
The Influence of Implementation Technology on Dependability Parameters

Jan Schmidt, Petr Fišer, and Jiří Balcárek

Dept. of Digital Design

Czech Technical University in Prague

Prague, Czech Republic

{jan.schmidt; petr.fiser; jiri.balcarek}@fit.cvut.cz

Abstract— Circuits which are designed to be dependable are

evaluated after gate-level design. To demonstrate the influence

of implementation technology on dependability parameters, we

developed a simple method which transforms the evaluation

problem into conceptual hardware and then to SAT instances.

The method can accommodate any combinational fault model.

The performed evaluation demonstrated that the dependability

parameters of the implementations correlate to a significant
degree.

Keywords-dependability; SAT; fault classification; generalized

miter

I. INTRODUCTION

The principal way to improve the dependability
of a circuit is to introduce redundancy. One possible strategy
is to detect errors in output signals and take appropriate
measures during circuit operation. This technique is called
Concurrent Error Detection (CED [1]).

Redundancy must be introduced with care, as redundant
blocks are also prone to faults, and the point of diminishing
return can be reached easily. Numerous schemes were
devised to balance redundancy and dependability.
To evaluate variant designs, we need to know how much
dependability we get for a given investment into redundant
circuits. Initially, dependability meant roughly what is today
called robustness. In this paper, we adhered to the original
meaning from [2], where dependability parameters were
introduced to quantify dependability.

The standard design flow is to design the circuit first,
to construct its redundancy afterwards, and then to evaluate
its dependability parameters. The underlying assumption is
that the actual design, the technology used and its resulting
fault models influence the dependability parameters to a
large degree. In many studies, the ubiquitous stuck-at (S@)
models were used.

Recent Automatic Test Pattern Generation (ATPG)
programs [3] and procedures based on solving the
Satisfiability Problem (SAT) [4] permit analysis with
a variety of fault models suitable for a particular circuit
implementation technology. This in turn enables us to see the
influence of technology on dependability. In other words, we
ask whether there are circuits hard to make dependable or
technologies hard to make dependable.

To study this question, we needed a simple framework.
Recently, two approaches to robustness analysis and other
tasks dealing with faults exist. The first one, represented

by [5] and [6], transforms the task instance to an ATPG task
instance. The ATPG program then may or may not convert it
internally to one or more SAT instances [7], [9]. The other
approach, most notably represented by [4] and [10], converts
an instance of the task to conceptual hardware (hardware
which is not intended for synthesis) and then constructs SAT
instances from that hardware.

Both approaches can be seen as special cases of a more
general method, which can be summarized as follows.
Firstly, transform the task instance into a piece of conceptual
hardware together with assertions about the hardware.
Secondly, use formal verification methods to prove or
disprove the assertions (e.g. [3], [11]). If required, transform
the assertions into conceptual hardware as well [8]. Thirdly,
transform the answers back to the answers to the original
task instance.

This is a powerful framework, which can even produce
answers about sequential behavior in the presence
of multiple faults. For our study, combinational circuits (or
full-scan circuits) were sufficient. Furthermore, only fault
classification was required, without the need to analyze
multiple fault impact.

Therefore, we present a simple framework for this
limited situation, which constructs conceptual hardware
representing the circuit and the assertions directly. We
borrowed the term miter from ATPG [7], although monitor
from [8] and other sources has a similar meaning.

We present a method to determine the value of an
arbitrary Boolean formula over input vectors, error-free
output vectors, and error-stricken output vectors of a
combinational circuit. The formula can be quantified over all
input vectors or their subset.

Although we cannot overcome the exponential worst
case complexity of the SAT problem, we have practical
solvers for the Boolean Satisfiability Problem, which solve
both satisfiable and unsatisfiable instances effectively. The
method also benefits from the fact that the SAT instances
encountered during ATPG, and, as it was discovered,
robustness analysis, are far simpler to solve than the worst
case [11], [12], [13].

We present the method as an extension of SAT ATPG
first in its general form. Then we review the class
of dependable circuits studied and present their fault
classification. We demonstrate application of the proposed
method on this problem, and finally show and discuss

classification results for two different implementation
technologies.

