
It Is Better to Run Iterative Resynthesis on Parts
of the Circuit

Petr Fišer, Jan Schmidt
Faculty of Information Technology, Czech Technical University in Prague

Prague, Czech Republic
fiserp@fit.cvut.cz, schmidt@fit.cvut.cz

Abstract—In this paper we investigate iterative logic synthesis
processes. A well known academic logic synthesis tool ABC
incorporates many synthesis algorithms and scripts which may
be run iteratively to possibly improve the result. When iterating
the synthesis process, the whole network is considered. We
propose an alternative approach to iterative synthesis – only
properly selected parts of the circuit are submitted to resynthesis,
which is done iteratively. We show that a significant
improvement in the result quality may be achieved. This
observation is rather surprising and witnesses probably a lack
of efficiency of the ABC resynthesis control. The observations are
documented by numerous experiments on ISCAS and IWLS’93
benchmark circuits.

Keywords-logic synthesis, resynthesis, iterative processes, ABC

I. INTRODUCTION
The classical combinational synthesis flow established

in the 1980's is a cascade of specialized, distinguished steps:
minimization, decomposition, technology mapping. Any
description of the circuit is first brought to Sum of Products
(SOP) form, and only then the circuit structure is built
by decomposition. The advantage of such an approach is
greater independence of the form of input description.
To repeat such a process, however, is nearly meaningless, as
structural information is lost during the first step.

The optimization processes and representations involved
have serious and well-known scalability problems. Therefore,
the next generation of synthesis algorithms relied on local
transformations. As the forms of inputs and outputs of those
processes were equal, the transformations could be iterated,
which leads naturally to the notion of resynthesis.

Already in SIS, which uniformly works with Boolean
networks, there were synthesis steps recommended for
iteration. This was continued in ABC [1]. The unified
representation is based on And-Inverter Graphs (AIGs) [2],
with the ability to represent alternative representations
(chioces) added [3], [4]. Most of the ABC synthesis procedures
are of a local nature. For example, the rewriting [5], [6] process
is conducted on 4-feasible cuts by default. The refactoring [7]
algorithm uses larger cuts. The resubstitution [5], [6] process
introduces the notion of a window, which is even a larger part
of the circuit.

Form the point of view of combinatorial optimization, such
complex iterative processes are impossible to analyze. Iteration
in ABC and SIS is done at two levels: at the level of local
transformations under an internal control and at the level

of optimization steps. This level is controlled by synthesis
scritps [1], which have been written by experience with series
of benchmark circuits and which usually prescribe fixed
sequences of optimizations. This seems to open up an
opportunity to employ better iteration control. But first, we
have to understand the iterative processes, even on an
experimental basis. During the experiments we observed an
interesting anomalous behavior: processes that processed the
circuits by parts gave better results and, often, in shorter time.

This permitted us to construct an alternative iterative
synthesis process, which we describe here and compare it with
a standard iterative synthesis process in ABC on standard
benchmarks. Only combinational circuits are assumed here.

II. PRELIMINARIES
A Boolean network N (circuit) is a structure of connected

single-output nodes forming an acyclic graph. The network
connections, which are naturally inputs and outputs of gates,
will be denoted as signals.

The network primary inputs (PIs) are signals that are driven
by the environment; there is no node driving these signals
in the network. The primary outputs (POs) are signals that
drive the environment. Primary outputs may be driving
network nodes as well.

The size of the network, |N| is the number of its nodes.
Primary inputs and outputs are not considered as nodes. Let
cost(N) of the network be |N|, for purposes of this paper.

The fan-in of a node is the number of its inputs. Since each
input must be driven by exactly one node in the network, the
fan-in term will be used interchangeably for gates driving the
respective node. The fan-out of a node is the set of nodes it
drives. The transitive fan-in of a node is a set of nodes that
drive the node. The transitive fan-out is a set of nodes that are
driven by the node.

The distance of two network nodes is the number of signals
the one needs to pass to reach the other one. The level of a
node is its maximum distance from any of the primary inputs.
Primary inputs have the level equal to 0.

A window is a connected subcircuit Nw of a circuit
(network) N. Formally, it is a Boolean network Nw, Nw ⊆ N,
whereas for every node ni ∈ Nw there exists a path to every
node nj ∈ Nw, i ≠ j. In the text, terms window and part will be
used interchangeably, since they have the same meaning in the
formal sense.

