
New Ways of Generating Large Realistic Benchmarks
for Testing Synthesis Tools

Petr Fišer, Jan Schmidt
Faculty of Information Technology, Czech Technical University in Prague

fiserp@fit.cvut.cz, schmidt@fit.cvut.cz

Abstract
In this paper we propose several methods of generating large benchmark circuits for testing

logic synthesis tools. The benchmarks are derived from real circuits, so that they are functionally
equivalent to their origins. We introduce misleading and/or redundant structures into them, making
the benchmark size blow up significantly, with respect to the original circuit. Such benchmarks
can be advantageously used for testing logic synthesis tools; the aim is to discover whether
particular synthesis processes are sensitive or immune to particular circuit transformations.

1 Introduction
Despite of all the late and recent developments in logic synthesis, current tools are not able to cope
with newly emerging designs. Not only their ever-increasing size becomes a problem; there have been
discovered small circuits, for which synthesis tools produce extremely bad results [1], with the size
orders of magnitude higher than the optimum. Lately we have found a huge class of practical circuits
for which synthesis severely fails as well [2], in both academic (SIS [3], ABC [4]) and commercial
tools.

For these reasons, benchmarking becomes ever more important. Studying the behavior of synthesis
tools on realistic benchmarks with a known and properly defined origin could disclose the nature of the
problems.

The failure of synthesis tools is most apparent for originally small circuits, whose description was
altered to make them large, or to introduce features the synthesis has problems with. In this paper we
propose several methods of artificially “enlarging” circuits while preserving their function. Such
benchmarks give us the benefit of knowing the upper bound of their complexity, as it is the original
circuit size. Some of the methods are adjustable (in terms of specifying the resulting circuit size)
to some extent, some are not. In general, any circuit may be processed by any of the proposed
“enlarging” methods, sometimes without a guarantee of a circuit enlargement.

After synthesis, the resulting circuit size should not exceed the upper bound, regardless of the
circuit alteration. However, in this paper we show that many synthesis tools, even commercial ones,
fail to rediscover the original circuit structure. The size of the result is proportional to the size of the
source circuit. Thorough evaluation and analysis of the behavior of the synthesis tools is out of the
scope of the paper; here we just present methods of generating benchmark circuits.

2 Previous Work
Since there always has been a lack of publicly available practical (industrial) benchmark circuits, there
have been many attempts for artificial benchmark generation. These benchmarks are targeted either
to test logic synthesis processes in general (e.g., [5], [6], [7]), or to test partitioning and place&route
algorithms in particular [8], [9]. In [7], the circuit functionality is considered as well, apart from the
Rent’s rule only, as in [8], [9]. However, the generated circuits are apparently much more redundant
than their industrial origins. A way of generating realistic clones of real circuits is proposed in [6].
Here detailed characteristic (signature) is extracted from the seed circuit, i.e., a real circuit that serves
as a base, from which the clone is created. A circuit with a structure very similar to the seed circuit is
produced this way. Again, the function of the generated circuit is not known and not predictable; the
generated circuit is random and may degrade to a simple constant in an extreme case.

A generic method of generating “difficult” benchmarks is proposed in [1]. Even though the
benchmarks are artificially constructed and their function makes no sense, their optimum or upper
bound sizes are known. For details see Subsection 2.1.

The first attempt to generate benchmark circuits functionally equivalent to real circuits was
proposed in [5]. Here a set of 12 simple network transformation rules was determined. New benchmark
circuits are generated by randomly applying these rules to the seed circuit. The authors have proven
that any (functionally equivalent) network may be obtained from any network by a sequence of these
rules. Perhaps due to chaotic application of the transformation rules, synthesis tools (like SIS [3]) did
not have too big problems with the generated circuits presented in experimental results in [5].

2.1 LEKO and LEKU Benchmarks
Up to the knowledge of the authors, circuits substantially difficult for current synthesis processes were
introduced in [1] for the first time, originally to test the performance of LUT (look-up table) mappers.
These circuits were called LEKO (Logic Examples with Known Optimum) and LEKU (Logic
Examples with Known Upper Bound) benchmarks. The LEKO benchmarks are constructed
by replicating a relatively small circuit having n inputs and n outputs (n=5, 6), given as a Boolean
network of two-input nodes. Optimum mapping into look-up tables with 4 inputs (4-LUTs) is known.