II. PREDICATE EVALUATION

A. The SAT-Based ATPG

Let the circuit in question realize a Boolean function F(x)
over input x. The circuit has n primary inputs and m primary
outputs. In the application presented below, it is provided
by the CED code, where an erroneous output is indicated
by one extra output signal.

Figure 1. A circuit F with n inputs and m+1 outputs

Denote Fflt(x) the Boolean function characterizing the
circuit with a given fault. The question whether the fault can
be detected is answered by the predicate

x, F(x) ≠ Fflt(x) (1)

This is understood as a circuit, see Figure 2. The fault-
free and faulty circuits provide F(x) and Fflt (x), respectively.
The predicate itself is also expressed as a circuit called the
miter [3].

The characteristic function of the entire circuit is then
constructed in Conjunctive Normal Form (CNF) and its
satisfiability is solved. If the instance is unsatisfiable, the
fault cannot be tested. If it is satisfiable, all solutions are
input vectors testing the fault.

Figure 2. Circuit description of the ATPG SAT instance

For details on the SAT-based ATPGs, see [7], [8], [9].

B. General Predicates

Let x, F(x) and Fflt(x) have the same meaning as above.
Let

x, G(x, F(x), Fflt(x)) (2)

be any Boolean predicate over x, F(x) and Fflt(x). Then G can
also be understood as a circuit, see Figure 3. As it has the
same role as in ATPG or model checking, we call it the
generalized miter. Its characteristic function can be
constructed as in the ATPG case, and the SAT instance is
solved.

Figure 3. The generalized miter for predicate G

A universally quantified predicate

x, H(x, F(x), Fflt (x)) (3)

can simply be converted to

x, H(x, F(x), Fflt(x))) (4)

The construction of H might seem difficult. When seen
as a circuit, however, it suffices to add an inverter. This
causes one more variable and two clauses in the SAT
instance, which is tolerable.

The predicate can be transformed to CNF by other
methods as well; the above case illustrates the advantage
of seeing it as a circuit.

The dependency of the general predicate on X is useful
in situations where not every input vector is admissible. Let
A be the set of admissible input vectors and a(x) the
predicate characterizing the set. Then

xA, G(F(x), Fflt(x)) (5)

becomes

x, a(x)G(F(x), Fflt(x)) (6)

This feature achieves the same effect as the input encoder
in [5]. In the case solved there, code generator and detector
for the codes in question are comparable in complexity.
For other problems, however, to produce a vector may be
more difficult than to check that vector.

III. THE ANALYZED ARCHITECTURE

A. The Structure of the Dependable Block

The CED strategy proposed in [1], [14] is used in this
paper to illustrate principles of the proposed SAT-based
predicate evaluation and for the experimental evaluation.

The digital circuit D to be secured by a CED code is
supplemented with a predictor P and a checker E, see Figure
4. The predictor can be understood as a copy of the
functional circuit together with an encoder. The encoder
transforms the vector on the primary outputs of the circuit
into the redundancy bits of a selected error detection code.
The primary outputs (POs) of the circuit to be secured and
the predictor outputs form the code-word whose correctness
is verified by the checker.

Any fault in the functional logic D either does not alter
the output for a given input vector, or should be detected
by the checker. Faults in the predictor and checker either do
not affect the operation, or cause false alarms. This

architecture can be apprehended as a kind of modification
of the well-known duplex scheme [14], [16].

For the purpose of this paper, single parity is used as the
error detection code. Thus, the predictor is constructed as a
copy of the original circuit supplemented with a XOR tree
at its outputs, k = 1 in Figure 4.

The single parity code offers a low area overhead,
however its error detection capabilities are limited.
Therefore, the fault coverage can also be lower than in the
case of the duplex system, and must be analyzed.

Figure 4. Basic concurrent error detection (CED) scheme

B. Fault Classification and Dependability Parameters

There are three basic dependability parameters in the
field of CED (Concurrent Error Detection) [1], [2]:

 Fault security (FS) - probability that the erroneous

outputs produced for a modeled fault do not belong

to the output code-words.

 Self-testing property (ST) - probability that an input

vector occurring during normal operation produces

an output vector which does not belong to the code
when a modeled fault occurs.

