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Abstract 

Recently we have observed, that behavior of many contemporary logic synthesis and 

optimization processes depends on variable ordering in their input; they produce different results 

for different variable orderings. This fact can be exploited to escape local optima in the iterative 

resynthesis process, where individual synthesis and optimization steps are run repeatedly, in order 

to gradually improve the solution quality. 

In this paper we show an experimental analysis of influence of variable ordering on the result 

quality, for different synthesis steps in ABC.  Next, we present a method of using random 

permutations of variables in the overall iterative synthesis process, in order to improve the result 

quality. Experimental evaluation using both standard benchmarks and industrial circuits is 

presented, to show the viability of the concept. 

1 Introduction 

Basic principles of logic synthesis of Boolean networks have been established already in 1960’s. The 

synthesis consists of two subsequent steps: the technology independent optimization and technology 

mapping. 

The technology independent optimization starts from the initial circuit description 

(sum-of-products, truth table, multi-level network) and tries to generate a minimum multilevel circuit 

description, such as a factored form [5], And Inverter Graph (AIG) [6], [7] or a network of BDDs [8], 

[9]. Then the technology mapping follows [10]-[13]. 

The synthesis process, where the forms of its input and output are the same (Boolean networks, 

AIGs), is called resynthesis [14]. Thus, by resynthesis we understand a process modifying the circuit 

in some way, while keeping the format of its description. 

The academic state-of-the-art logic synthesis tool is ABC [15] from Berkeley, a successor of SIS 

[16] and MVSIS [17]. Individual resynthesis processes in SIS and ABC are represented by commands. 

Since the number of available resynthesis processes is large (e.g. don’t care based node simplification 

[18], rewriting, refactoring, resubstitution [7], [14], [19], etc.), it is difficult to determine a universal 

sequence of these commands leading to optimum results. Thus, different synthesis scripts were 

proposed (e.g. “script.rugged” and “script.algebraic” in SIS, “resyn” scripts, 

“choice”, and “dch” in ABC). These scripts are supposed to produce satisfactory results. 

The resynthesis process may be iterated, to further improve the results. Iteration of resynthesis was 

proposed in ABC [15], too. Authors of ABC suggest repeating the sequence of the technology 

independent optimization (e.g. the “choice” script) followed by technology mapping several times. 

Also the synthesis process of SIS may be efficiently iterated. The necessary condition for using 

iteration is that the network structure must not be completely destroyed in the process, e.g., 

by collapsing it into a two-level form or turning it into a global BDD [8], [9]. Then all the effort made 

in previous iteration would be in vain. Fortunately this is not the case of the mentioned synthesis 

scripts. 

Even though iteration is not too positively accepted by industry for longer runtimes imposed, it can 

be advantageously exploited in specific designs, like the low-power or low-area ones. Next, iteration 

may show the complexity upper bounds. By this, efficiency of any synthesis processes can be judged. 

In a typical iterative resynthesis, the result quality (size, delay) gradually improves in time, until it 

converges to a stable solution. In an ideal case it reaches the global optimum. However, the process 

usually quickly converges to a local optimum, which is sometimes far from the global one (see 



Subsection 4.3). Thus, introducing some kind of diversification, as known in other iterative 

optimization processes [20], [21], could be beneficial. 

Most of synthesis processes in ABC are greedy and not systematic. Thus, they use some heuristic 

function to guide the search for the solution. Even though the heuristic is usually deterministic, there 

often are more equally valued choices. In such situations, the first occurrence is taken. Note that these 

choices are equally valued just at the point of decision and they will most likely influence the 

subsequent decisions. Therefore, they can produce different results. 

We have realized that many of these processes are also not immune to variable ordering of the 

source function (source file). Therefore, different runs of one process with different variable ordering 

produce different results. We take an advantage of this, in order to diversify the search for the solution. 

A method of using random permutations of input and output variables is proposed in this paper. 

The order of variables is randomly changed at the beginning of each iteration. Thus, randomness is 

painlessly introduced into the process. 

