
Fault Models Usability Study for On-line Tested
FPGA

Jaroslav Borecký, Martin Kohlı́k, Pavel Kubalı́k and Hana Kubátová
Department of Digital Design

Faculty of Information Technology
Czech Technical University in Prague

Prague, Czech Republic
Email: {borecjar; kohlimar; pavel.kubalik; kubatova}@fit.cvut.cz

Abstract—Field Programmable Gate Arrays (FPGAs) are
susceptible to many environment effects that can cause soft
errors (errors which can be corrected by the reconfiguration
ability of the FPGA). Two different fault models are discussed
and compared in this paper. The first one – Stuck-at model
– is widely used in many applications and it is not limited
to the FPGAs. The second one – Bit-flip model – can affect
SRAM cells that are used to configure the internal routing
of the FPGA and to set up the behavior of the Look-Up
Tables (LUTs). The change of the LUT behavior is the only
Bit-flip effect considered in this paper. A fault model analysis
has been performed on small example designs in order to find
the differences between the fault models. This paper discusses
the relevance of using two types of models Stuck-at and Bit-flip
with respect to the dependability characteristics Fault Security
(FS) and Self-Testing (ST). The fault simulation using both fault
models has been performed to verify the analysis results.

Index Terms—FPGA, fault model, Bit-flip, Stuck-at, fault
simulation

I. INTRODUCTION

Systems realized by Field Programmable Gate Arrays
(FPGAs) are more and more popular and widely used, even
in mission critical applications such as aviation, medicine,
space missions, and railway applications as well [1], [2],
[3]. It is even possible to use FPGAs based on SRAMs,
which are sensitive to Single Event Upsets (SEUs), but
a good method of the error detection should be included
into the design methodology. The Concurrent Error Detection
(CED) techniques allow a faster detection of soft errors (errors
which can be corrected by reconfiguration) caused by SEUs
[4], [5], [6]. SEUs can change also the content of embedded
memory, Look-up Tables (LUTs) and other configuration bits.
These changes are not detectable by off-line tests, therefore
CED techniques have to be used. The probability of a SEU
occurrence in the SRAM is described in [7].

Our research results in this field were presented in [8].
A Self-Checking (SC) circuit (Figure 1) is one possible
realization of the CED scheme. The SC circuit is typically
composed of the original circuit, parity predictor and checker.
Many papers have been published on this topic [9], [10].
In many publications the quality of the SC circuit is
characterized by the number of detected faults.

Original
combinational

circuit

Check bits
generator

Codeword

Checker

Inputs Outputs

Check bits
(i.e. Parity)

N

M

Ok

Fail

Fig. 1: Basic structure of Self-Checking circuit

But here could be a problem. What faults? Some fault model
is always used, mostly the Stuck-at fault model. But it is
possible to use it also in on-line testing methods? Can the type
of a model affect the dependability parameters?

A fault model is an important thing to calculate
the dependability parameters accurately. Wrong selection
of an appropriated fault model can lead to unusable results.
But even selection of the proper fault model is not enough
to reach accurate results. We need tools written to obtain
dependability parameters using selected fault model. In many
publications the author used tools dedicated to an off-line
testing. These tools are based on a Stuck-at fault model
in a case, when a Bit-flip fault model must be used. Typical
situations, where this mistake is performed are the FPGA
based systems using same kind of an on-line testing method.
The accurate description of the fault manifestation is needed
to compare both fault models and their effect on a FPGA
memory based structure.

The paper is organized as follows: basic terms concerning
the classification of faults and the used fault models are
presented in Section II. Fault model analysis is described
in Section II-C. Experiments and their results is presented
in Section III and Section IV concludes the paper.

II. THEORETICAL BACKGROUND

A. Fault Security Calculation

Some redundancy has to be incorporated into the circuit
design to improve dependability parameters. We have
performed experiments with online testing to obtain CED [11].



There are three basic quantitative criteria in a field of CED
used in this paper: Fault Security (FS), Self-Testing (ST) and
Totally Self-Checking (TSC).

The following four fault classes can be used to calculate
FS and ST parameters and to determine whether the circuit
satisfies the TSC property. The possible faults are classified
and separated into four classes, A, B, C and D according
to their impact on the tested circuit design in the FPGA.
The detailed description of the classes can be found in [12].

Class A – Hidden faults,
Class B – Detectable faults,
Class C – Undetectable faults,
Class D – Partially detectable faults.

B. Basic description and analysis

Here the fault manifestation is described for both fault
models. In a Stuck-at fault mode, the fault can manifest either
at primary inputs or at a primary output as the Stuck-at 0
or the Stuck-at 1. On the other hand, for the Bit-flip fault
model, the fault manifests as a Bit-flip in LUT memory (see
Figure 2). The main reason why we are interesting for this
type of comparison at this design level is to obtain real
dependability parameters easily and faster than method using
hardware emulation described in [13], [14].