 Totally self-checking (TSC) - The FS and ST

parameters of the circuit are equal to 100%. Totally

Self-Checking property offers the highest level

of protection.

The faults in the secured block cannot be classified only

as detectable or undetectable, as for a common circuit. Their
detectability by the checker must also be evaluated [4].

To compute these parameters, an approach based on a
fault classification was presented in [4], [15]. The faults are
classified into four groups (A, B, C and D) based on their
observability on primary outputs of the circuit and
detectability by the checker.

 Class A – These faults do not affect the circuit POs
for any allowed input vector. This is the class
of redundant (undetectable) faults. They have no
impact to the FS property, but circuits with these
faults cannot be ST.

 Class B – These faults are detectable by at least one
input vector and do not produce an incorrect
code-word (a valid code-word, but incorrect) for
other input vectors. They have no negative impact
on the FS and ST properties, since if such a fault
occurs, it is detected by the checker.

 Class C – The faults that produce an incorrect
codeword for at least one input vector and cannot be
detected by any input vector. This is the class
of faults, that can never be detected by the checker
and that produce an erroneous output. The circuit
with these faults is neither FS nor ST.

 Class D – these faults cause at least one detectable
and one undetectable error on the POs. They are
detectable, but also may produce an incorrect output,
which is not detected by the checker. They do not
satisfy the FS property.

The FS property can be computed from the number
of faults in these classes as:

FS = (A+B) / (A+B+C+D)  100 [%] (7)

The ST property is computed in similar way as:

ST = (B+D) / (A+B+C+D)  100 [%], (8)

where A, B, C, and D are the numbers of faults in the
respective classes.

IV. SAT-BASED FAULT CLASSIFICATION TECHNIQUE

To apply the SAT-based classification on the above
outlined architecture, we must characterize the classes
by binary predicates and apply the general scheme form
Figure 3.

A. Predicates

To compute the dependability parameters of the given
architecture, each fault must be classified into one of the
classes A, B, C, and D. Four classes need at least two binary
predicates to distinguish. In this case, they are easy to derive
from the specifications. In principle, the classes are defined
by the ability of the fault to cause a detected or an undetected
error, which can be formalized as follows:

 J(x) is true iff the input vector x gives an erroneous
output D(x) of the faulty circuit and the error is
detected (E(x) is true.)

 K(x) is true iff the input vector x gives an erroneous
output D(x) of the faulty circuit and the error is not
detected (E(x) is false.)

Then the given fault belongs to

 the class A, iff x, J(x)  x, K(x)

 the class B, iff x, J(x)  x, K(x)

 the class C, iff x, J(x)  x, K(x)

 the class D, iff x, J(x)  x, K(x)

Hence, two SAT instances must be solved to classify a fault.

B. Generalized Miters

To construct a miter for the J and K predicates, we have
to apply the general process leading from the circuit
in Figure 1. to the circuit in Figure 3. on the discussed

architecture. The output F(x) is in our case decomposed into
D(x) and E(x), giving the circuit in Figure 5.

Figure 5. The general circuit for J and K evaluation

Bringing in the internal structure of F and Fflt from
Figure 4. , we obtain the circuit in Figure 6.

The actual predicates apply to all input vectors x,
therefore x does not enter into the miter circuits.
Furthermore, we are interested in faults in the secured circuit
D only, not in the predictor or checker. Therefore, we can
omit Eflt(x) from the miters and, therefore, Pflt and Eflt from
the circuit. The final optimized circuit is in Figure 7.

Figure 6. The unoptimized circuit for J and K

Figure 7. The optimized circuit for J and K

Using D(x), Dflt(x) and E(x), we can implement the miters
as

 J(x)  D(x)  Dflt(x)  E(x)

 K(x)  D(x)  Dflt(x)  E(x) (9)

V. EXPERIMENTAL TECHNOLOGY COMPARISON

Using the above described framework, we compared
robustness of a set of benchmarks, implemented either
structurally (as a network of gates) with S@ faults, or

implemented as a set of Look Up Tables (LUTs),
considering Single Event Upset (SEU) in the LUT
configuration memory as the primary fault mechanism.