The LEKU benchmarks are constructed by collapsing the LEKO circuits into two-level
sum-of-product (SOP) descriptions, followed by technology mapping. The circuit’s original structure
is thus completely obscured. Consequently, the circuit description (network) size grows up
significantly, since the obtained SOP is very large. Technology mapping run upon the SOP just
decomposes the huge AND and OR gates, producing a network of numerous 2-input NAND gates.

Since the LEKU circuits are functionally equivalent to the LEKO ones, their expected size is
known. However, even better designs could be theoretically obtained by good synthesis and mapping.
Therefore, the LEKO size is the upper bound imposed on the size of the LEKU circuits.

The process of the LEKU benchmarks construction is depicted in Figure 1. The 5-input G5 core
circuit is used to construct the multiplied circuit G25. Two different decomposition procedures are
used: the ABC balance command to obtain the LEKU-CB circuit and the SIS tech_decomp command
to obtain LEKU-CD. For details see [1].

ReplicateG5
7 LUTs

G25
70 LUTs

SOP
19K terms

ABC balance

Collapse

SIS tech_decomp

LEKU-CB
814 gates

LEKU-CD
>1M gates

Figure 1: LEKU benchmarks construction

3 The Proposed New Benchmark Generation Methods
3.1 Realistic LEKU Benchmarks
The Cong & Minkovich’s LEKU circuits [1] are basically constructed by intentionally introducing a
bad structure into an artificially constructed circuit, resulting in a large circuit description. Other, real
circuits can be processed in the same way (Figure 2). Collapsing a multi-level network into a two-level
circuit completely destroys the circuit original structure, which is then very difficult to be recreated.
Processing the circuit by a global BDD [10] does the same job. The size of the circuit usually
significantly grows up, as in the LEKU case, although collapsing of some circuits may yield smaller
representations. This is documented by Figure 3. Here 250 ISCAS’85 [14], ISCAS’89 [15] and
IWLS’93 [16] benchmarks were first mapped into 2-input gates, then collapsed and mapped again
(everything was performed by ABC [4]). The ratio between the original circuit size (in terms of 2-input
gates) and the size after collapsing is indicated in the y-axis. In summary, 153 of the circuits were
enlarged by collapsing.

In our experiments, collapsing of multi-level networks was done by SIS [3] or ABC [4]. The source
circuit described in BLIF [11] is converted to a single multiple-output PLA description. Therefore,
some logic may be shared between the outputs, in form of group terms. However, even though it may
seem to be beneficial for the further synthesis, we have observed that sometimes the term sharing just
introduces new misleading structures [12].

Original
circuit

Collapse SIS tech_decomp

Global BDD SIS tech_decomp

Possibly
large circuit

Possibly
large SOP

Possibly
large circuit

Possibly
large SOP

Figure 2: Realistic LEKU benchmarks construction

0 2000 4000 6000 8000 10000 12000
0x

1x

2x

3x

4x

5x

6x

7x

S
iz

e
in

cr
ea

se
 fa

ct
or

Gates

Figure 3: Size increase by collapsing

3.2 Parity Benchmark Circuits
Recently we have encountered a new class of hard-to-synthesize realistic circuits. These circuits are
constructed by appending a XOR tree to the circuit’s outputs, to obtain one parity bit [2] (Figure 4).
Such circuits can be used as parity predictors [13]. The original circuit output values are not important
here; only the resulting parity bit is of concern. I.e., single-output functions are produced as a result.