III. MOTIVATION
Let us suppose an iterative resynthesis process, i.e., process

by which the solution could be improved when it is run several
times consecutively. Let a network N1 be obtained by running a
resynthesis process P on N0, i.e., N1 = P(N0). Subsequent
iterations of this process produce different networks,
Ni = P(Ni-1). In an ideal case, cost(Ni) ≤ cost(Ni-1) for each i.
However, this may be not true in practice, depending on the
process. For purposes of illustration of the problem, let us
consider dividing the network N0 into two disjoint parts:
N0 = N0

A ∪ N0
B, N0

A ∩ N0
B = ∅, nothing is said about |N0

A| and
|N0

B|. Now let’s run the resynthesis process on N0
A and N0

B
separately, yielding N1

A = P(N0
A) and N1

B = P(N0
B).

By composing the obtained network back, we obtain
N1

AB = N1
A ∪ N1

B. Obviously, networks N0, N1 and N1
AB are

functionally equivalent.
In our experiments we have found rather surprising cases,

where cost(N1) > cost(N1
AB). Informally, a run of the

resynthesis on parts of the circuit, rather on the whole circuit,
could yield better results, in terms of the total circuit area
(number of gates). In particular, we have divided the e64
IWLS’93 circuit [10] into two parts, resynthesized them
separately and merged again. The resulting circuit had 522
gates, whereas the resynthesis of the whole circuit yielded 530
gates. Moreover, the total runtime of this resynthesis was 2.33
seconds, while the total time of the resynthesis of the circuit
halves (including the time needed for the circuit division) was
1.73 seconds.

This is apparently wrong; there must exist a case (sequence
of cut/window selections), where the resynthesis of N0 would
be conducted in the same way, as for the separated N0

A and N0
B

parts. Moreover, global information is lost in the latter case,
thus it theoretically should produce worse results in general.
Even the overall resynthesis runtime may be affected; usually
the runtime of the resynthesis processes grows faster than
linearly, thus resynthesis by parts takes less time.

For this reason, we have investigated possibilities
of resynthesizing circuits by parts more thoroughly, with a
hope of discovering reasons for the above-mentioned strange
behavior of the synthesis and proposing a better synthesis
process.

IV. ITERATIVE SYNTHESIS IN ABC

A. Selection of the ABC Synthesis Process

First of all, a “good” synthesis process that is to be iterated
must be found, to be a basis of our experiments. The required
synthesis process should be universal, in the sense of result
quality and runtime. In other words, it should be able
to produce good results in an acceptable time, independently
of the circuit processed.

All of the experiments were conducted using a mix of 228
ISCAS’85 [8], ISCAS’89 [9] and IWLS’93 [10] benchmark
circuits. The circuits were mapped onto arbitrary 2-input gates.
For this purpose, the MCNC library restricted to 2-input gates
was used, the circuit was mapped by the ABC map command
and finally redundant buffers and inverters were removed
by the sweep command.

We have compared several ABC synthesis processes,
described below. The results, in terms of the sum of the
number of gates of the 228 synthesized circuits, are shown
in Table I.

The most naive synthesis process in ABC is a mere
technology mapping, using the map command. In fact, no real
synthesis is involved here, the network AIG is just mapped
onto technology. However, results obtained by this process can
serve as a baseline (Table I. “map” row).

The results may be improved by running the basic
resynthesis script resyn prior to the mapping (row 2). A more
advanced script resyn2 interleaving rewriting [2] and
refactoring [7] produces yet better results (row 3). The choice
script incorporates these two scripts, together with using
of “choices” [3], [4] (row 4). Even better results produced the
resyn2rs script (row 5) and the share script (row 6). This brings
us to the idea of combining these scripts in a way of the choice
script, yielding a new script, superchoice, see Figure 1. Other
resynthesis scripts were tested as well, however they did not
produce better results, even when used with other scripts
(combined by choices), or the runtime was “too high”. Let us
note here, that a script producing results of almost any quality
could be generated this way, by combining numerous different
synthesis scripts by using “choices” [3] together with the
FRAIG package [4]. However, this will induce a longer
runtime of a single script. Here naturally arises a question
where is the “usability limit” of a particular process: when
repeated application of a “fast” script will yield better results
in the same time? This issue will be a part of further
investigation.

Synthesis procedures like collapsing (collapse) and
disjoint-support decomposition (dsd) [11] sometimes produce
good results (sometimes they are essential [12]). They
completely abandon the circuit structure by converting it into a
SOP or by using global BDDs, but this also forms a scalability
obstacle. Therefore, these processes cannot be used in general,
even as parts of a synthesis script based on choices.

For the above mentioned reasons, the superchoice script
followed by technology mapping was chosen as a good
“universal” synthesis script.

For details on the scripts, readers are referred to the abc.rc
configuration file [1].

