
The Case for a Balanced Decomposition Process

Petr Fišer, Jan Schmidt

Czech Technical University in Prague

email: fiserp@fel.cvut.cz, schmidt@fel.cvut.cz

Abstract—We present experiments with synthesis tools using
examples which are currently believed to be very hard, namely
the LEKU examples by Cong and Minkovich and parity
examples of our construction. In both cases, we found a way to
produce reasonable results with existing tools. We identify the
abilities that are crucial for achieving such results, and also
generalize them to avoid similar cases of poor performance in
future tools.

I. INTRODUCTION

Logic synthesis is believed to be a matured process, giving

results reasonably close to optimum. Yet, there are still

circuits which are very hard for any synthesis process. Cong

and Minkovich [1] published a methods for the construction

of combinational circuits with known optimal implementa-

tion (LEKO) or with known upper bound (LEKU). Here we

study the latter ones, as the gap between the upper bound

and obtained results are the largest. Our parity examples [2]

are another case of difficult circuits. Synthesis tools give

results an order or two bigger than a known upper bound.

We investigated the reasons of the observed poor per-

formance experimentally. We succeeded in finding tools

and procedures that give satisfactory (i.e. not orders of

magnitude worse) results, experimented further to obtain

clues what makes those tools and procedures successful.

First we describe our experimental methods. Secondly, ex-

periments with both sets of examples are described together

with the results obtained. Finally, we interpret the results

and give requirements for future tools.

II. EXPERIMENTAL METHODS

We used the following tools for decomposition: SIS [3],

ABC [4], BDS [5], and BiDecomp [6] chiefly because we

can understand, control and modify their internals.

The size of the resulting circuit was measured as the

number of 4-input LUTs, similarly to [8] and for similar rea-

sons, namely to obtain a unified measure for decomposition

algorithms working with different circuit representations.

Decomposition by SIS was done by running the

script.rugged (a part of the SIS distribution), followed by

tech decomp -o 2, to produce a network of two-input gates.

Mapping by SIS was performed by running the script

proposed in [3] for LUT synthesis, modified for mapping

into 4-LUTs. ABC decomposition was performed by running

the resyn2 script; ABC dsd was also tested in some exper-

iments. Mapping in ABC was done by the fpga command,

or by repeatedly running the command sequence strash,

balance, fpga, cleanup. In the case of BDS running on some

examples, we had to apply a heuristic measure preventing

the program from generating an infinite decomposition tree.

III. LEKU EXAMPLES

These examples were primarily designed to test the

technology mapping [1]. Many of mapping tools used in

the original experiments, however, use resynthesis at the

beginning of the mapping phase.

LEKU-CB examples are obtained using SIS by collapsing

and balancing the circuit, while LEKU-CD examples result

from collapsing and technology decomposition. For detailed

description, please refer to [1].

LEKU-CD and LEKU-CB examples based on the G25

circuit were used. G25 is known to have the upper bound

of 70 4-LUTs. The results from selected experiments are

presented in Table I. It can be seen that ABC managed to

synthesize G25 collapsed by ABC and MVSIS quite well,

synthesis of G25 collapsed by SIS yielded much worse

results (900 LUTs after resynthesis). However, when BDS

was run prior to the ABC LUT mapping, equal results of

113 LUTs were obtained in all cases. Even better results

were obtained by running the dsd ABC command prior to

the LUT mapping. The ABC dsd command generated the

same result in all cases. We did not succeed in collapsing

CD(G25) by MVSIS or SIS.

IV. PARITY EXAMPLES

Each parity example consists of an arbitrary circuit – the

core circuit – and a parity tree summing up all outputs of

the core circuit. The description of the entire circuit in SOP

form is the example. An upper bound on size can be obtained

as the sum of the core circuit size and the parity tree size

when synthesized separately.

Admittedly, this is not a very tight upper bound. Yet the

examples are easy to construct, and any synthesis process

with results outside such a loose upper bound is certainly

worth investigation.

