A Difficult Example Or a Badly Represented One?

Petr Fiser, Jan Schmidt
Czech Technical University in Prague
email: fiserp@fit.cvut.cz, schmidt@fit.cvut.cz

Abstract

The causal connection between input circuit representation and the quality of the syn-
thesis result is investigated, with special attention to the LEKU examples of Cong and
Minkovich. It is shown that transformations totally obscuring the original circuit structure
can enlarge the input to a great degree, that the LEKU circuits are nothing special in this
respect, and that contemporary tools invariably produce poor results. On the other hand,
such descriptions do not occur in practice.

1 Introduction

Cong and Minkovich [1] published examples targeted at the mapping phase of logical synthesis,
for which their optimal implementations are known — the LEKO examples. These examples have
description variants, which can be used to test the entire logic synthesis. Only the upper bound
of optimal implementation size is known (LEKU examples), they have a two-level unbalanced
(LEKU-CD) structure and proved to be very hard for any synthesis process. Typical resulting
circuits are more than 400-times larger than expected. There are also balanced versions (LEKU-
CB), which are less hard (up to 5-times larger results).

The authors proved that structural parameters of the circuit are similar to practical circuits.
To our knowledge, the cause of the observed (and rather alarming) synthesis results is not known,
nor is the linkage between them and practical performance of synthesis tools.

We proved [2], that the examples can be solved with reasonable success by the “old textbook”
synthesis based on two-level minimization and decomposition. We therefore conjectured that
the circuit structure misleads processes that preserve input structure and optimize it gradually.

This leads immediately to the notion of “good” and “bad” circuit description, which we are
going to discuss in this contribution. If inputs to synthesis tools can be in nature similar to
LEKU-CD, then there are huge opportunities to improve performance. Are the currently used
benchmarks really difficult, or only “badly” described?

We created a process which yielded “best” and “worst” descriptions, and observed where the
actual descriptions lie. This is, of course, subject to definitions of “good” and “bad”, and to our
ability to find such descriptions.

We briefly recapitulate the process (data flow) of Cong and Minkovich first. Then we discuss
the process which we derived from that flow and used in our experiments. Finally we present
and interpret our observations resulting from the experiments.

2 LEKU Circuits of Cong and Minkovich

The set of examples is defined using a relatively small circuit described as a Boolean network
with two-input nodes, a replication algorithm which can produce circuits of unlimited size, and
a proof of optimum mapping for the replicated circuit. The replication ensures that there is a
path from each input to each output. When used for synthesis evaluation, the circuit synthesized
from an altered description is compared with the proved optimum mapping. As the synthesis
can produce a better result than mere mapping, the optimum mapping is only an upper bound
of the result size, and hence the name — Logic synthesis Examples with Known Upper bounds
(LEKU).

To produce the altered synthesis input, the original description is collapsed into Sum of Prod-
ucts (SOP), which is then converted into structural description by applying the SIS command

tech_decomp [20] or the ABC command balance [21] (Figure 1). A network of two-input gates is
obtained as a result.

core circuit Boolean network

replication

_circuit
Boolean network

collapse

balance

conversion

to structure tech_decomp

#LUT #LUT
D) e () [Camr]
structure comparison structure

Figure 1: Circuit construction and data flow of Cong and Minkovich for a SUE (Synthesis Under
Evaluation)

3 Metrics and processes

The data flow of Cong and Minkovich tests a synthesis process. As we are going to study
the influence of circuit description on synthesis performance, we have to change the flow while
staying as close to the original procedure as possible. Firstly, we have to work with a number of
practical circuits, that is, with public benchmark sets. Secondly, we have no upper bounds for
the results. Thirdly, it is not feasible to measure every existing synthesis tool.

Therefore, we have chosen a single synthesis tool to represent state-of-the-art and have pre-
pared the benchmarks to mimic random logic synthesis in a complex design flow. Then we
compared circuits that resulted from synthesis of the original and altered description (Figure 2).

benchmark II

preparation

transformation

input __I
@ metric alt. descr. I

reference
synthesis

reference
synthesis

metric
e)

Figure 2: Data flow to study the influence of an alternative circuit description on the synthesis
result

3.1 Reference synthesis tool

For this study, we need tools which are scalable, to be coherent with practice. We performed
pilot experiments with some industrial and academic tools, which revealed their strong and week
spots. The resistance against input structure alterations was the best with ABC [21]. We used
the sequence dch, if, lutpack of ABC commands to perform the tests, as it was the recommended
sequence for synthesis and LUT mapping at that time. We will refer to this sequence simply as
dch_if-lutpack in the following text.