The experiments have been performed on 65 ISCAS’85
[17], ISCAS’89 [18], ITC’99 [19] and LGSynth [20]
benchmark circuits.

For the S@ faults, the original structural description was
used. The fault lists were generated by Atalanta [21] and
were free from dominated faults.

The LUT implementations were synthesized by ABC
[22] using the command sequence strash; dch; if; lutpack as
recommended by the authors.

A. Measurements and Metrics

The gate implementation and the LUT implementation
of a circuit have different number of possible faults.
To compare them in a practically relevant manner, we
decided to count points of vulnerability, that is, the number
of faults which can cause dysfunction of the circuit. The
coefficients FS and ST, which indicate distance to the Totally
Self Checking goal, are of minor importance here. The
metrics used were Not Fail Safe

 NFS = C+D

and Not Self-Testing

 NST = C.

B. Measured Numbers of Faults

TABLE II. shows the number of faults classified by the
above described method. The statistical properties are
summarized in the following TABLE I. , using standard
correlation and least square linear regression.

TABLE I. STATISTICAL PROPERTIES OF FAULT NUMBERS

Quantity Correlation Lin. regression

Total faults 0.894 2.0

A 0.180 2.2

B 0.892 1.8

NST=C 0.934 1.77

D 0.947 1.15

NFS 0.949 0.73

It is apparent that the values, with the exception
of Class A fault number, are correlated. The values NFS,
NST, which give the number of points of vulnerability, are
most tightly correlated. From the correlation it follows that
the dependability, or, more precisely, the ability to become
dependable using the MDS architecture, does not depend
on architecture and fault model. Rather, it is a property of the
circuit itself.

From the coefficient of total fault number, it would seem
that the LUT technology has twice the number of potential
faults. From the coefficient of the A Class faults, it would
further seem that many of them are caused by redundancy.
This comparison, however, is influenced by the construction
of the fault list for gates. A single fault there can represent

more than one dominated fault and hence more than one
point of vulnerability.

VI. CONCLUSIONS

A method for proving arbitrary predicates quantified over
input vector of a combinational circuit has been presented.
The method combines elements from SAT ATPG and
SAT-based property checking. The Modified Duplex System
architecture, which requires classification into four classes,
has been selected for demonstration of the method.

A set of benchmark circuits was constructed using the
MDS redundancy architecture. The circuits were
implemented both in gates and LUTs. Their self-checking
characteristics were evaluated by the described method under
the stuck-at and single event upset fault models, respectively.
The characteristics were found to be correlated, which
suggests that the ability to become dependable under the
MDS scheme is an intrinsic property of the circuit itself.

REFERENCES

[1] S. Mitra, J. E. McCluskey, “Which concurrent error detection scheme

to choose?”, In: IEEE International Test Conference, 2000, pp. 985-
994.

[2] D.K. Pradhan, “Fault-Tolerant Computer System Design,” In:

Prentice-Hall, Inc., New Jersey, 1996.

[3] A. Czutro et al., TIGUAN: Thread-parallel Integrated test pattern

Generator Utilising satisfiability Analysis. Proc. Int. VLSI Design
Conference, 2009

[4] G. Fey and R. Drechsler, “A Basis for Formal Robustness Checking,”

Proc. 9th Int. Symp. Quality Electronic Design (ISQED’09), March
2008, pp. 784-789.

[5] M. Hunger, S. Hellebrand: Verification and Analysis of Self-

Checking Properties through ATPG; IEEE International On-Line
Testing Symposium 2008 (IOLTS'2008), Rhodos, Greece, July, 2008,

pp. 25-30

[6] M. Hunger, S. Hellebrand, A. Czutro, I. Polian, B. Becker: ATPG-
Based Grading of Strong Fault-Secureness. Proc. 15

th
 IOLTS,

Sesimbra-Lisbon, June 24-26, 2009

[7] T. Larrabee, “Test Pattern Generation Using Boolean Satisfiability,”
IEEE Transactions on Computer-Aided Design, 1992, pp. 4-15.

