices to add an inverter. This 
causes one more variable and two clauses in the SAT 
instance, which is tolerable. 

The predicate can be transformed to CNF by other 
methods as well; the above case illustrates the advantage 
of seeing it as a circuit. 

The dependency of the general predicate on X is useful 
in situations where not every input vector is admissible. Let 
A be the set of admissible input vectors and a(x) the 
predicate characterizing the set. Then 

xA, G(F(x), Fflt(x))  (5)  

becomes 

x, a(x)G(F(x), Fflt(x))  (6)  

This feature achieves the same effect as the input encoder 
in [5]. In the case solved there, code generator and detector 
for the codes in question are comparable in complexity. 
For other problems, however, to produce a vector may be 
more difficult than to check that vector. 

III. THE ANALYZED ARCHITECTURE 

A. The Structure of the Dependable Block 

The CED strategy proposed in [1], [14] is used in this 
paper to illustrate principles of the proposed SAT-based 
predicate evaluation and for the experimental evaluation. 

The digital circuit D to be secured by a CED code is 
supplemented with a predictor P and a checker E, see Figure 
4.  The predictor can be understood as a copy of the 
functional circuit together with an encoder. The encoder 
transforms the vector on the primary outputs of the circuit 
into the redundancy bits of a selected error detection code. 
The primary outputs (POs) of the circuit to be secured and 
the predictor outputs form the code-word whose correctness 
is verified by the checker.  

Any fault in the functional logic D either does not alter 
the output for a given input vector, or should be detected 
by the checker. Faults in the predictor and checker either do 
not affect the operation, or cause false alarms. This 



architecture can be apprehended as a kind of modification 
of the well-known duplex scheme [14], [16].  

For the purpose of this paper, single parity is used as the 
error detection code. Thus, the predictor is constructed as a 
copy of the original circuit supplemented with a XOR tree 
at its outputs, k = 1 in Figure 4.  

The single parity code offers a low area overhead, 
however its error detection capabilities are limited. 
Therefore, the fault coverage can also be lower than in the 
case of the duplex system, and must be analyzed. 

 
Figure 4.  Basic concurrent error detection (CED) scheme 

B. Fault Classification and Dependability Parameters  

There are three basic dependability parameters in the 
field of CED (Concurrent Error Detection) [1], [2]: 

 Fault security (FS) - probability that the erroneous 

outputs produced for a modeled fault do not belong 

to the output code-words. 

 Self-testing property (ST) - probability that an input 

vector occurring during normal operation produces 

an output vector which does not belong to the code 
when a modeled fault occurs. 

 Totally self-checking (TSC) - The FS and ST 

parameters of the circuit are equal to 100%. Totally 

Self-Checking property offers the highest level 

of protection. 

 
The faults in the secured block cannot be classified only 

as detectable or undetectable, as for a common circuit. Their 
detectability by the checker must also be evaluated [4]. 

To compute these parameters, an approach based on a 
fault classification was presented in [4], [15]. The faults are 
classified into four groups (A, B, C and D) based on their 
observability on primary outputs of the circuit and 
detectability by the checker.  

 Class A – These faults do not affect the circuit POs 
for any allowed input vector. This is the class 
of redundant (undetectable) faults. They have no 
impact to the FS property, but circuits with these 
faults cannot be ST. 

 Class B – These faults are detectable by at least one 
input vector and do not produce an incorrect 
code-word (a valid code-word, but incorrect) for 
other input vectors. They have no negative impact 
on the FS and ST properties, since if such a fault 
occurs, it is detected by the checker. 

 Class C – The faults that produce an incorrect 
codeword for at least one input vector and cannot be 
detected by any input vector. This is the class 
of faults, that can never be detected by the checker 
and that produce an erroneous output. The circuit 
with these faults is neither FS nor ST. 

 Class D – these faults cause at least one detectable 
and one undetectable error on the POs. They are 
detectable, but also may produce an incorrect output, 
which is not detected by the checker. They do not 
satisfy the FS property.  
 

The FS property can be computed from the number 
of faults in these classes as: 

FS = (A+B) / (A+B+C+D)  100 [%] (7) 

The ST property is computed in similar way as: 

ST = (B+D) / (A+B+C+D)  100 [%], (8) 

where A, B, C, and D are the numbers of faults in the 
respective classes. 

IV. SAT-BASED FAULT CLASSIFICATION TECHNIQUE 

To apply the SAT-based classification on the above 
outlined architecture, we must characterize the classes 
by binary predicates and apply the general scheme form 
Figure 3.  

A. Predicates 

To compute the dependability parameters of the given 
architecture, each fault must be classified into one of the 
classes A, B, C, and D. Four classes need at least two binary 
predicates to distinguish. In this case, they are easy to derive 
from the specifications. In principle, the classes are defined 
by the ability of the fault to cause a detected or an undetected 
error, which can be formalized as follows: 

 J(x) is true iff the input vector x gives an erroneous 
output D(x) of the faulty circuit and the error is 
detected (E(x) is true.) 