3.2 Benchmarks preparation and selection

Working with a tool intended to study synthesis of random logic, such as ABC, could cause
loss of relevance. Industrial tools comprise [3], besides algorithms for random logic synthesis,
a number of specialized algorithms detecting and generating a certain class of circuits, such as
state machines or arithmetic (Fig. 3). Hence, we had to exclude benchmarks which normally
would not be processed by a random logic synthesizer.

recognition iL

trivial
optimizations

generator

random
logic
synthesis

Figure 3: Possible top-level architecture of a synthesis tool

Synthesis of random logic begins with constant propagation and certain trivial optimizations,
such as the removal of excessive inverters. We chose to model this step by the ABC sweep
command [21]. Such a process can of course substantially differ from tool to tool. Even the
corresponding command in SIS [20] gives results of different size, because of a capability of using
‘inverted nodes’ in ABC.

We used benchmark sets from the following sources, with the total of 490 circuits:
ISCAS’85 [5]

ISCAS’89 [6]

MCNC [4]

LGSynth’91 [7]

TWLS’93 [8]

ITC99 [9]

Industrial designs from Altera, available at OpenCores [10], converted by Alan Mishchenko
Mentor Graphics benchmarks, converted by Alan Mishchenko

Tllinois test generation benchmarks [11]

3.3 Transformations

We reproduced the transformation used by Cong and Minkovich as accurately as possible, us-
ing the ABC commands collapse and tech_decomp. The latter command prevents ABC from
discovering that the input is a SOP bearing no useful structure, which we verified.

A transformation effective in our experiments must obscure the original structure completely.
The only such transformation we know of, besides collapsing to SOP, is to build an ordered BDD
[12], [13] and to construct structural description out of it (a network of multiplexers). By forcing
random BDD variable ordering, we obtain multiple descriptions of a single circuit. We have used
the CUDD package [14] for this purpose.

To measure minimum description size, we used a variety of processes. In some cases BDS
[15] followed by ABC dch_if-lutpack was successful. In others, repetitive use of different synthesis
steps brought the best result.

3.4 Metrics

To be compatible with Cong and Minkovich, we synthesized all circuits to 4-input look-up tables
(LUTSs), even though more recent devices have different programmable blocks. The output

metric in Figure 2 is therefore the number of LUTs.

Cong and Minkovich concentrated on circuit size, not circuit timing. We kept this focus,
and not only for compatibility reasons. If some synthesis process produces a circuit orders of
magnitude larger than it should be, then its timing is quite uninteresting. Moreover, the circuits
optimized for speed and for area usually differ much less than the observed variations in our
experiments.

Unlike Cong and Minkovich, we were also interested in the change of circuit size caused
by transformation of circuit description. Here we must avoid any metric which would require
synthesis steps (such as LUT number or SOP size). We used the number of literals as the input
metric in Fig. 2.

4 Changes in result size versus changes in input size

We studied how dch_if lutpack responds to alteration of its input. For each of the 490 bench-
marks, we measured result enlargement as the size of the circuit synthesized from the alternative
input relative to the size of the circuit synthesized from the original circuit. Similarly, we mea-
sured input enlargement as the size of the altered input to the size of the original input.

Figure 4 shows result enlargement as a function of input enlargement when collapse and
tech_decomp was used as the altering transformation. The diagonal line has the slope 1.

Three regions can be observed. In the first region on the left, the transformation shrinks the
circuit. dch_if lutpack often does not use the advantage, and returns a circuit similar in size to
that before the transformation, i. e. larger.

In the second region, which covers input enlargement from 1 to circa 8, dch_if lutpack can
mostly compensate for the enlargement. Again a circuit similar in size to the original one is
resulted, which is acceptable behavior.

In the third region above 8, dch_if-lutpack gives up and the size of its output follows the size
of its input, in this case reduced by a constant factor. The correlation of the dependency over
all three regions is 0.988.

