
The Observed Role of Structure in Logic Synthesis
Examples

Petr Fišer, Jan Schmidt
Czech Technical University in Prague

Faculty of Information Technologies, Dept. of Digital Design
e-mail: fiserp@fit.cvut.cz, schmidt@fit.cvut.cz

Abstract—Logic synthesis Examples with Known Upper bound
by Cong and Minkovich are circuits hard to synthesize and map
to look-up tables. During experiments with the synthesis of these
examples, a way to obtain reasonable results was discovered. The
crucial step is to abandon the circuit structure, and to describe
the circuit independently of its structure. The feasibility of taking
such an approach in general is then discussed.

I. INTRODUCTION

An RTL circuit description is presently the standard start-
ing point for an ASIC and FPGA industrial design. Logic
synthesis, as the first step in RTL work flow, is believed
to be a matured process, giving results reasonably close to
optimum. Yet there are cases where existing synthesis tools
perform provably poorly in terms of area and speed. Unless
we understand the reasons for such a poor performance, we
must expect it to happen in any practical circuit.

One of the most widely known example set are Logic
Examples with Known Optimum (LEKO) and with Known
Upper Bound (LEKU) by Cong and Minkovich [1]. Circuit
synthesized by the tested tools have sometimes more than 500
times the expected size. The authors conjecture that, in the case
of LEKU, contemporary logic synthesis tools are incapable of
rediscovering the original structure of the circuit.

In this paper we focus entirely on these published examples.
Their relevance to practice is discussed in [1]. Our primary
aim is to understand the reasons why these examples are so
hard to stynthesize properly, therefore we present the most
straightforward way to achieve acceptable results; other more
elegant and better scalable methods can be devised later.

We have discovered that the crucial step is to abandon the
existing structure of the circuit. We have also found that many
academic tools can structure the circuit closely enough to the
optimum. In this respect, the situation is better than originally
believed.

We of course cannot claim that this is the only method
applicable. Moreover, we can only guess why an ill-devised
structure of the circuit can prevent synthesis tools from decent
performance.

To make the paper self-supporting to a degree, we give a
brief overview of the examples and their construction. We
then describe the synthesis experiments with some of the
examples. We feel that the results allow us to formulate
plausible conjectures, which are presented next.

Boolean
network

Boolean
network

circuit

circuitcore

replication

LEKU comparison

LEKO comparison

actual #LUTminimum #LUT

proof

actual #LUT

circuit

SOP

collapse
and decompose/balance

SUE

SUE

Fig. 1. Circuit construction and data flow of Cong and Minkovich for a SUE
(Synthesis under evaluation)

II. RELATED WORK

We were surprised to find no substantial response to [1]
from the research community. Although the paper is easily ac-
cessible and frequently cited, the only published reactions are
early press releases from EDA industry. Hence, we understand
our observations to be the first steps towards understanding the
problem.

III. LOGIC SYNTHESIS EXAMPLES WITH A KNOWN UPPER
BOUND

Logic synthesis Examples with Known Optimum (LEKO)
are constructed by replicating a relatively small circuit with
n inputs and n outputs, given as a Boolean network of two-
input nodes. Optimum mapping into look-up tables with 4
inputs (4-LUTs) is known. After the circuit multiplication,
there is a path from each input to each output. It has been
proven that the optimum mapping of the entire circuit retains
the mapping of the core circuit. Hence, the optimum multiplied
circuit size is equal to the respective multiple of the original
circuit size. The resulting Boolean network can be used to
evaluate the performance of LUT mappers against the proven
optimum. The network can be also converted into a Sum-of-
Product (SOP) description and used to evaluate any synthesis
process capable of producing a 4-LUT mapping (Fig. 1). In
this case, the proven mapping is only an upper bound of the
circuit size, hence this type of evaluation circuits is referred
to as Logic synthesis Examples with Known Upper bounds
(LEKU). LEKU-CB examples are obtained using ABC [3] by



collapsing and balancing the circuit (by using ABC commands
collapse and balance). On the other hand, LEKU-CD exam-
ples result from collapsing and technology decomposition by
using SIS [2] commands collapse and tech decomp.

IV. EXPERIMENTS

LEKU-CD and LEKU-CB examples based on the G25
circuit were used, as they suffice to demonstrate the quality
of the tested tools. The G25 circuit is known to have the
upper bound of 70 4-LUTs. The CB version of the G25
circuit (CB(G25)) has 814 two-input gates, while CD(G25)
is substantially larger, having 1167054 two-input gates.

The circuits are primarily meant as mapping examples. In
a ‘textbook’ interpretation, mapping operates on a structure
(represented by a graph) and produces a structure composed
of look-up tables. Such processes are frequently based on
FlowMap [8] or bin packing [7] algorithms.

In the original experiments, however, commercial tools were
used, where the mapping phase cannot be separated from other
logic synthesis steps. Moreover, even ABC [3] and SIS [2]
are built this way to a degree; their mapping commands or
recommended mapping scripts include substantial amount of
resynthesis. Therefore, we understand the examples as general
logic synthesis examples.