The upper bound of the area is the sum of the original circuit size and the size of the XOR tree. We
have found that conventional synthesis tools are not able to minimize the circuit size efficiently, when
the circuit is collapsed into a two-level SOP network (in a way described in Subsection 3.1) and
resynthesized [12]. This process fully resembles the construction of the artificial LEKU benchmarks.
The results of the resynthesis are spun between two extreme cases: at the “good” end, the circuit size is
significantly reduced with respect to the upper bound, at the other end the size explodes [2]. The
reason for the size explosion is the same as for the LEKU benchmarks – the obtained SOP is too large
and the subsequent synthesis is not able to rediscover the original circuit structure. The need for XOR
decomposition has been emphasized even more in these experiments. Tools not able to perform the
XOR decomposition sometimes produced results 50-times larger than the upper bound.

Collapse SIS tech_decomp

Global BDD SIS tech_decomp

Possibly
large circuit

Possibly
large SOP

Possibly
large circuit

Possibly large
 MUX tree

x1
core
circuit

xn

y1

ym
XOR

Figure 4: Parity benchmark circuits construction

3.3 Tautology and Near-Tautology Benchmarks
A different kind of artificially complex benchmarks can be created by generating large random SOPs.
If the number of product terms (terms of higher dimensions, not only minterms) in the SOP exceeds a
particular threshold, the function likely turns into tautology. Functions described by SOPs with the
number of terms near this tautology threshold are usually very simple – they are “near-tautologies”.
Two-level minimization must be run in order to discover the true nature of functions described
by these “big” SOPs. However, ABC and commercial tools do not do so for scalability and other
reasons. If such a SOP (in form of a PLA or mapped into technology) is submitted to the synthesis,
huge circuits are produced.

3.4 Partial Collapsing
The collapsing process in the above-mentioned methods produces results depending solely on the
source circuit; the gate count of the result cannot be adjusted. Different collapsing tools e.g., ABC [4]
and SIS [3], however, usually produce slightly different results. Results from BDDs processing can be
influenced by different variable orderings [10]. Unfortunately, experiments show that the resulting
decomposed network is either “too small” (the collapsing process is beneficial for the source circuit),
or “too large” (the source circuit is difficult to be collapsed). The same holds for the parity circuits,
since collapsing is involved here as well.

A straightforward way to adjust the size of any network is partial collapsing. Only a part of the
circuit is extracted (subcircuit), collapsed, decomposed into 2-input gates, and returned back into the
network. The basic algorithm is shown in pseudo-code in Figure 5. The parameters are the required
boundaries of the resulting circuit size. First, the initial size of the subcircuit to be extracted is set (say
4 gates). After the circuit part extraction and collapsing the resulting network is checked for validity,
in terms of the required size. If its size is too small, the process is repeated with increased size of the
circuit part. For details on the part selection process (Extract_Part) see [17].

Partial_Collapse(Network N, int min, int max) {
 size = initial_size;
 do {
 (P, NR) = Extract_Part(N, size);
 P’ = Collapse&Decompose(W);
 N’ = NR ∪ W’;
 if (|N’| ≥ min && |N’| ≤ max) { N = N’; break; }
 else if (|N’| < min) size++;
 } while (true);
 return N;
}

Figure 5: The benchmark generation algorithm

Partial collapsing of the circuit is meant to produce circuits larger than the originals and smaller
than the completely collapsed circuits. However, circuits even larger than completely collapsed circuits
have been sometimes generated, possibly for several reasons. The number of inputs of the extracted
circuit part may be higher than the number of inputs of the entire circuit. Thus, the collapsing
procedure could be sometimes more demanding. Next, even though the source circuit function is
“simple” and can be described by a few product terms, the extracted part function may be more
complex. As an example, the circuit size obtained by running the partial collapsing on the c432 [14]
circuit, as a function the collapsed subcircuit size is shown in Figure 6. No size control was applied
here (minima and maxima in Figure 5). It can be seen that even though the completely collapsed circuit
has approx. 2,000 gates, there is a circuit having more than 10,000 gates. Note that the original c432
has 145 gates, which corresponds to the 0-sized collapsed part in the graph.