A. Synthesis Experiments

We used MCNC benchmarks [11] and IWLS benchmarks

[12] as core circuits. alu1TWRG is a doubled and regularized

version of alu1. ‘Nastiness’ is the ratio of actual result to

Table I
SYNTHESIS RESULTS OBTAINED FOR DIFFERENT FORMS OF AN INPUT

Input SOP size Tools combination Result size
[terms] [LUTs]

ABC fpga 80
G25 – ABC resyn2 + fpga 72

ABC dsd + fpga 102
SIS 136

ABC fpga 280
G25 18905 ABC resyn2 + fpga 200
collapsed ABC dsd + fpga 102
by ABC BDS + ABC fpga 113

BiDecomp + ABC fpga 188
SIS failed

ABC fpga 232
G25 ABC resyn2 + fpga 170
collapsed 121500 ABC dsd + fpga 115
by MVSIS BDS + ABC fpga 113

SIS failed

ABC fpga 1140
G25 ABC resyn2 + fpga 900
collapsed 201816 ABC dsd + fpga 102
by SIS BDS + ABC fpga 113

SIS failed

G25 ABC fpga 1725
collapsed 14619 ABC resyn2 + fpga 1520
by ABC ABC dsd + fpga 102
+ Espresso BDS + ABC fpga 113

SIS failed

ABC fpga 286
ABC resyn2 + fpga 189

CB(G25) ABC dsd + fpga 102
– BDS + ABC fpga 245

BiDecomp + ABC fpga 180
SIS 424

ABC fpga 280
CB(G25) ABC resyn2 + fpga 200
collapsed 18905 ABC dsd + fpga 102
by ABC BDS + ABC fpga 113

BiDecomp + ABC fpga 188
SIS failed

ABC fpga 40k
ABC resyn2 + fpga 27k
ABC dsd + fpga 102

CD(G25) – BDS failed
BiDecomp failed
SIS failed

ABC fpga 280
CD(G25) ABC resyn2 + fpga 200
collapsed 18509 ABC dsd + fpga 102
by ABC BDS + ABC fpga 113

BiDecomp + ABC fpga 188
SIS failed

the upper bound. Nastiness greater than 1 indicates that

improvements in the synthesis process are possible.

We observed the performance of decomposition by SIS,

ABC, BDS, and BiDecomp combined with both SIS and

ABC mapping, using resynthesis in the mapping step in all

cases. Because of previous hints at circuit symmetry as one

source of difficulty, we also measured the symmetry using

ABC’s command print symm. In Figures 1 to 3, we can see

that BDS and BiDecomp produce better and often acceptable

results, however, we can also see examples that are difficult

for all tools. The data on the nastier examples are in Table II.

Apparently, there is no direct relationship between symmetry

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

A
c
tu

a
l
s
iz

e
 i
n
 L

U
T

s
 t
o
 u

p
p
e
r

b
o
u
n
d

Upper bound, LUTs

Figure 1. Parity examples decomposed and mapped by ABC

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

A
c
tu

a
l
s
iz

e
 i
n
 L

U
T

s
 t
o
 u

p
p
e
r

b
o
u
n
d

Upper bound, LUTs

Figure 2. Parity examples decomposed by BDS and mapped by ABC

and nastiness.

Table II
THE NASTINESS AND SYMMETRY OF SELECTED PARITY EXAMPLES

FOR THE MAIN TOOL SETS

Core Upper SIS ABC BDS BiDec. Sym-
Circuit Bound +ABC +ABC metry

alu1 11 38.40 36.80 1.09 1.64 0
alu2 36 6.30 3.40 1.28 2.31 0
alu4 481 3.25 3.25 1.11 2.33 0
ex7 55 21.10 14.05 1.55 5.60 0
misex3c 258 8.23 8.36 0.90 8.23 0
signet 121 – 160.40 37.70 – 0.1%
alu1TWRG 21 – 361.40 1.67 1.76 0
e64 0.03 0.03 0.03 0.03 97%
rd84 0.64 2.54 1.37 1.68 100%

B. Composition of Partial Algorithms

To get a better insight into the role played by decomposi-

tion algorithms comprising a single tool, we modified BDS

to switch the following algorithms on and off on command

[5]:

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

A
c
tu

a
l
s
iz

e
 i
n
 L

U
T

s
 t
o
 u

p
p
e
r

b
o
u
n
d

Upper bound, LUTs

Figure 3. Parity examples decomposed by BiDecomp and mapped by
ABC

• The decomposition using generalized dominators (GD),

a conjunctive/disjunctive decomposition.