We have run extensive experiments both on standard academic benchmark circuits [22], [23] and 

industrial designs from OpenCores [24]. We have reached positive average improvements, both in area 

and delay, for any number of iterations the synthesis was run for.  

A similar approach, where randomness was introduced “from outside”, was published in [25] and 

[26]. Here randomly extracted large parts of the circuit are synthesized separately, in an iterative way, 

too. We must admit that the method presented in this paper is inferior to [26], in terms of the result 

quality. This is obvious, since the method based on variable permutations is theoretically a subset 

of [26]. However, extraction of the parts involves some computational overhead. Since the random 

permutations are made in time linear with the number of variables, no noticeable time overhead is 

involved. Therefore, the main message of this paper is to document that using random permutations 

always pays off. 

2 Discussion on Variable Ordering 

Many logic synthesis and optimization processes are sensitive to the ordering of variables in the source 

function (network) description. Here we discuss possible reasons for it. Experimental results will be 

presented in Section 4.1. 

Typically, variables are processed in a lexicographical order, which is defined a-priori, usually 

by their order in the source file. Then, different variables orders may induce heuristic algorithms run 

differently, possibly producing different (but definitely correct) results. 

A typical and well known example of such a behavior are BDDs [8], [9]. Here the variable ordering 

is essential; the BDD size may explode exponentially with a “bad” variable ordering [9]. Computing 

the optimum variable ordering is NP-hard itself, thus infeasible in practice. Even though there are 

efficient heuristics for determining a possibly good variable ordering [27], they consume some time, 

whereas do not guarantee any success, and thus they are usually not employed in practice. Typically, 

the default variable ordering in the BDD manipulation package CUDD [28] (which is used in SIS and 

ABC, too) is just equal to the variable ordering in the source file. 

Most of ABC algorithms are based on processing AIGs [6], [7]. Usually, the AIGs are traversed 

deterministically, in topological order [7], [19]. But still, there remains some freedom in choosing the 

order which will be the nodes processed in, since there usually are more nodes in each topological 

level. In ABC, nodes with the lowest ID (which is determined by the node creation instant) are 

processed first. Even the nodes creation order may influence the size and topology of the resulting 

AIG, which affects all the subsequent processes. 

Also the well-known two-level Boolean minimizer Espresso [29] (which is used both in SIS and 

ABC) is sensitive to variable ordering. There are many essential parts of the overall algorithm, where 

decisions are made in a lexicographical way. Some decisions do not influence the result quality; they 

just may influence the runtime (e.g., in the tautology checking process [29]), some do influence the 

result as well (e.g., the Irredundant phase [29]). 

 

Keeping this in mind, all these algorithms that claim to be deterministic are not deterministic at all, 

actually. The initial variable ordering shall be considered as random as any other random ordering. But 

anyway, the algorithms should be designed to succeed under any ordering. Therefore, introducing 

random ordering to the synthesis process should not make the process perform worse. Conversely, it 

could help us escape local minima. From the search space point of view, the global optimum is 

approached from different sides. 



3 The Proposed Method 

The state-of-the-art iterative process, as used in ABC [15], can be described as follows: first, the 

internal description (SOP, AIG, Boolean network, network of BDDs, etc.) for the technology 

independent optimization is generated from the initial description or the mapped network. Then the 

technology independent optimization, followed by technology mapping is performed. The process is 

repeated (iterated), until a stopping condition (number of iterations, result quality, timeout) is satisfied 

(see Figure 1:). 
 

do { 

 generate_internal_representation 

technology_independent_optimization 

 technology_mapping 

} while (!stop) 

Figure 1: The iterative resynthesis 

Assuming that each iteration does not deteriorate the solution, the solution quality improves 

in time. This needs not be true in practice, however. For such cases several options are possible: 

 

1) to hope that the overall process will “recover” from small deteriorations, 

2) to accept only improving (non-deteriorating) changes, 

3) to record the best solution ever obtained and return it as the final result, 

4) combination of 1) and 3). 

 

The first and the last option are usually used in practice. 