[8] Drechsler, S. Eggersglüß, G. Fey, D. Tille, “Test Pattern Generation

using Boolean Proof Engines,” Publisher Springer Netherlands, ISBN
978-90-481-2360-5, 2009, XII, p. 192.

[9] P. Shawhney, G. Ganesh, A. K. Bhattacharjee: Automatic

Construction of Runtime Monitors for FPGA based Designs. IEEE
Int. Symposium on Electronic System Design, pp. 164-169, 201.

[10] G. Fey, A. Sulflow, S. Frehse, and R. Drechsler, “Effective
robustness analysis using bounded model checking techniques,”

IEEE Trans. on CAD, Vol. 30, No. 8,Aug. 2011, pp.1239-1252.

[11] A. Biere and W. Kun, “SAT and ATPG: Boolean engines for formal
hardware verification,” In: International Conference on Computer

Aided Design (ICCAD ’02), 2002, pp. 782—785.

[12] B.R. Prasad, P. Chong, K. Keutzer, „Why is ATPG easy?“, In Proc.
of the 36th Annual ACM/IEEE Design Automation Conference, New

Orleans, USA, June 21-25, 1999, pp. 22-28.

[13] P. Chong and M. Prasad, “Satisfiability for ATPG: Is it Easy?,” 1998.

[14] S. Mitra and E. J. McCluskey, “Diversity Techniques for Concurrent
Error Detection,” In: Proc. of IEEE 2nd International Symposium on

Quality Electronic Design, 2001, pp. 249-250.

[15] R. Dobiáš, P. Kubalík, H. Kubátová, “Dependability computations for
fault-tolerant system based on FPGA,” In Proc. of 12th IEEE

International Conference on Electronics, Circuits and Systems, 2005,
pp. 1-4.

[16] P. Kubalík, H. Kubátová, “Dependable design technique for system-
on-chip,” Journal of Systems Architecture. 2008, vol. 2008, no. 54,

ISSN 1383-7621, pp. 452-464.

[17] F. Brglez, H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortan,” In Proc. of

International Symposium on Circuits and Systems, pp. 663-698,
1985.

[18] F. Brglez, D. Bryan, K. Kozminski, “Combinational Profiles of

Sequential Bench-mark Circuits,” Proc. of International Symposium
of Circuits and Systems, pp. 1929-1934, 1989.

[19] F. Corno, R. Sonza, M. Squillero, “RT-Level ITC 99 Benchmarks and

First ATPG Results,“ IEEE Design & Test of Computers, July-
August 2000, pp. 44-53.

[20] K. McElvain, “LGSynth93 Benchmark Set: Version 4.0,“ Mentor

Graphics, May 1993.

[21] H.K. Lee and D.S. Ha, "Atalanta: an Efficient ATPG for
Combinational Circuits,", Technical Report, 93-12, Dep't of Electrical

Eng., Virginia Polytechnic Institute and State University, Blacksburg,
Virginia, 1993.

[22] Berkeley Logic Synthesis and Verification Group, “ABC: A System
for Sequential Synthesis and Verification”,