TABLE I. ABC SYNTHESIS PROCESSES

Process Total gates
1 map; sweep 168,279
2 resyn; map; sweep 143,308
3 resyn2; map; sweep 136,669
4 choice; map; sweep 135,245
5 resyn2rs; map; sweep 131,637
6 share; map; sweep 128,442
7 superchoice; map; sweep 126,131
8 20x (superchoice; map; sweep) 113,479
9 1000x (superchoice; map; sweep) 106,216

fraig_store; resyn
fraig_store; resyn2
fraig_store; resyn2rs
fraig_store; share
fraig_store; fraig_restore

Figure 1. The “superchoice” script

B. Iterating the Synthesis in ABC

Assuming that every ABC synthesis script is composed
of several subsequent basic synthesis procedures and that the
script will not likely deteriorate the network, the result may be
effectively improved by iterating the script several times. This
is even more emphasized when choices [3] are used, since
many different network representations are stored
simultaneously. Also authors of ABC claim that repeating the
“choice; map” sequence several times improves the result [1].
We have studied this issue more into detail. The proposed
superchoice script was used for testing purposes.

Results obtained from iterating the superchoice script
followed by map and sweep 20-times are shown in Table I.
row 8. The script was then iterated 1000-times to show “border
limits” of ABC capabilities (Table I. row 9). Iterating the
synthesis process 20-times improves the total area by 10%,
iterating 1000-times yields 13.6% improvement. Iterating the
synthesis more times mostly does not bring any more
improvement.

To further justify the above-mentioned claims, we have
tracked the progress of the iterative resynthesis for all 228
circuits with 1000 applications of the superchoice script. The
results are shown in Table II. 85% circuits converged to a
stable cost value in less than 20 iterations, only 3 circuits
needed more than 500 iterations to converge. Therefore, we
have set 1000 iterations as a basis for our experiments. Even
though such a number is rather high, it ensures that ABC itself
will (almost) never produce better results, when run longer.

We have also observed that the convergence does not
depend on the circuit size. Even though the problematic circuits
shown in Table II belong to the larger ones, much bigger
circuits converged faster.

TABLE II. THE SUPERCHOICE SCRIPT CONVERGENCE

Iterations to converge # of cases
< 20 194
20 – 100 27
100 – 500 4
500 – 1000 1 (t481)
> 1000 2 (seq, too_large)

V. CIRCUIT RESYNTHESIS BY PARTS
In contrast to iterative resynthesis of the whole circuit, we

propose submitting only selected parts (windows) of the circuit
to the ABC resynthesis. The motivation for this was presented
in Section III.

The overall synthesis process and window selection
algorithms are presented in this section.

A. The Synthesis Process

The basic and general principles of the proposed
resynthesis process are described in Figure 2.

Resynthesize(Network N, opt) {

do {
(W, NR) = Extract_Window(N, opt);
W’ = resynthesize_by_ABC(W);
N’ = NR ∪ W’;
if (cost(N’) ≤ cost(N)) N = N’;

} while (!end());
}

Figure 2. The resynthesis by parts algorithm

At the beginning of each iteration, a part W of the network
(window) is selected and extracted from the original network
N. NR is then the remainder of the original network, nodes
included in W are not present in NR. Primary inputs and outputs
of N are retained, primary inputs and outputs of W are
constructed as follows (see an example in Figure 3):

(1) Gate inputs that are not driven by any gate in W are
assigned as W primary inputs (PI1-PI5 in the figure).

(2) Gate outputs that do not drive any gate in W are
assigned as W primary outputs (PO1, PO2).

(3) Gate outputs that drive some gate in NR are assigned
as W primary outputs (PO3).

(4) Gate outputs that are primary outputs of N are
assigned primary outputs of W (PO4).

PI1

PI2

PI5

PI4

PI3

PO1

PO3
PO2

PO4

W

Figure 3. Window selection

The Extract_Window procedure is the pivotal step in the
proposed resynthesis. Methods of part extraction will be
described in detail later in this section.

The extracted window W is submitted to ABC synthesis.
Any synthesis process may be used in general. In experiments
presented in this paper we use one iteration of the superchoice
script (Figure 1).

The resynthesized network W’ is then “put back” into the
network, by merging these two networks by their signals and
primary input and output names. If the resynthesis brought any
improvement, i.e., the network cost is reduced with respect
to the original network, the old network is discarded and the
new one is considered for the next iteration. Thus, the

resynthesis is greedy in the “first improvement” manner;
non-improving iterations are discarded.

The whole procedure is iterated, until some stopping
condition is satisfied. In experiments presented in this paper,
we use a fixed number of iterations, for purposes
of comparison. However, more sophisticated stopping criteria
should be applied in practice.