 

For the purpose of this paper, we offer just a slight modification of the algorithm from Figure 1: 

 
do { 

 randomly_permute_variables 

generate_internal_representation 

technology_independent_optimization 

 technology_mapping 

} while (!stop) 

Figure 2: The iterative resynthesis with random permutations 

Here we only added the randomly_permute_variables step, where the ordering 

of variables (inputs, outputs, or both) is performed. This step can be executed in a time linear with the 

number of variables, hence it does not bring any significant time overhead. 

4 Experimental Results 

4.1 Influence of Permutation on Synthesis Commands 

Here we will present an experimental evaluation of some basic synthesis and technology mapping 

commands in ABC [15], technology independent optimization scripts (which are usually using the 

basic synthesis commands), and complete synthesis scripts, targeted to standard cells (the “strash; 

dch; map” script) and LUTs (the “strash; dch; if; mfs” script). Finally, results 

of Espresso [29] and even Espresso-exact are shown. The dependency on both input and output 

variables ordering is studied. 

The ABC experiments were conducted as follows: 228 benchmarks from the IWLS and LGsynth 

benchmarks sets [22], [23] were processed. Given a benchmark, its inputs and/or outputs were 

randomly permuted in the source BLIF file [30] (or PLA for Espresso), the synthesis command was 

executed, and the number of AIG nodes (
1
), gates (

2
), LUTs (

3
) or literals (

4
), respectively, was 

measured. This was repeated 1,000-times for each circuit. 

In order to compactly represent all the results, the maximum and average percentages of size 

differences were computed, over all the 228 circuits. The results are shown in Table 1.  

We can observe striking quality differences, especially for the complete (compound) synthesis 

processes. 



Even the numbers of literals produced by Espresso-exact differ, since Espresso-exact guarantees 

minimality of the number of terms only. 

Table 1.  Influence of permutation of variables – summary results 

 
Process 

Permuted inputs Permuted outputs Permuted both 

max. avg. max. avg. max. avg. 

Technology 

independent 

optimization: 

commands 

balance
1
 7.69% 1.04% 11.48% 1.60% 12.50% 2.27% 

rewrite
1
 15.38% 0.68% 19.30% 2.41% 19.13% 2.78% 

refactor
1
 12.07% 0.36% 29.73% 2.49% 29.73% 2.79% 

resub
1
 2.50% 0.06% 20.83% 1.70% 20.83% 1.71% 

Technology 

independent 

optimization: 

scripts 

resyn2
1
 44.53% 4.60% 52.75% 5.58% 52.69% 7.38% 

resyn3
1
 13.56% 1.57% 22.50% 2.74% 22.66% 3.72% 

choice
1
 34.40% 7.17% 38.14% 7.14% 36.17% 10.13% 

dch
1
 60.53% 10.42% 40.39% 9.33% 60.50% 13.50% 

Technology 

mapping 

map
2
 17.09% 1.35% 12.28% 1.93% 17.09% 2.84% 

fpga
3
 0.00% 0.00% 5.26% 0.29% 5.26% 0.29% 

if
3
 0.00% 0.00% 2.88% 0.24% 2.88% 0.24% 

Complete 

synthesis 

strash; dch; map
2
 74.38% 8.67% 70.47% 10.52% 86.27% 13.40% 

strash; dch; if; mfs
3
 92.14% 11.50% 85.42% 12.60% 92.02% 14.81% 

Two-level 

optimization 

Espresso
4
 34.90% 1.51% 11.82% 1.04% 42.95% 2.11% 

Espresso-exact
4
 0.63% 0.02% 6.06% 0.23% 6.06% 0.24% 

 

Next, detailed results for two particular circuits, belonging to the largest ones of the measured set, 

apex2 and cordic [22] are shown in Tables 2 and 3. For each process, the minimum, maximum, and 

average values are presented, together with percentage differences between the minima and maxima. 

More precise results were computed here; they were obtained from 10,000 runs. Espresso is insensitive 

to variable ordering for these particular circuits, thus the results are not present. 