• The branch decomposition (B HardCore, BHC), a MUX

evtl. XOR decomposition.

• The XOR decomposition (X HardCore, XHC).

All these algorithms expect the easy cases to have been

already sorted out by the simple-dominator decomposition,

which therefore cannot be switched off. The relative change

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

n
a
s
ti
n
e
s
s
 f
o
r

B
D

S
 w

it
h
o
u
t
B

H
C

nastiness for BDS

Figure 4. The influence of not using B HardCore (BHC) decomposition
in BDS

in nastiness over the entire set of benchmarks are presented

in Figures 4 and 5.

For alu1 and alu1TWRG, the ability to rediscover the

XOR tree is crucial, and the tree is actually present in

the result. For other examples, partial algorithms other than

XOR bi-decomposition seem to be principal (cf. BHC in

apex2). For some examples (apex2, ex7) the absence of an

algorithm (GD) can direct the process to a better result. All

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

n
a
s
ti
n
e
s
s
 f
o
r

B
D

S
 w

it
h
o
u
t
X

H
C

nastiness for BDS

Figure 5. The influence of not using XOR HardCore (XHC) decomposition
in BDS

Table III
THE INFLUENCE OF DISABLING PARTIAL ALGORITHMS IN BDS ON

NASTINESS

Core BDS GD BHC XHC
Circuit complete off off off

alu1 1.09 1.09 1.09 15.64
alu2 1.28 1.28 1.28 1.86
alu4 1.11 – 1.11 1.23
apex2 2.12 1.24 2.94 1.74
ex7 1.55 0.76 1.55 4.00
misex3c 0.90 1.03 0.91 1.37
signet 37.70 – 39.73 38.33
alu1TWRG 1.67 1.48 1.43 94.30

these influences, however, are not nearly as dramatic as the

absence of XOR decomposition in alu1 or ex7.

From all examples tested, signet seems to be singular as

no tested process is able to obtain a reasonable solution. Be-

sides the tools listed in Table II and described in Section II,

ABC scripts based on fraig and resyn were tried, with no

substantial improvement. Also, combination of BDS with

ABC resynthesis gave results similar to BDS alone.

V. INTERPRETATION AND DISCUSSION

For all examples (the parity example based on signet being

a notable exception) we found a way to obtain acceptable

solutions using existing tools. The two sets of experiments

also discovered two distinct reasons of subpar performance,

and therefore distinct requirements to future tools.

A. Abandoning the Original Structure

The results in Section III can be explained as follows.

The original G25 circuit description has a ‘good’ structure,

on which the synthesis can build. CD(G25), on the other

hand, has a misleading structure produced by tech decomp.

The tools, working incrementally from it, could not achieve

acceptable results. When a SOP description is used, or

BDD is the starting point, there is no structure preserved.

The tools were, apparently, able to rediscover an acceptable

circuit structure; they are actually better than concluded

in [1]. It is interesting to notice that FRAIG, the central

structure of ABC, failed to play the role of structure-neutral

representation despite its semi-canonicity.

Abandoning the structure of a circuit has two problems.

Firstly, any conversion to a canonical structure has exponen-

tial worst case complexity, which is not practical. However,

we obtained identical results from SOP inputs varying in size

by an order of magnitude. Therefore, a representation which

is not entirely canonical but can be generated in acceptable

time suffices.

Secondly, an algorithm deciding when to drop the struc-

ture is needed. It was suggested [9] to detect outputs

with common support but without common substructures

in the circuit. For this to work, a structure like FRAIG is

beneficiary. Currently, we do not have suitable examples to

test this hypothesis.