Al (o]
<
o (o]
To]
5
+ p—
(]
To]
.
o
+ p—
(]
To]
S
(]
To]
I I I I I
1e-01 1e+00 1e+01 1e+02 1e+03

Figure 4: Result enlargement as a function of input enlargement, collapse and tech_decomp as
transformation

Figure 5 shows the same function, in this case with 20 randomly ordered BDDs as transfor-
mations. Similar phenomena can be observed. The correlation is 0.857 over all transformations,

and 0.942 when the ordering is not random but taken over from the input. In both graphs we

1e+03

1e+02
I

1e+00 1e+01

1e-01

I I I
1e-02 1e+00 1e+02 1e+04

Figure 5: Result enlargement as a function of input enlargement, randomly ordered BDDs as
transformations

can observe that where the transformation succeeds in enlarging the circuit representation, the
size of output from dch_if_lutpack also grows proportionally.

5 Input size span and the original input position

Having observed what a large circuit description can cause, we can answer the question whether
practical circuit descriptions are “good” or “bad”.

First, we are going to find the smallest and the largest obtainable input. The minimum
representation is simply minimum over results of all synthesis procedures tested, most notably
including the “old textbook” BDS [15], which also performs XOR decomposition. The maximum
is a ‘reasonable’ maximum; one can increase the representation size endlessly by introducing
inverter chains etc. Here it is the maximum achieved by transformations obscuring the original
structure, using either collapsing to SOP or BDD construction.

Then we can tell whether the original description of any benchmark is closer to the minimum
or maximum. The result is in Figure 6. Each horizontal line represents one circuit. The left end
represents the size of its smallest description, the right end the largest. The circuits are ordered
by the geometric average of the minimum and maximum.

The circular marks in the graph give the relative result enlargement caused by the largest
description. For some circuits, the mark is missing, as dch_if lutpack failed to produce a result
within 2 days of computation and 1GB of memory.

Again three regions can be observed. In the first region at the bottom, the description is so
poor that merely collapsing the circuit or producing a BDD helps greatly. As can be seen in
Figures 4 and 5, dch_if lutpack mostly does not utilize the advantage.

In the middle region, the original description size is roughly centered between minimum and
maximum. Obscuring the circuit structure leads to substantial result enlargement in some cases,
even when the input enlargement is not high. In most cases however, the tool can manage to
achieve ‘normal’ output.

In the third, uppermost region, the transformation managed to enlarge the input to a great
degree — up to four orders of magnitude. This is the region where LEKU-CD resides. Scalable

400
|

300
|

200
|

100
|

| | | |
1e-02 1e+00 1e+02 1e+04

Figure 6: Input size spans and dch_if_lutpack performance on the largest inputs

tools such as dch_if_lutpack give invariably poor results. Notice however, that the original de-
scriptions are rather close to minimum. This means that there are no benchmarks similar in
nature to LEKU-CD, and that the ability to produce a good result from a very bad description
has limited practical importance. In turn this nevertheless means that smooth operation of
contemporary synthesis does depend on the designer, who is supposed to enter the circuit with
reasonable structure.

A special case of structure transformation shall be mentioned here. A two-level representation
of a XOR-intensive circuit can grow rapidly with the size of the input. The gap is exponential
in the worst case. Medium size circuits, for example zors and ¢481 [8], can stay in the middle
region of Figure 6. Many tools cannot handle such circuits well [19] and produce poor results,
contributing to the observed character of the middle region.

One example of practical circuits of this class are parity predictors [17][18], which we analyzed
in [16]. A parity predictor is composed of a combinational circuit and a parity tree at the output.
Here the designers deliberately threw away the original structure, in the hope of obtaining smaller

circuits. This is, as it is now clear, not what the synthesis tools are made for. While the results
were small in many cases, there were cases of surprising result enlargement (e.g., from 11 to 298
4-LUTSs for the alul circuit [7]).

The techniques developed for this study can be used for other purposes, too. The set of
transformations forcing a particular tool to produce poor results can tell much about the algo-
rithms used, to the extent that such experiments could be considered reverse engineering. Also,
to compare tools on “bad” descriptions is tempting; we shall nevertheless keep in mind that
their practical relevance is limited. In this study, we limited our focus to put the examples of
Cong and Minkovich into a broader perspective.