 K(x) is true iff the input vector x gives an erroneous 
output D(x) of the faulty circuit and the error is not 
detected (E(x) is false.) 

Then the given fault belongs to 

 the class A, iff  x, J(x)  x, K(x) 

 the class B, iff  x, J(x)  x, K(x) 

 the class C, iff  x, J(x)  x, K(x) 

 the class D, iff  x, J(x)  x, K(x) 

Hence, two SAT instances must be solved to classify a fault.  

B. Generalized Miters 

To construct a miter for the J and K predicates, we have 
to apply the general process leading from the circuit 
in Figure 1. to the circuit in Figure 3. on the discussed 



architecture. The output F(x) is in our case decomposed into 
D(x) and E(x), giving the circuit in Figure 5.  

 
Figure 5.   The general circuit for J and K evaluation 

Bringing in the internal structure of F and Fflt from 
Figure 4. , we obtain the circuit in Figure 6.  

The actual predicates apply to all input vectors x, 
therefore x does not enter into the miter circuits. 
Furthermore, we are interested in faults in the secured circuit 
D only, not in the predictor or checker. Therefore, we can 
omit Eflt(x) from the miters and, therefore, Pflt and Eflt from 
the circuit. The final optimized circuit is in Figure 7.  

 
Figure 6.  The unoptimized circuit for J  and K 

 
Figure 7.  The optimized circuit for J  and K 

Using D(x), Dflt(x) and E(x), we can implement the miters 
as 

 J(x)  D(x)  Dflt(x)  E(x) 

 K(x)  D(x)  Dflt(x)  E(x) (9) 

V. EXPERIMENTAL TECHNOLOGY COMPARISON 

Using the above described framework, we compared 
robustness of a set of benchmarks, implemented either 
structurally (as a network of gates) with S@ faults, or 

implemented as a set of Look Up Tables (LUTs), 
considering Single Event Upset (SEU) in the LUT 
configuration memory as the primary fault mechanism. 

The experiments have been performed on 65 ISCAS’85 
[17], ISCAS’89 [18], ITC’99 [19] and LGSynth [20] 
benchmark circuits. 

For the S@ faults, the original structural description was 
used. The fault lists were generated by Atalanta [21] and 
were free from dominated faults. 

The LUT implementations were synthesized by ABC 
[22] using the command sequence strash; dch; if; lutpack as 
recommended by the authors. 

A. Measurements and Metrics 

The gate implementation and the LUT implementation 
of a circuit have different number of possible faults. 
To compare them in a practically relevant manner, we 
decided to count points of vulnerability, that is, the number 
of faults which can cause dysfunction of the circuit. The 
coefficients FS and ST, which indicate distance to the Totally 
Self Checking goal, are of minor importance here. The 
metrics used were Not Fail Safe 

  NFS = C+D  

and Not Self-Testing 

  NST = C.  

B. Measured Numbers of Faults 

TABLE II. shows the number of faults classified by the 
above described method. The statistical properties are 
summarized in the following TABLE I. , using standard 
correlation and least square linear regression.  

TABLE I.  STATISTICAL PROPERTIES OF FAULT NUMBERS 

Quantity Correlation Lin. regression 

Total faults 0.894 2.0 

A 0.180 2.2 

B 0.892 1.8 

NST=C 0.934 1.77 

D 0.947 1.15 

NFS 0.949 0.73 

 

It is apparent that the values, with the exception 
of Class A fault number, are correlated. The values NFS, 
NST, which give the number of points of vulnerability, are 
most tightly correlated. From the correlation it follows that 
the dependability, or, more precisely, the ability to become 
dependable using the MDS architecture, does not depend 
on architecture and fault model. Rather, it is a property of the 
circuit itself. 

From the coefficient of total fault number, it would seem 
that the LUT technology has twice the number of potential 
faults. From the coefficient of the A Class faults, it would 
further seem that many of them are caused by redundancy. 
This comparison, however, is influenced by the construction 
of the fault list for gates. A single fault there can represent 



more than one dominated fault and hence more than one 
point of vulnerability. 

VI. CONCLUSIONS 

A method for proving arbitrary predicates quantified over 
input vector of a combinational circuit has been presented. 
The method combines elements from SAT ATPG and 
SAT-based property checking. The Modified Duplex System 
architecture, which requires classification into four classes, 
has been selected for demonstration of the method.  