When observing the results of the individual synthesis processes and the overall synthesis, the 

behavior of the apex2 case is expectable. Almost all the synthesis processes are sensitive to variable 

ordering, and the effect accumulates in the progress. 

However, cordic is quite a striking example. First of all, this is the circuit responsible for the 

maximum difference of LUTs in the complete synthesis process “strash; dch; if; mfs”. 

Solutions ranging from 27 to 687 LUTs were obtained. But, strangely enough, the standalone synthesis 

processes (“balance”, ”dch”, ”if”, ”mfs”) are not significantly sensitive to variable ordering 

(the mapping phase is completely immune). In quantitative measures, the effects of individual 

processes cannot be combined to obtain such differences in the final design. Therefore, we conclude 

that some qualitative flaws occur in the progress. This effect is rather surprising and worth studying 

more thoroughly. More strange phenomena can be observed from the table, however, their explanation 

is out of scope of this paper. 

4.2 Results of the Proposed Synthesis Process 

Very exhaustive experiments were performed in order to justify the benefit of using random 

permutation of variables in the iterative process. We have processed 490 benchmark circuits 

altogether, coming from academic IWLS and LGsynth benchmark suites [22], [23], as well as from 

large industrial designs from OpenCores [24] (up to 100,000 LUTs). The 4-LUTs-mapping process 

was chosen for the testing purpose. However, we expect the same behavior for any target technology. 

The most recent LUT-mapping synthesis script suggested by the authors of ABC was used: 

“strash; dch; if; mfs; print_stats –b” as a reference. Then, the ABC command 

“permute” randomly permuting both inputs and outputs was implemented and employed, yielding 

the script “permute; strash; dch; if; mfs; print_stats –b”. Both scripts were 

executed 20-, 100-, 1000-, and 5000-times for each circuit, while the best result ever reached was 

recorded and returned as the solution (this is accomplished by the “print_stats –b” command). 

The numbers of resulting 4-LUTs and the delay (in terms of the longest path) were measured. 

Results of all the 490 circuits are shown in Figure 3: and Figure 4:, for area (4-LUTs) and delay 

(levels), respectively. The scatter-graphs visualize the relative improvements w.r.t. the state-of-the-art 

(i.e., no permutations used). Positive values indicate an improvement, the negative ones deterioration. 



The size of the original mapped circuit, in terms of 4-LUTs, is indicated on the x-axis. Two border 

cases, 20 and 5,000 iterations are shown here only. Results of 100 and 1,000 iterations lay in-between. 

We see that a significant improvement may be reached even when the process is run for 20 

iterations. However, also more deteriorating cases are observed. When iterated more, the results 

become more positive, especially for larger circuits. This is quite obvious, since these circuits usually 

converge slower (see Subsection 4.3). 

 

 

Figure 3: Area improvements w.r.t the standard iterative process 

 

Figure 4: Delay improvements w.r.t the standard iterative process 

Summary statistics are shown in Table 4. Only 290 circuits, whose resulting implementation 

exceeded 100 LUTs, were accounted in these statistics, to make the practical impact more credible. 

The minimum, maximum and average percentage improvements for both area and delay are given. 

Also the percentages of cases, where the improvement is positive (“Better in”) and negative 

(“Worse in”) are shown. The complement of the sum of these two values to 100% represents cases 

where equal solutions were obtained. 

Table 4. Summary statistics 

Iterations 20 100 1,000 5,000 

LUTs 

Minimum -12.8% -8.2% -5.4% -6.7% 

Maximum 46.5% 51.2% 74.6% 75.2% 

Average 1.0% 2.1% 4.9% 6.1% 

Better in 52.2% 64.9% 81.0% 82.6% 

Worse in 39.8% 28.8% 15.2% 13.9% 

Levels 

Minimum -33.3% -33.3% -25.0% -25.0% 

Maximum 22.2% 27.3% 40.0% 40.0% 

Average 0.6% 0.6% 1.6% 2.5% 

Better in 16.3% 13.8% 19.7% 23.9% 

Worse in 9.3% 5.5% 6.2% 5.5% 

 

We see that with an increasing number of iterations results become more stable and tend 

to improve, both for area and delay. There is a positive average improvement even for 20 iterations. 