Inputs 0 1 1 0 . . . 1
Output

0
1

Stuck-at 1

1
0

Stuck-at 0

1

Bit-flip (SEU)

Fig. 2: Stuck-at and Bit-flip faults in LUT

The Stuck-at fault model describes an input or an output
value change caused by a short with another wire with
a constant logic value. The typical value for the Stuck-at fault
model is ”0” for a low voltage level and ”1” for a high voltage
level. The Bit-flip fault model represents a change in a memory
caused by a SEU. The typical value for the Bit-flip fault model
is opposite value of one memory bit represent as the logic zero
(”0”) or the logic one (”1”).

The following section compares these two models. Firstly
we try to say, whether both models are convertible to each
other. We analyze both models and we determine the number
of testing places and the number of tests needed to calculate
dependability parameters. In our calculation, we use n-input
LUT with one primary output, so 2n bits are required to define
the behavior of the LUT.

One test vector is needed to test one memory bit in the case
of the Bit-flip fault model, so 2n test vectors must be used
to test the whole LUT memory.

For the Stuck-at 0 at the primary output we need one test
vector. Also for Stuck-at 1 at the primary output we need only
one test vector. For the primary inputs we need n test vectors

for Stuck-at 1 and n test vectors for Stuck-at 0. Finally, for one
n-input LUT 2 ∗ n test vectors have to be performed to cover
and test 2 ∗ (n+ 1) possible faults.

It can be summarized that the information obtained from
this basic analysis is not sufficient to decide, if these two
models are convertible to each other. Each fault model has
different number of faults and also different number of test
vectors needed. The Bit-flip fault model has more possible
places where a fault can be manifested. According this
analysis we can say, that the Stuck-at fault model can be
used to simulate a single event transient (SET) manifesting
as a Bit-flip in data-path captured by registers. The analysis
has to be performed in more detail to say if and when the both
fault models are convertible to each other.

C. Accurate fault model analysis

Stuck-at fault at the output of the LUT has the same effect
as setting all memory bits of the LUT to the stuck value.
Stuck-at 0 covers all memory bits containing logic 1 (they
can be flipped to logic 0) and vice versa. Both fault models
has the same coverage in this regard, but the results of Bit-flips
have to be grouped in order to get the result of the Stuck-at.
This grouping causes the main difference between fault models
results.

The difference between fault models results is formed when
the fault classes of all faults are not equal. The example
containing LUT configured as logic AND can be used to show
this difference. The example can be designed to produce
the fault class distribution shown in Table I. The results
in the lower part of the table show that the FS parameters
obtained from the example may differ widely. A similar
example using logic OR can be constructed. Such example
has FS parameter equal to 25% when Bit-flip model is used.

TABLE I: Results showing fault models results differences.

Bit-flip – position Stuck-at – net X
a b No fault 0 1 2 3 0 1
0 0 0 1 0 0 0 0 1
0 1 0 0 1 0 0 0 1
1 0 0 0 0 1 0 0 1
1 1 1 1 1 1 0 0 1

Fault class B B B C C B

FS 3
3+1

= 75% 1
1+1

= 50%

TABLE II: Fault Classification

Fault class Detectable Incorrect

A false false
B true false
C false true
D true true

The fault classes of grouped Bit-flips may be different,
too. The fault class of Stuck-at corresponding to these



TABLE III: Results showing combining multiple Bit-flips into single output Stuck-at.

No fault Bit-flip – position 0 Bit-flip – position 2 Stuck-at 0 – net X
a b X Out 0 Out 1 Parity X Out 0 Out 1 Parity X Out 0 Out 1 Parity X Out 0 Out 1 Parity
0 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fault class B C D

grouped Bit-flips can be determined from the ”Detectable”
and ”Incorrect” parameters of the fault classes (see Table II).
Logic OR operator is applied on the attributes of each Bit-flip.