B. Part Selection Methods

We have implemented six algorithms of window selection,
equipped with a mechanism to control window size.

Method 0 – Random selection
Random_Select(Network N, size) {

n = random_node(N);
W = {n};
Nr = N – {n};
while (|W| < size) {

n = random_node(Nr);
if (isConnected(n, W)) {

W = W ∪ {n};
Nr = Nr – {n};

}
}
return (W, Nr);

}

Figure 4. Random window selection algorithm

This trivial algorithm (Figure 4) forms a basis of the three
latter ones. The algorithm is parametrized by the number
of gates of the extracted network. The window is constructed
greedily and purely at random, only the condition of connected
network must be satisfied.

Method 1 – MinimizePIs
MinimizePIs_Select(Network N, size) {
 n = random_node(N);
 W = {n};
 Nr = N – {n};
 while (|W| < size) {
 candidate = N/A;
 for_each(n∈Nr) {
 if (isConnected(n, W)) &&
 FaninIncrease(n, N) <
 FaninIncrease(candidate, N))
 candidate = n;

 }
W = W ∪ {candidate};
Nr = Nr – {candidate};

}
 return (W, Nr);
}

Figure 5. “MinimizeFanin” window selection algorithm

The second method locally minimizes the number of the
window primary inputs. This could be beneficial for
resynthesis procedures whose complexity depends on the
number of inputs rather than the number of gates; this was not
the case of presented experiments.

The asymptotic complexity increased |N|-times compared
to Method 0. In each step of the main loop, every node

connected to W is a candidate for selection and its cost function
has to be evaluated.

FaninIncrease is the essential procedure here. It
enumerates the number of primary inputs that have to be added
to W, if a particular node was appended to P. Each primary
input of the candidate node is checked, if it is driven by any W
network node. If not, it induces an additional PI, by the rule (1)
in Subsection V.A, and adds a penalty point for the candidate
node. Let us note that a node driving formerly non-driven node
input will be included into W in further steps, making this input
an internal signal of W and decreasing the number of PIs.

Method 2 – MinimizePOs

Minimizing the total number of primary outputs of W
becomes an apparent candidate for investigation. The cut
selection algorithm is similar to the one shown in Figure 5, it
only differs in the candidate node evaluation. Only the
procedure FaninIncrease is modified, so that nodes inducing
additional POs are penalized. The candidate node output is
checked for conditions (2)-(4) stated in Subsection V.A. If any
of them is satisfied, the candidate node induces an additional
output, hence it obtains a penalty point. Like in the previous
algorithm, some non-driven N’ network nodes may be included
into W in the node selection process, reducing W outputs.

Method 3 – MinimizePIs+POs

A combination of the selection criteria of Methods 1 and 2
yields a reduction of the overall reduction of the number of the
W network external signals, thus it implicitly forces W to be as
compact as possible, improving the chance for finding a better
structure of the extracted circuit.

Method 4 – RadiusSelect

This algorithm significantly differs from the previously
described four ones. The number of W inputs, outputs and
nodes is not restricted. Instead, the most connected subcircuit
of W is looked for intentionally. First, a pivot node is selected
randomly. Then nodes reachable within a given radius from the
pivot are moved to W. In particular, transitive fan-in and
fan-out nodes of the pivot are selected. The pseudo-code of the
algorithm is shown in Figure 6. A queue q of nodes is used
to traverse the N network.

Radius_Select(Network N, radius) {
 n = random_node(N);
 q.enqueue(n);
 while (!q.empty()) {
 n = q.pop();
 W = W ∪ {n};

Nr = N – {n};
 for_each(m∈Nr) {
 if (isConnected(m, W) &&
 distance(n, m) ≤ radius)
 q.push(j);
 }
 }
 Nr = N – W;
 return (W, Nr);
}

Figure 6. The RadiusSelect algorithm

Method 5 – Windowing-like Selection

Here we were inspired by the window selection algorithm
used in the ABC resubstitution process [5]. As in the Method 4,
the pivot node is selected first. Then, the minimum level of its
transitive fan-in up to a given depth is found. After that, the
transitive fan-out of the pivot is generated, up to a given depth
and the transitive fan-in nodes of these are moved to W. Only
transitive fan-in nodes having the level less than the level of the
least pivot transitive fan-in level are considered.

VI. EXPERIMENTAL RESULTS
Results of numerous experiments performed using a mix

of 228 of the ISCAS’85 [8], ISCAS’89 [9] and IWLS’93 [10]
benchmarks are presented in this section. In all the
experiments, the superchoice script (Figure 1) followed
by mapping into 2-input gates (map) and the sweep command
is used for iterative resynthesis. This process was also run once
on all the benchmarks, to obtain the initial circuits that are
submitted to the experiments.