For 5,000 iterations the average improvement reaches 6.1% in area and 2.5% in delay. Also cases, 

where deterioration was obtained, are becoming rare (13.9% and 5.5% for area and delay, 

respectively). 



Assume the worst case, where the number of deteriorating solutions of one iteration of synthesis is 

50% (equal chance for both the improvement and deterioration). In Table 4 we see that all the 

minimum improvements (maximal deteriorations) are much less than 50%, even for 20 iterations. 

From these figures we can conclude that permutation always pays off. 

4.3 The Convergence Analysis 

Here we will show an illustrative example of convergence curves for the iterative synthesis with and 

without using random permutations for two of the IWLS benchmark circuits [23] alu4 and apex2, see 

Figure 5:. The progress of the size reduction during 1,000 iterations was traced. 

Here we see the justification of our theory. In general, it is not possible to say what method 

converges faster. Theoretically, both should converge equally fast. This can be seen, e.g., in the alu4 

case, where the standard synthesis converges faster at the beginning, but then the convergence slows 

down. But more importantly, when the resynthesis without using permutations converges to a local 

minimum, the permutations will help to escape it (see the apex2 curves – here the local minimum was 

reached in the 300
th

 iteration, whereas the solution quality still improves after 1000 iterations when 

permutations are used). Similar behavior can be observed for most of the tested circuits. This confirms 

our theory – the permutations do increase the iterative power. 

 

 

Figure 5: Convergence curves for the alu4 and apex2 circuits 

5 Conclusions 

We have documented that the performance of the state-of-the-art academic logic synthesis tools 

significantly relies on the variable ordering on their input. Using this fact, we have proposed a method 

of increasing the iterative power of resynthesis, by non-violently introducing randomness into their 

run – by randomly permuting input and/or output variables in the process. 

The method was tested on standard academic benchmarks and large industrial designs. A positive 

average improvement in quality (both in area and delay) was obtained. Since introducing the 

permutations into the iterative process takes almost no time, we can conclude that employing random 

permutations definitely pays off. Random permutations help to avoid local optima. Cases, where worse 

results are obtained, are relatively rare. 

Now we still have to ask two ultimate questions: 

“What will happen, if I just reorder the variables in the source file header?” and 

“What shall happen, if I just reorder the variables in the source file header?” 

Acknowledgement 

We would like to thank Alan Mishchenko from UC Berkeley for implementing the 

“print_stats –b” option and, more importantly, for a fruitful discussion. 

References 

[5] G. D. Hachtel and F. Somenzi, “Logic Synthesis and Verification Algorithms“, Kluwer 

Academic Pub. 1996, 564 p. 

[6] K. Karplus, “Using if-then-else DAG’s for multi-level logic minimization”, Univ. California. 

Santa Cruz, UCSC-CRL-88-29, 1988. 

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

L
U

T
s

Iteration

alu4

Standard synthesis

Synthesis with permutations

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

L
U

T
s

Iteration

apex2

Standard synthesis

Synthesis with permutations



[7] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG rewriting: a fresh look at 

combinational logic synthesis”, In Proc. of 43th Design Automation Conference, San Francisco, 

CA, USA, 2006, pp. 532-535. 

[8] S. B. Akers, “Binary decision diagrams”, IEEE Transactions on Computers, vol. C-27, No. 6, 

June 1978, pp. 509-516. 

[9] R. E. Bryant, “Graph based algorithms for Boolean function manipulation“, IEEE Transactions 

on Computers, vol. 35, No. 8, August 1986, pp. 677-691. 

[10] C.W. Moon, B. Lin, H. Savoj, and R.K. Brayton, “Technology Mapping for Sequential Logic 

Synthesis”, In Proc. of International Workshop on Logic Synthesis, North Carolina, May 1989. 