0 20 40 6 0 80 1 00 12 0 140
0

2 00 0

4 00 0

6 00 0

8 00 0

10 00 0

12 00 0

Ga
te

s

P a rt s iz e

Figure 6: Partially collapsed circuit sizes (c432)

A more striking example is the behavior of the tautology benchmarks (Subsection 3.3) processed
by the partial collapsing. Even though the fully collapsed circuit is a constant, partially collapsed
circuits can be much larger than the original. This is illustrated by Figure 7a, b (the y-axis is trimmed
in latter one, to show the details). When increasing the collapsed subcircuit size up to some limit, the
resulting circuit size slowly increases. When enlarging the subcircuit size, a slow decrease of the size is

observed. In the area where the collapsed subcircuit size nears the original circuit size, two extreme
cases occur: either the tautology is discovered (hence the resulting circuit size shrinks to 0), or
extremely large circuits are produced.

0 2000 4000 6000 8000 10000
0

5000

10000

15000

20000
G

at
es

Part size

0 2000 4000 6000 8000
8000

8500

9000

9500

10000

10500

11000

G
at

es

Part size

Figure 7a, b: Partially collapsed tautology

3.5 Replicating Shared Logic
Another way to enlarge a network is to duplicate a part of the logic that is originally shared.
A branching signal is identified and the transitive fan-in of this signal is duplicated, to a given depth
(or up to primary inputs). The branching is then split and each branch is connected to one of the two
replicas. An example is shown in Figure 8, for the c17 ISCAS’85 [14] circuit. The net G16, together
with its transitive fan-in (gates G16 and G11), is duplicated here. Two parameters drive the generation:
the number of duplicated branches and the duplication depth.

G1

G1

G10

G10

G22

G22

G23

G23

G11

G11

G11’
G16

G16

G16’G19

G19

G3

G3

G6

G6

G7

G7

G2

G2

Figure 8: Duplicating shared logic example

4 Experimental Results
In this section we present some representative benchmarks generated by methods described
in Section 3, with results obtained by ABC and two commercial synthesis tools.

All the data are summarized in Table 1 (at the end of this document). First, the original (seed)
circuit name is shown, with numbers of its inputs (“i”) and outputs (“o”). Then the process by which
the circuit was modified is described and the number of 2-input gates obtained after mapping by ABC
“map” command is given.

The original circuits are indicated by the shadowed rows. Their synthesis results serve us as upper
bounds of the complexity; benchmarks with equal names are functionally equivalent. Each circuit was
processed by a global BDD and by SIS and ABC collapsing (Subsection 3.1). Next, partial collapsing
was applied (Subsection 3.4), and finally duplicities were introduced according to Subsection 3.5. The
latter two processes demonstrate possibilities of adjusting the resulting gate counts. In case of the
partial collapsing, the “size” parameter indicates the size of the collapsed subcircuit, in gates. The
“depth” value corresponds to the replication depth parameter (Subsection 3.5).

We present results of five representative circuits: the c432 [14] (whose size significantly increases
by collapsing), c880 [14] (whose size significantly increases by processing by a global BDD and by
collapsing as well), s1238 [15] and b4 [16] with parity and one randomly generated big tautologic PLA.

The right-hand part of the table contains the results of four different synthesis processes. In all
cases, synthesis and mapping into 4-input LUTs has been performed. First, the circuits were
synthesized by ABC [4], by using a sequence of commands suggested by ABC authors: “choice; fpga;
lutpack”. The “choice” script performs several different steps of resynthesis, hence a “good” synthesis
effort is ensured. Next, results of two commercial tools are presented (“#1”, “#2”). For some circuits
commercial tools failed to produce any result at all (the “N/A” entries).

For these examples we can observe how well the partial collapsing and introduction of duplicities
adjusts the circuit size. We have processed numerous different circuits and the behavior of these
adjustable benchmark generation methods mostly fully resembles the presented representatives.
However, there are limitations based on the seed circuit function and structure. For example, the c880
circuit size cannot be much increased by introducing duplicities, because of its low depth (only 14
levels). Partial collapsing also needs not be working universally for any circuit; there needs not exist a
subcircuit increasing the network size, when collapsed.