6 Conclusions

The question in the title, “a difficult example or a badly represented one?” can be answered
“mostly the former”. The phenomena observed with LEKU examples of Cong and Minkovich
can occur with other publicly available benchmarks. They have, however, limited significance
for practical application, as circuit representations of equal nature do not occur. The quality
of synthesized circuits depends on the designer’s ability to structure the circuit well. Where
the circuit structure has to be neglected for any reason, contemporary tools cannot be relied
on. If such a circuit is within scalability limits of the “old textbook” synthesis flow based on
decomposition and capable of XOR handling, then substantially better results could be achieved.

Acknowledgment

We are thankful to dr. Minkovich for the LEKU circuits, and to dr. Mishchenko for converting
many benchmarks to BLIF.

References

[1] J. Cong and K. Minkovich, “Optimality study of logic synthesis for LUT-based FPGASs”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 2007, 26
(2), pp. 230-239. Postprint available free at: http://repositories.cdlib.org/postprints/2376

[2] P. Fiser and J. Schmidt, “The Observed Role of Structure in Logic Synthesis Examples”,
Proceedings of the International Workshop on Logic and Synthesis 2009, Berkeley, CA,
USA, pp. 210-213.

[3] Oral tradition in the EDA community.

[4] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide”, Technical Report
1991-IWLS-UG-Saeyang, MCNC, Research Triangle Park, NC, January, 1991.

[5] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational Benchmark Circuits and
a Target Translator in Fortan”, Proceedings of the International Symposium on Circuits
and Systems, 1985, pp. 663-698.

[6] F. Brglez, D. Bryan and K. Kozminski, “Combinational Profiles of Sequential Benchmark
Circuits”, Proceedings of the International Symposium of Circuits and Systems, 1989, pp.
1929-1934.

[7] K. McElvain, “LGSynth93 Benchmark Set: Version 4.0”, Mentor Graphics, May 1993.

[8] “TWLS’93 Benchmark Set: Version 4.0”, distributed as part of the IWLS’93 benchmark
distribution.

[9] IEEE test Technology Technical Committee: “The ITC99 Benchmark Set”,
http://www.cerc.utexas.edu/itc99-benchmarks/bench.html

[10] Altera, inc., OpenCores, http://opencores.org/

[11]

[16]

[17]

[18]

[19]

V. Chickermane, J. Lee, and J. H. Patel, “A comparative study of design for testabil-
ity methods using high-level and gate-level descriptions”, Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, November 1992, pp. 620-624.

S. B. Akers, “Binary decision diagrams“, IEEE Transactions on Computers, vol. C-27, No.
6, June 1978, pp. 509-516.

R. E. Bryant, “Graph based algorithms for Boolean function manipulation”, IEEE Trans-
actions on Computers, vol. 35, No. 8, August 1986, pp. 677-691.

F. Somenzi, “CUDD: CU Decision Diagram Package Release 2.4.1”, University of Colorado
at Boulder [Online]. Available: http://vlsi.colorado.edu/fabio/CUDD

C. Yang and M. Ciesielski, “BDS: A BDD-Based Logic Optimization System”, IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems Vol. 21, 2002, No. 7, pp.
866-876.

P. Fiser and J. Schmidt, “Small But Nasty Logic Synthesis Examples”, Proceedings of the
8th. Int. Workshop on Boolean Problems, 2008, Freiberg, pp. 183-189.

P. Kubalik, P. Fiser and H. Kubatova, “Fault Tolerant System Design Method Based on
Self-Checking Circuits”, Proceedings of the 12th International On-Line Testing Symposium
2006 (IOLTS’06), Lake of Como, Italy, July 10-12, 2006, pp. 185-186.

P. Figer, P. Kubalik and H. Kubéatovd, “An Efficient Multiple-Parity Generator Design
for On-Line Testing on FPGA”, Proceedings of the 11th Euromicro Conference on Digital
Systems Design (DSD’08), Parma (Italy), 2008, pp.96-99.

P. Fiser and J. Schmidt, “The Case for a Balanced Decomposition Process”, Proceedings
of the of 12th EUROMICRO Conference on Digital System Design. Los Alamitos: IEEE
Computer Society, 2009, pp. 601-604.

E. Sentovitch, K. Singh et al., “SIS: A System for sequential circuit synthesis”, Univ.
California, Berkeley, Tech. Rep., UCB/ERL M92/41, May 1992.

Berkeley Logic Synthesis and Verification Group, “ABC: A System for Sequential Synthesis
and Verification”, [Online]. Available: http://www.eecs.berkeley.edu/ alanmi/abc/