If not stated otherwise, the resynthesis was iterated
1000-times. All the experiments, where runtime is indicated,
were run on the Ahtlon64 5600+ Dual Core CPU.

A. Area Measurement and Application to LUT Synthesis

The result quality measure is the number of 2-input gates
(not AIG nodes). Look-up table (LUT) mapping can be also
incorporated in the process. However, we do not expect better
results than those obtained by post-synthesis LUT mapping.
The 2-input gates offer more flexibility, due to a very low
granularity of the design. Moreover, the complexities of gate-
based and LUT-based syntheses correlate. To justify, we have
run the superchoice script followed by either the map or fpga
command 1000-times iteratively for all the 228 benchmark
circuits. Numbers of obtained LUTs as a function of the
obtained 2-input gates are shown in Figure 7. It can be seen
that the dependency is linear.

0 20k 40k 60k 80k 100k 120k
0

10k

20k

30k

40k

LU
Ts

Gates

Figure 7. Gate vs. LUT synthesis

B. Characteristics of the Benchmarks

Since the characteristics of the resynthesis results heavily
depend on the characteristic of the processed circuits, here we
will present their statistics, namely concerning their sizes.
A histogram of circuit sizes is shown in Figure 8. The numbers
of circuit gates range from 5 to 11,210. The average circuit size
is 600 gates, the median is 187.

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

120

140

160

180

Fr
eq

ue
nc

y

Gates

Figure 8. Benchmark circuits sizes distribution

Even though these circuits are relatively small, they
represent a wide variety of parts of industrial designs.
Conclusions derived in this section can be freely generalized
to circuits of any size, since no dependency on the circuit size
has been detected, in terms of the result quality.

C. Actual Window Sizes

To explore the nature of partial resynthesis, we need
to control the size of the window, both in absolute terms and
relatively to the circuit size. Methods 0-3 may lack connected
nodes and return a window smaller than the requested size.
In methods 4 (RadiusSelect) and 5 (Windowing-like), the
window size is strictly given by the connectivity of the circuit
and the selected pivot. The window size characteristics
resemble the circuits’ characteristics given in Subsection V.B
for all methods. Therefore, we present characteristics of only
one circuit, s38417 [9] with 8643 2-input gates in Table III.

TABLE III. WINDOW SIZE CHARACTERISTICS

 Max. Average Median
Method 0, 10% 864 776 805
Method 0, 20% 1728 1552 1600
Method 0, 30% 2592 2300 2389
Method 1, 10% 864 758 783
Method 1, 20% 1728 1510 1564
Method 1, 30% 2592 2263 2345
Method 2, 10% 864 758 788
Method 2, 20% 1728 1266 1576
Method 2, 30% 2592 2282 2361
Method 3, 10% 864 751 779
Method 3, 20% 1728 1517 1560
Method 3, 30% 2592 2229 2336
Method 4, radius 3 199 26 22
Method 4, radius 4 358 50 41
Method 4, radius 5 577 97 80
Method 4, radius 6 914 157 131
Method 4, radius 7 1606 261 193
Method 4, radius 8 1850 384 313
Method 4, radius 9 2342 552 475
Method 5, depth 3 429 68 33
Method 5, depth 4 720 87 53
Method 5, depth 5 685 96 63

 Max. Average Median
Method 5, depth 6 982 109 69
Method 5, depth 7 1025 111 68
Method 5, depth 8 1017 118 74
Method 5, depth 9 785 122 72

Maximum window sizes in methods 0-3 are equal to the

respective percentage of the size of the original circuit.
Average window sizes slightly differ between these methods,
since different circuits are processed in latter iterations. The
maximum, average and median values do not differ too much.
Conversely, the maximum, average and median values
significantly differ in methods 4 and 5, witnessing a rather
steady distribution of window sizes. As an example, see the
distributions for Method 4, radius 9 in Figure 9. In Method 5,
the depth limit influences the window size only slightly. This
can be observed especially from the median values.

Because of different characteristics of the window sizes, it
is difficult to make a relevant comparison of Methods 0-3 with
Methods 4 and 5. Therefore, we present results of these
methods separately.

0 500 1000 1500 2000
0

20

40

60

80

100

120

140

160

Fr
eq

ue
nc

y

Window size

Figure 9. Window sizes distribution for Method 4, radius 9

D. The Window Selection Methods 0-3

In this subsection we experimentally evaluate effectiveness
of the window selection methods. The comparison results,
namely total gate counts of the synthesized 228 circuits, are
shown in Table IV.