Next, a sorry fact may be observed: the synthesized LUT numbers grow with growing source
circuit sizes, for all studied synthesis tools. Only ABC is completely immune to the introduction
of duplicities, commercial tools are immune only partially. No tool is able to cope up with sizes of the
collapsed circuits. This is illustrated by the two graphs shown in Figure 9. The x-axis describes gate
counts of the original circuits (c432, s1238 with parity), the y-axis gives the resulting LUT counts.
Data from all the processes Table 1. are present in the graph. Two different behaviors may be
observed: the bottom data points represent benchmarks generated by introducing duplicities, while the
almost linearly growing dependencies depict the collapsing (and global BDD) processes.

0 2k 4k 6k 8k 10k 12k 14k 16k 18k
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

c432

LU
Ts

Source circuit gates

 #1
 #2
 ABC

0 20k 40k 60k 80k 100k 120k 140k
0

10k

20k

30k

40k

50k

60k

s1238_pLU
Ts

Source circuit gates

 #1
 #2
 ABC

Figure 9: Synthesis results for c432 and s1238_p circuits

We have also tried to map these circuits into 6-LUTs, hoping for better performance of commercial
tools when applied to modern FPGAs designs. However, no different behavior was observed. As an
example, we show the data and graph for the c432 circuit in Table 2 and Figure 10.

Process Gates ABC #1 #2

original 145 73 58 82
global BDD 2,017 559 545 589
ABC collapse 2,658 873 1,138 1,104
SIS collapse 7,075 2,354 2,869 3,289
Partial collapse, size 98 1,247 582 583 615
Partial collapse, size 109 3,077 1,086 1,264 1,682
Partial collapse, size 138 5,026 1,909 2,116 2,514
Partial collapse, size 140 11,531 4,703 5,013 6,205
10k duplicities, depth 1 1,428 73 199 249
10k duplicities, depth 2 4,905 73 378 424
10k duplicities, depth 3 8,389 73 327 468
10k duplicities, depth 4 11,349 73 362 525
10k duplicities, depth 5 16,040 73 397 565
10k duplicities, inf. depth 17,749 73 212 488

0 2k 4k 6k 8k 10k 12k 14k 16k 18k
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

c432

LU
Ts

Source circuit gates

 #1
 #2
 ABC

 Table 2: c432 mapped to 6-LUTs Figure 10: c432 mapped to 6-LUTs

5 Conclusions
We have presented several novel methods of generating artificially large benchmark circuits, which are
functionally equivalent to their origins. An upper bound of their complexity is known and it is
relatively small. Different adjustable processes of increasing the circuit size have been proposed. This
enables us to test efficiency, scalability and capabilities of synthesis tools. Even though the benchmark
circuits are generated by artificial and intentional modifications of networks, it cannot be guaranteed
that such “bad” networks cannot be produced by, e.g., HDL synthesis.

All the proposed benchmark generation methods may be applied to any seed circuit, however the
size increase is not always guaranteed. Two of the methods are adjustable to some extent, in terms
of the required number of the produced benchmark circuit gates.

Experiments have shown that both academic and commercial tools are not able to perform
satisfactorily. The obtained synthesis result sizes increase with increasing size of the source circuits,
even though equal results should be produced. This indicates that gate-level logic synthesis crucially
lacks in many aspects and there is still an open field for improvements.

Acknowledgement
This research has been supported by MSMT under research program MSM6840770014 and by the

grant of the Czech Grant Agency GA102/09/1668.

References
[1] J. Cong and K. Minkovich: Optimality study of logic synthesis for LUT-based FPGAs, IEEE

Trans. on CAD, vol. 26, pp. 230–239, Feb. 2007.
[2] P. Fišer and J. Schmidt, J: Small but Nasty Logic Synthesis Examples, Proc. 8th Int. Workshop

on Boolean Problems (IWSBP'08), Freiberg, Germany, 18.-19.9.2008, pp. 183-190.
[3] E.M. Sentovich et al. SIS: A System for Sequential Circuit Synthesis, Electronics Research

Laboratory Memorandum No. UCB/ERL M92/41, University of California, Berkeley, CA
94720, 1992.

[4] Berkeley Logic Synthesis and Verification Group: ABC: A System for Sequential Synthesis and
Verification. [Online]. Available: http://www.eecs.berkeley.edu/ alanmi/abc/.