[11] R. Murgai, Y. Nishizaki, N. Shenoy, R. K. Brayton, and A. Sangiovanni Vincentelli, “Logic 

Synthesis for Programmable Gate Arrays”, In Proc. of the Design Automation Conference, June 

1990, pp. 620–625. 

[12] A. Mishchenko,  S. Cho, S. Chatterjee, and R. Brayton, “Combinational and sequential mapping 

with priority cuts”, In Proc. of International Conference on Computer-Aided Design 2007, 

pp. 354-361. 

[13] A. Mishchenko, S. Chatterjee, and R. Brayton, “Improvements to technology mapping for 

LUT-based FPGAs”, IEEE  Transactions on Computer-Aided Design of Integrated Circuits and 

Systems, Vol. 26(2), Feb 2007, pp. 240-253. 

[14] R. K. Brayton et al., “SAT-based logic optimization and resynthesis”, In Proc. of International 

Workshop on Logic Synthesis 2007 (IWLS), pp. 358-364. 

[15] Berkeley Logic Synthesis and Verification Group, “ABC: A System for Sequential Synthesis 

and Verification”, http://www.eecs.berkeley.edu/~alanmi/abc/ [Online]. 

[16] E.M. Sentovich et al., “SIS: A System for Sequential Circuit Synthesis”, Electronics Research 

Laboratory Memorandum No. UCB/ERL M92/41, Univ. of California, Berkeley, CA 1992. 

[17] M. Gao, Jie-Hong Jiang, Y. Jiang, Y. Li, S. Sinha, and R.K. Brayton, “MVSIS”, In the Notes 

of the International Workshop on Logic Synthesis, Tahoe City, June 2001. 

[18] H. Savoj and R.K. Brayton, “The Use of Observability and External Don’t Cares for the 

Simplification of Multi-Level Networks”, In Proc. of the Design Automation Conference 

(DAC), 1990, pp. 297–301. 

[19] A. Mishchenko and R. Brayton, “Scalable logic synthesis using a simple circuit structure”, 

In Proc. of International Workshop on Logic Synthesis (IWLS) 2006, pp. 15-22. 

[20] S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi, “Optimization by Simulated Annealing”, 

Science 13, Vol. 220, no. 4598, May 1983, pp. 671-680. 

[21] D. E. Goldberg, “Genetic Algorithms in Search, Optimization and Machine Learning”, 

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1984, p. 41. 

[22] K. McElvain, “LGSynth93 Benchmark Set: Version 4.0“, Mentor Graphics, May 1993. 

[23] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide”, Technical Report 

1991-IWLS-UG-Saeyang, MCNC, Research Triangle Park, NC, January 1991. 

[24] http://opencores.org 

[25] P. Fišer and J. Schmidt, “It Is Better to Run Iterative Resynthesis on Parts of the Circuit”, 

In Proc. of 19th International Workshop on Logic and Synthesis 2010, Irvine, California, 

pp. 17-24. 

[26] P. Fišer and J. Schmidt, “Improving the Iterative Power of Resynthesis”, In Proc. of 15th IEEE 

Symposium on Design and Diagnostics of Electronic Systems (DDECS), 2012, Tallinn 

(Estonia), pp.-30-33. 

[27] R. Rudell, “Dynamic variable ordering for ordered binary decision diagrams”, In Proc. of the 

International Conference on Computer-Aided Design, Santa Clara, CA, 1993, pp. 42-47. 

[28] F. Somenzi, \CUDD: CU Decision Diagram Package Release 2.4.1", University of Colorado 

at Boulder, http://vlsi.colorado.edu/~fabio/CUDD [Online]. 

[29] R. K. Brayton et al., “Logic minimization algorithms for VLSI synthesis”, Boston, MA, Kluwer 

Academic Publishers, 1984, 192 p. 

[30] Berkeley Logic Interchange Format (BLIF), University of California, Berkeley, 2005. 