A. Experimental Setting

We used the following tools for decomposition: SIS [2],
ABC [3], BDS [4], and BiDecomp [5]. Complying with
respective licenses, we cannot present results obtained from
commercial tools.

The principal property of the result we were interested
in was whether a particular result is acceptable or shall
be considered unacceptable (for example, multiple orders of
magnitude larger than necessary), as presented, e.g., in [1]. For
such an observation, almost any circuit measure suffices, and
it is not very important whether the tool optimizes for speed
or area.

The size of the resulting circuit was therefore measured as
the number of 4-input LUTs, similarly to [10] and for similar
reasons, namely to obtain a unified measure for decomposition
algorithms working with different circuit representations.

Mapping by SIS was performed by running the script
proposed in [2] for LUT synthesis, modified for mapping into
4-LUTs.

ABC decomposition was performed by running the resyn2
script. The ABC dsd command [6] was also used to perform
a disjoint-support decomposition.

Mapping in ABC was done by the fpga command, or by
repeatedly running the command sequence strash, balance,
fpga, cleanup.

In the case of BDS running on some examples, we had
to apply a heuristic measure preventing the program from
generating an infinite decomposition tree. We estimate that
performance up to 10% better could be achieved with ideal
cycle prevention.

B. Experiments

The first series of experiments was to merely synthesize the
G25 circuit by SIS, ABC, and BDS with ABC mapping in
the above described configurations. The size of the circuits
obtained varied from 72 (ABC with resynthesis) to 136 (SIS)
LUTs. BDS decomposition did not improve the result.

The second series of experiments aimed at the reproduction
of the results presented in [1]. Prohibitively large circuits were
obtained for the CD(G25) circuit. Repeated application of the
FPGA mapping command sequence (see IV-A) did not yield
results better than roughly 37,000 LUTs (more than 520-times
the optimum). Resynthesis did not significantly help as well.
We were unable to process CD(G25) by BDS and BiDecomp,
since both applications crashed for this example circuit. The
CB(G25) circuit apparently was problematic for all synthesis
processes, however, the obtained result were no more than
2.7-times the optimum, thus acceptable.

The third series of experiments was performed on G25 in a
SOP form. Various tools were used to obtain the SOP in the
PLA format: ABC, MVSIS, SIS. The SOP obtained by ABC
had roughly 19,000 terms and 14,000 terms after minimization
with Espresso. The other collapsing tools gave SOPs roughly
ten times larger than ABC. All these SOPs were synthesized
by ABC and the combination of BDS and ABC in the above
described configurations. In some cases, BiDecomp with ABC
mapping was also tested. In all cases, both BDS with ABC
and BiDecomp with ABC were better than ABC alone.

The fourth series also used SOP forms of the circuits, in
this case the SOPs of CB(G25) and CD(G25). Again, all the
SOPs were synthesized as in the previous series.

C. Results

The results from selected experiments are presented in
Table I. It can be seen that ABC managed to synthesize G25
collapsed by ABC and MVSIS quite well, synthesis of G25
collapsed by SIS yielded much worse results (900 LUTs after
resynthesis). However, when BDS was run prior to the ABC
LUT mapping, equal results of 113 LUTs were obtained in all
cases. Even better results were obtained by running the dsd
ABC command prior to the LUT mapping.

Surprising results were obtained from pre-processing the
collapsed G25 minimized by Espresso. Excessively large re-
sults were obtained by ABC (1520 LUTs after resynthesis).
However, BDS and ABC dsd, again, were able to rediscover
the circuit structure. Espresso was unable to minimize the
circuits collapsed by MVSIS and SIS, hence those results are
not presented.

Notice, that when the CB(G25) circuit was collapsed by
ABC, the resulting PLA was equal to the PLA of the collapsed
original G25, and thus the synthesis results were equal as well.
Very similar results were obtained by collapsing CB(G25) by
MVSIS and SIS, hence the results are not presented.

Similarly, when CD(G25) was collapsed by ABC, a PLA of
a very similar size to the collapsed original G25 was produced.
At the end, synthesis results were equal to the results obtained
from the collapsed G25. The ABC dsd command generated the



TABLE I
SYNTHESIS RESULTS OBTAINED FOR DIFFERENT FORMS OF AN INPUT

Input SOP size Tools combination Result size
[terms] [LUTs]

[literals]
ABC fpga 80

G25 – ABC resyn2 + fpga 72
ABC dsd + fpga 102
SIS 136
ABC fpga 280

G25 18905 ABC resyn2 + fpga 200
collapsed 218116 ABC dsd + fpga 102
by ABC BDS + ABC fpga 113

BiDecomp + ABC fpga 188
SIS failed
ABC fpga 232

G25 ABC resyn2 + fpga 170
collapsed 121500 ABC dsd + fpga 115
by MVSIS 1755530 BDS + ABC fpga 113

SIS failed
ABC fpga 1140

G25 ABC resyn2 + fpga 900
collapsed 201816 ABC dsd + fpga 102
by SIS 3150049 BDS + ABC fpga 113