[5] K. Iwama and K. Hino: Random generation of test instances for logic optimizers, in Proc. 31st
Design Automation Conf. (DAC), 1994, pp. 430–434.

[6] M. D. Hutton, J. P. Grossman, J. S. Rose, and D. G. Corneil: Characterization and
parameterized random generation of combinational benchmark circuits, IEEE Trans. Computer-
Aided Design, vol. 17, pp., 955–996, Oct. 1998.

[7] D. Stroobandt, P. Verplaetse, and J. Van Campenhout: Generating synthetic benchmark circuits
for evaluating CAD tools, IEEE Trans. Computer-Aided Design, vol. 19, pp. 1011–1022, 2000.

[8] J. Darnauer and W. Dai: A method for generating random circuits and its application to
routability measurement, in Proc. 4th ACM/SIGDA Int. Symp. FPGA’s, Feb. 1996, pp. 66–72.

[9] D. Stroobandt, J. Depreitere, and J. Van Campenhout: Generating new benchmark designs
using a multiterminal net model, Integration, the VLSI J., vol. 27, no. 2, pp. 113–129, 1999.

[10] S. B. Akers: Binary decision diagrams, IEEE Trans. on Computers, Vol. C-27. No. 6, June
1978, pp. 509-516.

[11] Berkeley Logic Interchange Format (BLIF), University of California, Brekeley, 2005
[12] P. Fišer, J. Schmidt: The Observed Role of Structure in Logic Synthesis Examples, Proc. 18th

of International Workshop on Logic and Synthesis 2009 (IWLS'09), Berkeley, California
(USA), 31.7. - 2.8.2009, pp. 210-213

[13] P. Kubalík, P. Fišer and H. Kubátová, Fault Tolerant System DesignMethod Based on Self-
Checking Circuits, Proc. 12th International On-Line Testing Symposium 2006 (IOLTS’06),
Lake of Como, Italy, July 10-12, 2006, pp. 185-186

[14] F. Brglez and H. Fujiwara: A Neutral Netlist of 10 Combinational Benchmark Circuits and a
Target Translator in Fortan, Proc. of International Symposium on Circuits and Systems, pp.
663-698, 1985.

[15] F. Brglez, D. Bryan and K. Kozminski: Combinational Profiles of Sequential Benchmark
Circuits, Proc. of International Symposium of Circuits and Systems, pp. 1929-1934, 1989.

[16] K. McElvain: IWLS'93 Benchmark Set: Version 4.O, distributed as part of the IWLS'93
benchmark distribution.

[17] P. Fišer, J. Schmidt: It Is Better to Run Iterative Resynthesis on Parts of the Circuit, Proc. 19th
of International Workshop on Logic and Synthesis 2010 (IWLS'10), Irvine, California (USA),
18.-20.6.2010, pp. 17-24