TABLE IV. COMPARISON OF WINDOW SELECTION METHODS

Size Method 0 Method 1 Method 2 Method 3
4 126,261 126,423 125,851 125,707
5 126,005 125,816 125,462 125,031
6 125,655 125,160 125,135 124,378

10% 121,628 114,058 118,463 114,471
20% 120,190 110,308 114,905 111,014
30% 119,067 107,883 113,575 108,860

Two window size selection strategies were studied: in the

upper part of the table, the window size was fixed to a given
size (4, 5, 6 gates). Next, the window size was relative to the
circuit size (10%, 20%, 30% of the circuit). In the latter case,
the window size obviously significantly varies, depending
on the circuit and the random pivot node selected. The study
of actual window sizes will be presented in Subsection VI.C.

It can be seen that the Method 0 (random window
selection) produces worst results in all cases (in terms of the
total). Methods 1 (minimizing the window fan-in) and 2
(minimizing the window fan-out) produced very similar results
for absolutely-sized windows, however Method 1 wins for
percentage-sized windows. At any case, Method 3 (minimizing
the sum of the window fan-in and fan-out) produces best
results, in terms of quality.

The runtimes of the window construction differ for the four
methods. For illustration, total window construction runtimes
(sum of 1000 iterations) for the s38417 ISCAS’89 circuit for
the window size of 20% of the circuit are shown in Table V.
The runtimes spent by the ABC synthesis are shown as well.
Surprisingly, with more advanced window selection methods
these runtimes grow. Most probably this is due to more
reconvergence present in the windows.

TABLE V. WINDOW SELECTION RUNTIMES, METHODS 0-3

 Constr. time [s] ABC time [s]
Method 0 51,212 796
Method 1 93,811 970
Method 2 91,976 1,050
Method 3 111,536 1,084

Method 3 is the slowest one, since it combines methods 1

and 2. Still, it produces best results from these four.
Note that the window construction and ABC runtimes

cannot be compared, since our resynthesis tool is rather slow,
compared to ABC. The ABC code is targeted to speed
efficiency, while our experimental tool is written in a more
transparent code, up to ten times slower by our measurement.

E. The Window Selection Methods 4 and 5

Results obtained by methods 4 and 5 are shown
in Table VI. Total numbers of gates for the 228 benchmarks,
together with the total window construction and ABC runtimes
for one circuit s38417 (in sense of Table V.) are given. An
interesting observation can be made in Method 4: the number
of gates decreases when increasing the radius, up to the
threshold 8. Then, the quality lacks. The same behavior can be
seen in Table VII (see Subsection VI.F). This gives us the first
hint of better effectiveness of the resynthesis of smaller parts
of circuits, rather than larger ones (or the entire circuit).

Even though a fully relevant direct comparison of the six
window selection methods is not possible, comparison
of results shown in Tables III - VI clearly show the winner.
Methods 0-3 are extremely slow, in comparison to Methods 4
and 5. This is due to a large search space of methods 0-3 to be
explored; the number of candidate node for evaluation in each
selection algorithm step is rather high. The complexity of the
algorithm is O(n2), where n is the number of network nodes.
Conversely, Methods 4 and 5 proceed in a straightforward way;
once the pivot node is selected, the window creation process is
fully deterministic. Complexities of the methods are O(n).

Regarding the result quality, Method 4, radius 8 produced
the best result, out of all six methods. The lack of efficiency
of Method 5 is apparent from TABLE III. The size of the

window increases only slightly with increasing the depth
parameter.

TABLE VI. WINDOW SELECTION METHODS 4 AND 5

 Gates Constr. time [s] ABC time [s]
M. 4, radius 3 122,165 1,281 418
M. 4, radius 4 116,981 1,254 433
M. 4, radius 5 110,325 1,317 465
M. 4, radius 6 104,330 1,801 544
M. 4, radius 7 101,182 2,801 748
M. 4, radius 8 100,929 6,142 859
M. 4, radius 9 101,633 13,487 996
M. 5, depth 3 116,971 1,674 619
M. 5, depth 4 114,259 1,772 612
M. 5, depth 5 112,283 1,807 635
M. 5, depth 6 111,063 1,827 638
M. 5, depth 7 109,145 1,799 632
M. 5, depth 8 108,815 1,906 659
M. 5, depth 9 109,581 1,995 670

F. Comparison with ABC

A comparison of the performance of the proposed
alternative resynthesis methods with ABC resynthesis run
on the whole circuits is presented in TABLE VII. The
reference quality value is the total number of gates of the
original benchmark circuits. Average and maximum percentage
improvements reached by the different resynthesis processes,
with respect to this value are shown in the table.