A set of benchmark circuits was constructed using the 
MDS redundancy architecture. The circuits were 
implemented both in gates and LUTs. Their self-checking 
characteristics were evaluated by the described method under 
the stuck-at and single event upset fault models, respectively. 
The characteristics were found to be correlated, which 
suggests that the ability to become dependable under the 
MDS scheme is an intrinsic property of the circuit itself. 
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TABLE II.  FAULT NUMBERS IN TWO IMPLENENTATIONS 

 

Circuit 

Gates, S@ LUTs, SEU 

FAULTS A B NTS=C D NFS FAULTS A B NTS=C D NFS 

5xp1 422 0 353 7 62 69 538 83 431 4 20 24 

9symml 446 0 446 0 0 0 1036 275 761 0 0 0 

9sym 713 0 713 0 0 0 1440 409 1031 0 0 0 

al2 400 0 338 8 54 62 736 0 692 0 44 44 

alcom 319 0 291 16 12 28 560 0 556 0 4 4 

alu1 109 0 91 0 18 18 120 0 120 0 0 0 

alu2 1132 117 383 9 623 632 1864 680 555 9 620 629 

amd 842 0 632 23 187 210 2084 371 1546 16 151 167 

b1 37 6 25 0 6 6 16 0 16 0 0 0 

b9 366 2 205 45 114 159 560 6 412 64 78 142 

br1 341 0 230 17 94 111 792 120 558 57 57 114 

br2 296 0 185 20 91 111 564 58 406 18 82 100 

c1355 882 0 704 0 178 178 1088 2 944 14 128 142 

c17 22 0 12 0 10 10 32 0 32 0 0 0 

http://www.eecs.berkeley.edu/~alanmi/abc/


 

Circuit 

Gates, S@ LUTs, SEU 

FAULTS A B NTS=C D NFS FAULTS A B NTS=C D NFS 

c1908 971 5 437 0 529 529 1252 118 614 6 514 520 

c432 553 8 82 0 463 463 1088 128 222 17 721 738 

c499 882 0 704 0 178 178 1088 2 944 14 128 142 

c8 636 56 489 0 91 91 454 21 401 0 32 32 

cc 219 13 172 4 30 34 328 24 296 0 8 8 

chkn 918 0 806 0 112 112 1924 269 1607 0 48 48 

cht 669 39 604 0 26 26 588 0 584 0 4 4 

clip 1108 27 964 3 114 117 1068 205 793 8 62 70 

clpl 38 0 14 0 24 24 84 0 52 0 32 32 

cm138a 74 0 68 6 0 6 96 0 96 0 0 0 

cm150a 245 23 222 0 0 0 160 8 152 0 0 0 

cm152a 56 0 56 0 0 0 72 4 68 0 0 0 

cm162a 166 6 113 0 47 47 172 18 130 0 24 24 

cm163a 159 4 115 0 40 40 160 4 156 0 0 0 

cm42a 76 0 68 2 6 8 160 0 160 0 0 0 

cm82a 60 0 17 0 43 43 32 0 24 0 8 8 

cm85a 131 0 107 0 24 24 148 0 148 0 0 0 

cmb 141 6 92 0 43 43 228 22 182 0 24 24 

con1 51 0 43 0 8 8 68 2 66 0 0 0 

count 379 0 265 4 110 114 520 24 432 0 64 64 

cu 164 6 100 27 31 58 208 11 159 28 10 38 

dc1 120 0 85 7 28 35 112 0 112 0 0 0 

dc2 255 0 201 3 51 54 422 49 361 4 8 12 

decod 130 0 122 8 0 8 192 0 192 0 0 0 

dist 796 0 712 4 80 84 2240 552 1686 0 2 2 

duke2 1303 1 609 132 561 693 2476 482 914 264 816 1080 

ex5 940 0 697 29 214 243 2768 917 1662 18 171 189 

ex7 297 0 229 0 68 68 412 26 362 0 24 24 

f51m 459 0 402 0 57 57 570 100 466 0 4 4 

frg1 1049 0 1041 0 8 8 1248 118 1130 0 0 0 

gary 1059 0 850 17 192 209 2508 445 1936 43 84 127 

i1 129 1 89 2 37 39 162 0 138 0 24 24 

ibm 492 0 354 0 138 138 1080 36 933 0 111 111 

in0 1059 0 850 17 192 209 2416 415 1813 59 129 188 

in2 1002 0 757 56 189 245 2060 289 1512 109 150 259 

in4 1013 0 696 22 295 317 1928 230 1431 20 247 267 

in5 802 0 549 16 237 253 1972 221 1539 17 195 212 

in6 767 0 548 26 193 219 1384 159 1077 20 128 148 

in7 311 0 167 12 132 144 668 75 441 57 95 152 

jbp 1132 0 833 55 244 299 2222 168 1826 74 154 228 

lal 414 0 295 11 108 119 374 15 279 0 80 80 

ldd 278 9 164 45 60 105 404 71 238 42 53 95 

luc 621 0 430 55 136 191 1192 182 819 108 83 191 

m1 195 0 144 8 43 51 302 23 274 2 3 5 

m2 543 0 442 7 94 101 956 170 729 16 41 57 

m3 630 0 534 9 87 96 1546 340 1176 4 26 30 

m4 973 0 844 8 121 129 2752 647 2044 14 47 61 

majority 39 0 39 0 0 0 20 0 20 0 0 0 

max46 380 0 380 0 0 0 744 110 634 0 0 0 

max512 891 0 792 0 99 99 2788 716 2042 4 26 30 

misex1 161 0 105 13 43 56 248 21 205 13 9 22 

misex2 294 0 237 0 57 57 496 28 448 0 20 20 

mlp4 694 0 590 12 92 104 1816 366 1437 0 13 13 

 
 

 

 