Table 1: Detailed experimental results

Benchmark circuit Synthesis into 4-LUTs
Bench i o Process Gates ABC #1 #2

c432 [14] 36 7 original 145 84 77 118
c432 [14] 36 7 global BDD 2,017 1,031 1,023 1,333
c432 [14] 36 7 ABC collapse 2,658 1,246 1,548 1,648
c432 [14] 36 7 SIS collapse 7,075 3,361 3,872 4,738
c432 [14] 36 7 Partial collapse, size 98 1,247 626 782 916
c432 [14] 36 7 Partial collapse, size 109 3,077 1,445 1,699 2,422
c432 [14] 36 7 Partial collapse, size 138 5,026 2,598 2,761 3,727
c432 [14] 36 7 Partial collapse, size 140 11,531 6,647 6,844 9,255
c432 [14] 36 7 10k duplicities, depth 1 1,428 84 244 333
c432 [14] 36 7 10k duplicities, depth 2 4,905 84 447 586
c432 [14] 36 7 10k duplicities, depth 3 8,389 84 396 637
c432 [14] 36 7 10k duplicities, depth 4 11,349 84 452 739
c432 [14] 36 7 10k duplicities, depth 5 16,040 84 472 771
c432 [14] 36 7 10k duplicities, inf. depth 17,749 84 249 684
c880 [14] 60 26 original 208 113 110 122
c880 [14] 60 26 global BDD 407,098 93,190 174,983 N/A
c880 [14] 60 26 ABC collapse 13,727 7,437 8,109 9,460
c880 [14] 60 26 SIS collapse 30,015 19,787 20,487 28,017
c880 [14] 60 26 Partial collapse, size 129 1,008 485 601 597
c880 [14] 60 26 Partial collapse, size 171 5,034 2950 2,394 3,769
c880 [14] 60 26 Partial collapse, size 201 10,423 6224 5,010 7,887
c880 [14] 60 26 10k duplicities, depth 1 1,258 113 97 262
c880 [14] 60 26 10k duplicities, depth 3 1,828 113 109 317
c880 [14] 60 26 10k duplicities, inf. depth 2,962 113 99 140
s1238_p [15] 32 1 original 493 229 241 263
s1238_p [15] 32 1 global BDD 6,282 3,849 4,055 3,839
s1238_p [15] 32 1 ABC collapse 31,839 19,741 21,875 25,793
s1238_p [15] 32 1 SIS collapse 39,636 26,313 28,254 N/A
s1238_p [15] 32 1 Partial collapse, size 150 1,365 750 792 895
s1238_p [15] 32 1 Partial collapse, size 219 4,876 2,263 2,298 3,586
s1238_p [15] 32 1 Partial collapse, size 309 12,001 6,504 7,120 8,991
s1238_p [15] 32 1 Partial collapse, size 376 25,756 14,288 16,425 20,029
s1238_p [15] 32 1 Partial collapse, size 454 40,845 24,913 25,906 34,180
s1238_p [15] 32 1 Partial collapse, size 477 59,330 39,595 42,756 57,306
s1238_p [15] 32 1 5k duplicities, depth 1 13,171 229 1,125 2,218
s1238_p [15] 32 1 5k duplicities, depth 2 27,480 229 1,828 3,640
s1238_p [15] 32 1 5k duplicities, depth 3 47,898 229 2,356 4,760
s1238_p [15] 32 1 5k duplicities, depth 4 91,889 229 3,582 N/A
s1238_p [15] 32 1 5k duplicities, depth 5 131,173 229 4,014 8,760
s1238_p [15] 32 1 5k duplicities, inf. depth 494,891 229 4,417 N/A
b4_p [16] 33 1 original 267 110 108 116
b4_p [16] 33 1 BDD 16,963 6,347 6,099 4,285
b4_p [16] 33 1 ABC collapse 1,405 730 841 884
b4_p [16] 33 1 SIS collapse 4,087 2,036 2,422 1,627
b4_p [16] 33 1 Partial collapse, size 108 1,097 450 566 677
b4_p [16] 33 1 Partial collapse, size 219 4,664 2,328 2,439 3,543
b4_p [16] 33 1 Partial collapse, size 167 7,960 2,953 3,041 5,550
b4_p [16] 33 1 10k duplicities, depth 1 2,085 110 169 126
b4_p [16] 33 1 10k duplicities, depth 2 9,259 110 195 229
b4_p [16] 33 1 10k duplicities, depth 3 21,029 110 212 170
b4_p [16] 33 1 10k duplicities, depth 4 26,019 110 411 134
b4_p [16] 33 1 10k duplicities, depth 5 39,842 110 635 136
b4_p [16] 33 1 10k duplicities, inf. depth 81,078 110 575 246
tautology 25 1 tautology 9,130 6,798 8,425 8,528
tautology 25 1 Partial collapse, size 7521 14,082 10,542 12,371 14,945
tautology 25 1 Partial collapse, size 7932 19,028 13,839 15,952 20,398
tautology 25 1 Partial collapse, size 9121 24,249 17,364 19,775 27,113
tautology 25 1 500 duplicities, inf. depth 10,397 6,798 8,362 8,521
tautology 25 1 10k duplicities, inf. depth 13,986 6,813 8,441 8,600