The ABC superchoice script, when run 1000-times on the
original circuit, reduces the total number of gates by 19.97%
in average. The maximum improvement obtained by this
process was 83.78% (particularly for z4ml, which has 111 gates
originally and 18 gates after minimization).

TABLE VII. COMPARISON WITH ABC

Method Average impr. Maximum impr.
ABC 19.97% 83.78%
Method 0, const 5 11.79% 34.38%
Method 0, const 6 12.62% 37.63%
Method 0, 10% 14.62% 47.12%
Method 0, 20% 16.94% 54.80%
Method 0, 30% 18.21% 63.20%
Method 1, const 5 12.82% 41.02%
Method 1, const 6 13.77% 41.36%
Method 1, 10% 17.98% 51.19%
Method 1, 20% 21.84% 83.62%
Method 1, 30% 23.86% 91.06%
Method 2, const 5 12.66% 34.92%
Method 2, const 6 13.21% 36.61%
Method 2, 10% 16.24% 47.12%
Method 2, 20% 19.89% 72.40%
Method 2, 30% 21.29% 74.00%
Method 3, const 5 13.66% 43.73%
Method 3, const 6 14.55% 39.66%

Method Average impr. Maximum impr.
Method 3, 10% 18.48% 62.40%
Method 3, 20% 22.10% 89.79%
Method 3, 30% 23.63% 85.96%
Method 4, radius 3 15.59% 41.44%
Method 4, radius 4 19.92% 88.72%
Method 4, radius 5 23.19% 91.49%
Method 4, radius 6 24.85% 90.21%
Method 4, radius 7 25.55% 91.06%
Method 4, radius 8 25.20% 89.79%
Method 4, radius 9 24.25% 89.57%
Method 5, depth 3 18.81% 84.68%
Method 5, depth 4 19.83% 82.88%
Method 5, depth 5 20.53% 90.64%
Method 5, depth 6 20.65% 82.88%
Method 5, depth 7 21.01% 90.85%
Method 5, depth 8 20.82% 82.88%
Method 5, depth 9 20.52% 82.88%

Shadowed cells in the table indicate cases, where

an improvement w.r.t. ABC resynthesis run 1000-times on the
whole circuit was reached. Methods 0-3 having constant
window sizes up to 6 gates naturally do not overcome the ABC
resynthesis of the whole circuit. However, when the circuits are
iteratively resynthesized by, e.g., by halves, better results are
reached in general. The Method 4 clearly justifies claims
presented in Section III. There is an apparent minimum for the
radius equal to 7. Increasing the window size involves a growth
in the resulting circuit size. The influence of the size of the
window on the result quality is discussed in the following
subsection.

G. Influence of the Window Size

The negative impact of large window sizes led us to the
following experiment: for a selected circuit and window
selection method, we have run the iterative resynthesis with
window sizes varied from 4 up to the full circuit size. Thus, the
latter border case represents the case where the whole circuit is
resynthesized in each iteration. The window selection method 0
(Random selection) was chosen for this experiment. The
number of iterations of each fixed-sized window resynthesis
process was 1000. First, we selected the e64 IWLS’93 circuit
[10], as a representative of circuits for which the resynthesis
by parts brought the highest improvement. The resulting graph
is shown in Figure 10. For small window sizes, the results
naturally lack in quality. There is an apparent minimum around
the window size 180. This is less than 28% of the original
circuit size. With increasing the window size, the result area
grows. This behavior corroborates our theory: resynthesis
by parts is better than resynthesis of the whole circuit.

Next, we have done the same experiment with the clip
circuit [10], a representative of circuits for which resynthesis
by parts failed (particularly, 1000 iterations of ABC have
reduced its 343 gates to 155, 1000 iterations of 50% Method 0
yielded 245 gates, which is a -37% difference). The graph is
shown in Figure 10. It can be observed, that for windows larger
than approx. 50%, the results substantially vary (ranging from

200 to 350), and have mostly random nature. Here it seems that
the failure of 50% resynthesis was caused by “a bad chance”,
or better, the 100% resynthesis process just hit the right
solution.

Graphs for other circuits and window selection methods are
similar in character to those in Figure 10.

0 100 200 300 400 500 600
0

100

200

300

400

500

600

e64

G
at

es

Window size

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

clip

G
at

es

Window size

Figure 10. Varying window sizes

The convergence curves of the iterative resynthesis of the
whole circuit and resynthesis by 50% parts, for the example
e64 and clip circuits, are shown in Figure 11. Here the reason
for the clip failure is apparent. In both cases, the 100% circuit
resynthesis process converges very quickly, while 50%
resynthesis process convergence is much slower. In the e64
case, 1000 iterations were enough for the latter process to reach
a better solution. Moreover, the convergence curve indicates
that the 50% resynthesis solution could be yet improved
in further iterations. For the clip benchmark, the curves are
much similar. ABC just converged to a “good” solution too
quickly.