 

http://www.eecs.berkeley.edu/~alanmi/abc/
http://opencores.org/
http://vlsi.colorado.edu/~fabio/CUDD


Table 2. Influence of permutation of variables – details for apex2 

 
Process 

Permuted inputs Permuted outputs Permuted both 

min. max. avg. % min. max. avg. % min. max. avg. % 

Technology 

independent 

optimization: 

commands 

balance1 4162 4191  4174.2 0.69% 4155 4180  4170.6 0.60% 4150 4202 4176.3 1.24% 

rewrite1 4129 4137  4132.7 0.19% 4132 4138  4134.8 0.14% 4128 4139 4133.4 0.27% 

refactor1 4018 4018 4018.0 0.00% 4018 4027  4022.9 0.22% 4018 4027  4022.8 0.22% 

resub1 4302 4317  4309.6 0.35% 4301 4308  4304.4 0.16% 4300 4322  4311.6 0.51% 

Technology 

independent 

optimization: 

scripts 

resyn21 3360 3448  3399.9 2.55% 3389 3422  3407.4 0.96% 3351 3450  3403.3 2.87% 

resyn31 3918 3945  3927.3 0.68% 3874 3930  3909.8 1.42% 3859 3948  3909.8 2.25% 

choice1 4419 4522  4494.0 2.28% 4490 4508  4499.0 0.40% 4419 4524  4492.8 2.32% 

dch1 2931 3194  3072.3 8.23% 3008 3143  3067.3 4.30% 2918 3198  3063.5 8.76% 

Technology 

mapping 

map2 4371 4401  4383.7 0.68% 4354 4383  4371.5 0.66% 4350 4402 4380.1 1.18% 

fpga3 2013 2030  2020.1 0.84% 2014 2020  2017.5 0.30% 2006 2029 2016.4 1.13% 

if3 2040 2040 2040.0 0.00% 2039 2040  2039.5 0.05% 2039 2040 2039.5 0.05% 

Complete 

synthesis 

strash; dch; map2 3221 3552  3378.7 9.32% 3292 3464  3360.5 4.97% 3202 3559  3369.8 10.03% 

strash; dch; if; mfs3 1502 1731 1631.0 13.23% 1587 1666  1628.3 4.74% 1508 1744  1631.2 13.53% 

 

Table 3. Influence of permutation of variables – details for cordic 

 
Process 

Permuted inputs Permuted outputs Permuted both 

min. max. avg. % min. max. avg. % min. max. avg. % 

Technology 

independent 

optimization: 

commands 

balance1 2727 2735  2730.7 0.29% 2727 2728  2727.5 0.04% 2727 2735 2730.5 0.29% 

rewrite1 989 991  990.0 0.20% 987 991  989.0 0.40% 987 991 988.9 0.40% 

refactor1 1125 1129  1127.0 0.35% 1128 1128 1128.0 0.00% 1125 1129 1127.0 0.35% 

resub1 2723 2723 2723.0 0.00% 2723 2723 2723.0 0.00% 2723 2723 2723.0 0.00% 

Technology 

independent 

optimization: 

scripts 

resyn21 463 537  502.5 13.78% 487 492  489.5 1.02% 459 541  502.3 15.16% 

resyn31 2677 2724  2695.0 1.73% 2685 2685 2685.0 0.00% 2677 2724  2696.0 1.73% 

choice1 2440 2773 2764.0 12.01% 2770 2770 2770.0 0.00% 2440 2774  2761.8 12.04% 

dch1 396 545  486.3 27.34% 448 518  482.8 13.51% 411 555  490.7 25.95% 

Technology 

mapping 

map2 2762 2772  2766.7 0.36% 2765 2766  2765.5 0.04% 2761 2772  2766.2 0.40% 

fpga3 930 932  931.0 0.21% 931 931 931.0 0.00% 930 932 931.0 0.21% 

if3 804 804 804.0 0.00% 804 804 804.0 0.00% 804 804 804.0 0.00% 

Complete 

synthesis 

strash; dch; map2 447 2409  567.1 81.44% 486 597  541.2 18.59% 460 2412  571.2 80.93% 

strash; dch; if; mfs3 27 687  335.5 96.07% 178 676  425.5 73.67% 34 689 318.4 95.07% 

 