B. Generating Arbitrary Circuits

Using XOR bi-decomposition, we obtained not only one

acceptable solution, but multiple solutions of similar qual-

ity. None of them, however, was discovered without XOR

bi-decomposition. Those solutions therefore form a class,

characterized by the use of XOR operators and possibly by

some structural properties.

We are not aware of any decomposition algorithm pre-

cisely characterized by the class of circuit structures it can

produce. It is apparent that the broader the class is, the

less probable are cases of poor performance. From this it

follows that decomposition should treat AND and XOR

operators equally. All 2-argument Boolean operators can be

obtained using negation [10]. Let us call such a process

NPN-complete.

C. Improving Global Control

All decomposition tools actually use multiple decompo-

sition algorithms with top-level global control (e.g., [5]).

We disabled or enabled entire partial algorithms in our

experiments, which is a quite crude modification of the

control. Yet there were measurable benefits. To have more

partial algorithms (possibly running in parallel and/or on

different representations) tried at each step would make

the control less greedy, and, as in any other combinatorial

optimization process, would bring a chance for improved

results.

VI. CONCLUSIONS

The poor performance of existing synthesis tools on

CD(G25) and parity examples has distinct reasons. CD(G25)

needs the ability to disregard existing structure of the cir-

cuit. Parity examples require XOR decomposition and its

integration into top-level control.

To overcome the observed limitations, structure-neutral

circuit representation and efficient methods for manipulating

them are desirable. The tools should be able to produce as

broad a class of circuits as possible. Most importantly, the

operators derived from AND and from XOR by input and/or

output negation, shall be treated equally.

ACKNOWLEDGMENT

This research has been supported by MSMT under re-

search program MSM6840770014. We are also thankful to

dr. Minkovich for the LEKU circuits, dr. Steinbach for the

BiDecomp executable, and dr. Ciriani for the discussions of

their tools.

REFERENCES

[1] J. Cong and K. Minkovich, “Optimality study of logic
synthesis for LUT-based FPGAs”, IEEE Trans. CAD, vol.
26, pp. 230–239, Feb. 2007. Postprint available free at:
http://repositories.cdlib.org/postprints/2376.

[2] P. Fišer and J. Schmidt, “Small But Nasty Logic Synthesis
Examples”, in Proc. 8th. Int. Workshop on Boolean Problems,
2008, Freiberg, p. 183.

[3] E. Sentovitch, K. Singh et al., “SIS: A System for sequential
circuit synthesis”, Univ. California, Berkeley, Tech. Rep.,
UCB/ERL M92/41, May 1992.

[4] Berkeley Logic Synthesis and Verification Group, “ABC: A
System for Sequential Synthesis and Verification”. [Online].
Available: http://www.eecs.berkeley.edu/ alanmi/abc/.

[5] C. Yang, M. Cieselski, V. Singhal, “BDS: A BDD-Based
Logic Optimization System”, in Proc. 37th DAC’00, 2000,
p. 92.

[6] A. Mishchenko, B. Steinbach, M. Perkowski, “An Algorithm
for Bi-Decomposition of Logic Functions”, in Proc. 38th
DAC’01, 2001, p. 103.

[7] A. Bernasconi, V. Ciriani, R. Drechsler, “Logic Minimization
and Testability of 2-SPP Networks”, IEEE Trans. CAD, vol.
27, pp. 1100–1202, July. 2008.

[8] A. Mishchenko, S. Chatterjee, R. Brayton, “DAG-Aware
AIG Rewriting – A Fresh Look at Combinational Logic
Synthesis”, in Proc. 43rd DAC’06, 2006.

[9] A review of this contribution.

[10] M. A. Harrison, Introduction to Switching and Automata
Theory, McGraw-Hill, 1965.

[11] S. Yang, “Logic Synthesis and Optimization Benchmarks
User Guide”, MCNC, Technical Report 1991-IWLS-UG-
Saeyang, January, 1991.

[12] K. McElvain, “IWLS’93 Benchmark Set: Version 4.0”, dis-
tributed as part of the IWLS’93 benchmark distribution