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

e64

Resynthesis of 50%

Resynthesis of 100%

Ga
te

s

Iteration

0 200 400 600 800 1000
0

50

100

150

200

250

300

350
clip

Resynthesis of 50%

Resynthesis of 100%

G
at

es

Iteration

Figure 11. Convergence curves for e64 and clip

VII. DISCUSSION
The convergence curves shown in Figure 11 indicate that

the resynthesis by parts is a process quite different from the
resynthesis of the whole circuit. The convergence is much
slower, which sometimes leads to local minima avoidance and
better results. ABC aims at practical speed and must converge
much faster.

Even though the slow convergence of the proposed
resynthesis method could be a problem in practice, it offers a
way of improving the synthesis limits. For example, we have
found examples very difficult for scalable iterative synthesis,
including ABC [12]. One class of these examples consists
of ordinary circuits transformed into a really poor structure
[13]. The only working remedy is to use a canonical structure,
with all the scalability problems it brings. The presented
process can be seen as an attempt at a scalable solution for the
problem.

With this in mind, we can conjecture that partial resynthesis
performs better – even in terms of time – because splitting
of the circuit shields the optimization from a misleading
structure.

There is an important point in interpreting Figure 10: do the
curves indicate optimum absolute window size (which would
lead to a scalable process) or a relative one? Table VI suggests
that at least for Method 4 (Radius select), the size is absolute,
but more data are needed to confirm this hypothesis.

VIII. CONCLUSIONS
We have tested the iterative behavior of ABC synthesis

beyond the numbers employed by synthesis scripts. It appears
that doing the resynthesis by parts of the circuit slows the
convergence down, which, along with other phenomena, leads
to better results. A process can be constructed along these lines
that can be potentially more time-consuming but also much
more resistant to difficult examples.

ACKNOWLEDGEMENT
This research has been supported by MSMT under research

program MSM6840770014 and by the grant of the Czech
Grant Agency GA102/09/1668.

REFERENCES
[1] Berkeley Logic Synthesis and Verification Group, “ABC: A System for

Sequential Synthesis and Verification”,
http://www.eecs.berkeley.edu/~alanmi/abc/

[2] A. Mishchenko, S. Chatterjee, R. K. Brayton, "DAG-aware AIG
rewriting: a fresh look at combinational logic synthesis" In 43th Annual
ACM IEEE Design Automation Conference, San Francisco, CA, USA,
2006, pp. 532-535.

[3] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,
"Reducing structural bias in technology mapping", IEEE Trans. CAD,
Vol. 25(12), December 2006, pp. 2894-2903.

[4] A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton, "FRAIGs: A
unifying representation for logic synthesis and verification". ERL
Technical Report, EECS Dept., UC Berkeley, March 2005.

[5] R. K. Brayton et al., "SAT-based logic optimization and resynthesis", In
International Workshop on Logic Synthesis 2007 (IWLS), 2007, pp.
358-364.

[6] A. Mishchenko and R. Brayton, “Scalable logic synthesis using a simple
circuit structure”, Proc. IWLS ’06.

[7] R. Brayton and C. McMullen, “The decomposition and factorization of
Boolean expressions,” Proc. ISCAS ‘82, pp. 29-54.

[8] F. Brglez and H. Fujiwara. A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortan, Proc. of
International Symposium on Circuits and Systems, pp. 663-698, 1985.

[9] F. Brglez, D. Bryan and K. Kozminski. Combinational Profiles of
Sequential Benchmark Circuits, Proc. of International Symposium of
Circuits and Systems, pp. 1929-1934, 1989.

[10] K. McElvain: IWLS'93 Benchmark Set: Version 4.O, distributed as part
of the IWLS'93 benchmark distribution.

[11] V. Bertacco and M. Damiani, “Disjunctive decomposition of logic
functions”, in Proc. ICCAD’97, 1997, pp. 78-82.

[12] P. Fišer, J. Schmidt, “The Observed Role of Structure in Logic Synthesis
Examples”, Proc. 18th of International Workshop on Logic and
Synthesis 2009 (IWLS'09), Berkeley, California (USA), 31.7.-2.8.2009,
pp. 210-213

[13] J. Cong and K. Minkovich, “Optimality study of logic synthesis for
LUT-based FPGAs”, IEEE Trans. CAD, vol. 26, pp. 230–239, Feb.
2007.