The example design shown in Figure 3 is used to illustrate
the differences between fault models. A real synthesis will not
provide such design; it is created manually for this experiment
only. The design contains an additional LUT that forms
the Parity output. The faults are injected inside the marked
LUT or at its inputs and the output.

a

b
1 0 1 0

1 1 1 0

0 1 1 1

0 0 0 1

0 0 0 1

Out 0

Out 1

x

Fig. 3: Example showing joining multiple Bit-flips into single
output Stuck-at. (Parity LUT not displayed)

The behavior of the example design is shown in Table III.
The table contains values of all outputs and the internal
net X (the output of marked LUT) for a non-faulty state
and three states with faults injected. The behavior of the design
with the Bit-flip fault injected at the position 0 in a marked
LUT is shown in the third column. Only one output is
faulty, therefore parity check fails and the fault is classified
as the B class fault. The behavior of the design with the Bit-flip
fault injected at position 2 is shown in the fourth column. Two
outputs are faulty, therefore parity check passes, but the output
word is incorrect. The fault is classified as the C class
fault. The last column shows the behavior of the design
with the Stuck-at fault injected at the net X. This fault can
be detected by a parity check in the case of input word ”00”,
but the output word is incorrect and the parity check passes
in the case of input word ”10”. This fault is classified
as the D class fault.

The combination from the example design (B-C) can be
made as follows:

• Detectable – true or false = true
• Incorrect – false or true = true

Result is true-true, which corresponds to the class D.
The behavior of a Stuck-at fault at the input of a LUT

can be obtained similarly. Another example containing LUT3
configured as shown in table IV can be used. The table
also contains the behavior of the output of this LUT
with the Stuck-at faults injected at the inputs.

TABLE IV: Results showing incomplete coverage of Bit-
flip faults by Stuck-at faults. (Marked lines are not covered
by any Stuck-at fault.)

Stuck-at
a b c

a b c No fault 0 1 0 1 0 1
0 0 0 1 1 0 1 1 1 0
0 0 1 0 0 1 0 1 1 0
0 1 0 1 1 1 1 1 1 1
0 1 1 1 1 1 0 1 1 1
1 0 0 0 1 0 0 1 0 1
1 0 1 1 0 1 1 1 0 1
1 1 0 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1

As you can see, Stuck-at 0 at input ”a” flips the output
value in the cases of input word ”100” and ”101”, therefore it
can be combined from the Bit-flip faults at positions 4 and 5.
The other Stuck-at faults can be combined similarly. As you
can see, the cases of input word ”010” and ”111” are not
covered by any Stuck-at fault.

III. EXPERIMENTAL RESULTS

A. Description of all processes

This subsection describes the whole simulation process.
The standard MCNC benchmarks described in PLA format
were used in our experiments. A predictor is created
as the parity bit generator from the benchmark logic and
it is also saved in the PLA format. The next outputs
in this step are two ”.tst” files containing the test vectors
to check the parity. Each ”.tst” file corresponds to one
fault insertion method. The original combinational logic and
the predictor are minimized separately by ESPRESSO [15]
and then BOOM [16] is used to translate them to VHDL.
Next the Synplicity Synplify [17] synthesis is performed for
both VHDL files and is executed separately to disable resource
sharing. Synthesized logics are stored in the Electronic
Design Interchange Format (EDIF) format. The original and
the predictor circuits are joined to ”Top” design at EDIF
level to ensure the independence of both parts. This step is
performed by our simulation and EDIF manipulation utility.



TABLE V: Fault Security and Self-Testing parameters results
for two different fault models

FS(%) ST(%)
Name Size(LUTs) SA1 BF2 SA1 BF2

alu1 53 97.43 100.0 100.0 100.0
apla 59 73.98 73.64 96.43 95.96
br1 66 62.46 58.74 87.54 82.7
br2 38 57.39 52.72 81.77 75.74
b12 41 90.16 96.58 100.0 100.0

dk17 43 80.28 84.0 100.0 100.0
dk27 19 94.34 97.87 100.0 100.0
dk48 59 82.78 87.3 99.34 99.65

ex1010 1413 88.24 90.31 100.0 100.0
f51m 39 93.95 98.42 100.0 100.0
gary 227 83.4 86.55 99.03 98.92

mp2d 51 85.14 87.99 94.02 93.65
m1 27 88.08 93.67 97.68 98.1

newapla 24 73.02 81.03 98.92 97.41
newbyte 10 95.16 100.0 95.16 100.0
newcpla1 63 73.31 77.46 92.92 92.02
newcpla2 34 72.22 74.35 88.06 84.29

p82 34 84.55 88.89 95.79 95.16
sex 27 86.34 91.3 98.14 98.76
sqr6 49 86.64 92.13 98.58 98.46

1 Stuck-at
2 Bit-flip

After joining, the ”Top” design is tested with two test vectors
files. Statistics containing numbers of faults belonging to
classes ”A”, ”B”, ”C” and ”D” are generated. FS and ST
properties are calculated for each fault model.

B. Experiments Results

Experimental results are taken from two Test runs with
two different test vectors files. Each standard benchmark is
designed as a self-checking circuit and tested with two fault
models. All measured parameters are shown in Table V.