http://www.eecs.berkeley.edu/~alanmi/abc/

TABLE II. FAULT NUMBERS IN TWO IMPLENENTATIONS

Circuit

Gates, S@ LUTs, SEU

FAULTS A B NTS=C D NFS FAULTS A B NTS=C D NFS

5xp1 422 0 353 7 62 69 538 83 431 4 20 24

9symml 446 0 446 0 0 0 1036 275 761 0 0 0

9sym 713 0 713 0 0 0 1440 409 1031 0 0 0

al2 400 0 338 8 54 62 736 0 692 0 44 44

alcom 319 0 291 16 12 28 560 0 556 0 4 4

alu1 109 0 91 0 18 18 120 0 120 0 0 0

alu2 1132 117 383 9 623 632 1864 680 555 9 620 629

amd 842 0 632 23 187 210 2084 371 1546 16 151 167

b1 37 6 25 0 6 6 16 0 16 0 0 0

b9 366 2 205 45 114 159 560 6 412 64 78 142

br1 341 0 230 17 94 111 792 120 558 57 57 114

br2 296 0 185 20 91 111 564 58 406 18 82 100

c1355 882 0 704 0 178 178 1088 2 944 14 128 142

c17 22 0 12 0 10 10 32 0 32 0 0 0

http://www.eecs.berkeley.edu/~alanmi/abc/

Circuit

Gates, S@ LUTs, SEU

FAULTS A B NTS=C D NFS FAULTS A B NTS=C D NFS

c1908 971 5 437 0 529 529 1252 118 614 6 514 520

c432 553 8 82 0 463 463 1088 128 222 17 721 738

c499 882 0 704 0 178 178 1088 2 944 14 128 142

c8 636 56 489 0 91 91 454 21 401 0 32 32

cc 219 13 172 4 30 34 328 24 296 0 8 8

chkn 918 0 806 0 112 112 1924 269 1607 0 48 48

cht 669 39 604 0 26 26 588 0 584 0 4 4

clip 1108 27 964 3 114 117 1068 205 793 8 62 70

clpl 38 0 14 0 24 24 84 0 52 0 32 32

cm138a 74 0 68 6 0 6 96 0 96 0 0 0

cm150a 245 23 222 0 0 0 160 8 152 0 0 0

cm152a 56 0 56 0 0 0 72 4 68 0 0 0

cm162a 166 6 113 0 47 47 172 18 130 0 24 24

cm163a 159 4 115 0 40 40 160 4 156 0 0 0

cm42a 76 0 68 2 6 8 160 0 160 0 0 0

cm82a 60 0 17 0 43 43 32 0 24 0 8 8

cm85a 131 0 107 0 24 24 148 0 148 0 0 0

cmb 141 6 92 0 43 43 228 22 182 0 24 24

con1 51 0 43 0 8 8 68 2 66 0 0 0

count 379 0 265 4 110 114 520 24 432 0 64 64

cu 164 6 100 27 31 58 208 11 159 28 10 38

dc1 120 0 85 7 28 35 112 0 112 0 0 0

dc2 255 0 201 3 51 54 422 49 361 4 8 12

decod 130 0 122 8 0 8 192 0 192 0 0 0

dist 796 0 712 4 80 84 2240 552 1686 0 2 2

duke2 1303 1 609 132 561 693 2476 482 914 264 816 1080

ex5 940 0 697 29 214 243 2768 917 1662 18 171 189

ex7 297 0 229 0 68 68 412 26 362 0 24 24

f51m 459 0 402 0 57 57 570 100 466 0 4 4

frg1 1049 0 1041 0 8 8 1248 118 1130 0 0 0

gary 1059 0 850 17 192 209 2508 445 1936 43 84 127

i1 129 1 89 2 37 39 162 0 138 0 24 24

ibm 492 0 354 0 138 138 1080 36 933 0 111 111

in0 1059 0 850 17 192 209 2416 415 1813 59 129 188

in2 1002 0 757 56 189 245 2060 289 1512 109 150 259

in4 1013 0 696 22 295 317 1928 230 1431 20 247 267

in5 802 0 549 16 237 253 1972 221 1539 17 195 212

in6 767 0 548 26 193 219 1384 159 1077 20 128 148

in7 311 0 167 12 132 144 668 75 441 57 95 152

jbp 1132 0 833 55 244 299 2222 168 1826 74 154 228

lal 414 0 295 11 108 119 374 15 279 0 80 80

ldd 278 9 164 45 60 105 404 71 238 42 53 95

luc 621 0 430 55 136 191 1192 182 819 108 83 191

m1 195 0 144 8 43 51 302 23 274 2 3 5

m2 543 0 442 7 94 101 956 170 729 16 41 57

m3 630 0 534 9 87 96 1546 340 1176 4 26 30

m4 973 0 844 8 121 129 2752 647 2044 14 47 61

majority 39 0 39 0 0 0 20 0 20 0 0 0

max46 380 0 380 0 0 0 744 110 634 0 0 0

max512 891 0 792 0 99 99 2788 716 2042 4 26 30

misex1 161 0 105 13 43 56 248 21 205 13 9 22

misex2 294 0 237 0 57 57 496 28 448 0 20 20

mlp4 694 0 590 12 92 104 1816 366 1437 0 13 13