The table has the following structure: The first column
contains the name of the used benchmark. The second column
contains the FS property and third column contains the ST
property of the design. These two columns are divided into two
sub-columns according to each fault model. The fault models
are as follows:

SA – Stuck-at
BF – Bit-flip
The table shows significant differences of FS and ST

parameters among different fault models.

IV. CONCLUSION

Theoretical analysis presented in this paper shows that
to count exactly the difference between Stuck-at fault
model and Bit-flip fault model with respect to dependability
parameters values is impossible. It means that any conversions
between both fault models cannot be done even in a case, when
some estimation of dependability parameters is useful when
we need to compare two methods of a design of self-checking
circuits. The Stuck-at fault model covers all faults in Bit-flip

fault model and also faults at primary inputs and primary
outputs of the design but the Stuck-at fault model cannot
be used to obtain real dependability parameters for a Bit-flip
fault model. The experimental results obtained by applying
both fault models to the same benchmarks show, that for
some benchmarks the FS parameter is higher for Stuck-at
fault model then for Bit-flip fault model and vice versa.
This should be a proof, that these two fault models are not
convertible to each other, but the difference is smaller than
5% for most of the tested benchmarks. Therefore, the final
conclusion should be the following: both models have the same
coverage, but the Fault Security and Self Testing parameters
may differ.

ACKNOWLEDGMENT

This research has been partially supported
by the projects MSM6840770014, GA102/09/1668 and
SGS10/118/OHK3/1T/18.

REFERENCES

[1] R. Dobiáš and H. Kubátová, “FPGA Based Design of Railway’s
Interlocking Equipment,” In Proceedings of EUROMICRO Symposium
on Digital System Design. Piscataway: IEEE, pp. 467–473, 2004.

[2] D. Ratter, “FPGAs on Mars.” www.xilinx.com, 2004.
[3] A. Corporation.

http://www.actel.com/documents/FirmErrorPIB.pdf, 2007.
[4] L. Sterpone and M. Violante, “A design flow for protecting FPGA-based

systems against single event upsets,” DFT2005, 20th IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 436–
444, 2005.

[5] Q. Corporation., “Single Event Upsets in FPGAs.” www.quicklogic.com,
2003.

[6] M. Bellato, P. Bernardi, D. Bortalato, A. Candelaro, M. Ceschia,
A. Paccagnella, M. Rebaudego, M. S. Reorda, M. Violante, and
P. Zambolin, “Evaluating the effects of SEUs affecting the configuration
memory of an SRAM-based FPGA.,” Design Automation Event for
Electronic System in Europe 2004, pp. 584–589, 2004.

[7] E. Normand, “Single Event Upset at Ground Level,” IEEE Transactions
on Nuclear Science, vol. 43, pp. 2742–2750, 1996.

[8] P. Kubalı́k and H. Kubátová, “Dependable Design Technique for System-
on-Chip,” Journal of Systems Architecture. 2008, vol. 2008, no. 54,
pp. 452–464, 2008. ISSN 1383-7621.

[9] S. J. Piestrak, Design of Self-Testing Checkers for m-out-of-n Codes
Using Parallel Counters. London: Kluwer Academic Publisher, 1998.

[10] D. Nikolos, Self-Testing Embedded Two-Rail Checkers. London: Kluwer
Academic Publisher, 1998.

[11] D. K. Pradhan, “Fault-Tolerant Computer System Design,” Prentice-
Hall, Inc., 1996.

[12] P. Kubalı́k, P. Fišer, and H. Kubátová, “Fault Tolerant System Design
Method Based on Self-Checking Circuits,” Proc. 12th International On-
Line Testing Symposium 2006 (IOLTS’06), Lake of Como, Italy, 2006.

[13] J. Kvasnička, P. Kubalı́k, and H. Kubátová, “Experimental SEU Impact
on Digital Design Implemented in FPGAs,” In Proceedings of 11th
Euromicro Conference on Digital System Design., pp. 100–103, 2008.

[14] M. Bellato, P. Bernardi, D. Bortalato, A. Candelori, M. Ceschia,
A. Paccagnella, M. Rebaudego, M. S. Reorda, M. Violante, and
P. Zambolin, “Identification and classification of single-event upsets in
the configuration memory of SRAM-based FPGAs,” IEEE Transactions
on Nuclear Science, vol. 50, pp. 2088–2094, 2003.

[15] R. K. Brayton and et al., Logic Minimization Algorithms for VLSI
Synthesis. Boston: Kluwer Academic Publisher, 1984.

[16] P. Fišer and J. Hlavička, “BOOM - A Heuristic Boolean Minimizer,”
Computers and Informatics, vol. 22, no. 1, pp. 19–51, 2003.

[17] Synopsys, Inc.
http://www.synopsys.com/, 2007.