SIS failed
G25 ABC fpga 1725
collapsed 14619 ABC resyn2 + fpga 1520
by ABC 248967 ABC dsd + fpga 102
+ Espresso BDS + ABC fpga 113

SIS failed
ABC fpga 286
ABC resyn2 + fpga 189

CB(G25) ABC dsd + fpga 102
– BDS + ABC fpga 245

BiDecomp + ABC fpga 180
SIS 424
ABC fpga 280

CB(G25) ABC resyn2 + fpga 200
collapsed 18905 ABC dsd + fpga 102
by ABC 218116 BDS + ABC fpga 113

BiDecomp + ABC fpga 188
SIS failed
ABC fpga 40k
ABC resyn2 + fpga 27k
ABC dsd + fpga 102

CD(G25) – BDS failed
BiDecomp failed
SIS failed
ABC fpga 280

CD(G25) ABC resyn2 + fpga 200
collapsed 18509 ABC dsd + fpga 102
by ABC 212206 BDS + ABC fpga 113

BiDecomp + ABC fpga 188
SIS failed

same result as in all the previous cases. We did not succeed
in collapsing CD(G25) by MVSIS or SIS.

Figure 2 summarizes the data flow and main results from
the experiments. Where multiple results were obtained using
different tools and/or different versions of input data, a range
is indicated in Figure 2. Notice that the number of literals
generally follows the number of terms. Thew only exception
is G25 minimized by Espresso, which decreased the number
of terms but increased the number of literals.

V. INTERPRETATION AND DISCUSSION

First of all, we did find a way to map CD(G25) with a
reasonable quality (147%) to LUTs using existing tools.

The original G25 description, CB(G25), CD(G25), and the
derived SOPs specify identical sets of Boolean functions; the

collapse
and decompose

circuitG25

SOP
14619..
..201816

terms

CB(G25)

SOP
18509
terms

102
LUTs

BDD

CD(G25)

collapse
and balancecollapse

113..1784
LUTs

72..133
LUTs

BDD

LUTs
102

collapsecollapse

LUTs
103..188287..347

LUTs
113..213

LUTs

SOP

terms
18905

37k..84k
LUTs

102
LUTs

BDD

SIS

ABC

BDS+ABC

BDS+SIS

all
tools

all
tools

all
tools

ABC
dsd

dsd
ABCSIS

BDS+ABC

ABC

ABCdsd
ABC

Fig. 2. A summary of experiments with LEKU examples.

description

structured
description

structuredSOP

description

structured
SOP

original construction of CD(G25) and CB(G25)

our experiments

SOP

SOP

‘good’ structure no structure ‘bad’ structure

CB(G25)
ballance

collapse

CD(G25)

collapse

tech_decomp

collapse

 BDD ABC dsd input

G25

collapse

(for comparison

purposes)

Fig. 3. The structure of inputs to the experiments

transformations give them ‘good’, ’wiped’ or ‘bad’ structure.
The designed, ‘good’ structure is preserved in G25. It is wiped
out in the SOP or in a BDD, a non-optimal structure is
introduced by ballance and a yet worse structure in CD(G25)
by tech decomp (Figure 3).

As can be seen from Figure 2, synthesis from the ’good’
structure is without problems for most of the tools. This agrees
with findings in [1]. The ABC command fpga (with or without
resyn2) produces worse results from a SOP minimized by
Espresso; the small increase in literal count can be hardly
identified as the cause.

In the case of ’wiped’ structure, satisfactory results can be



still obtained from CD(G25) in all experiments. The ABC
command dsd [6] was able to obtain satisfactory results in
all the explored cases; the obtained result was only 1.46-times
the optimum. We believe this is due to using a global BDD
data structure to represent the decomposed function. This way,
the original circuit structure is also eliminated, similarly to the
SOP form.

’Bad’ structure of the circuit invariantly leads to poor results
as in the original experiments by Cong and Minkovich.

Achieving relatively good results from the ’wiped’ structure
also means that the tools have the ability to rediscover a
reasonable structure of the circuit, in disagreement with [1].
The term ‘reasonable’ here of course relates to the best
solution known, which is the upper bound of the LEKU
example.

‘Being free of circuit structure’, when interpreted rigidly,
means employing some canonical representation of the circuit.
The sum of products is certainly not one. However, it plays that
role. From SOPs of different sizes (201816 and 18905 terms,
respectively), we obtained the same results. The BDD used
by ABC dsd is canonical with respect to variable ordering,
which we believe to carry little information about the former
structure of the circuit.

We see that a varying structural description influences the
result greatly, while a varying SOP size does not. It is not
surprising; the SOP has always been considered to capture the
behavior only and the algorithms are constructed that way.
On the other hand, there are – and always were – reasons to
preserve the structural description, at least as a starting point
of the optimization. Perhaps the most practical reason is that
a human designer tends to produce structures that make sense.

We have found that discarding an inappropriate structure
cures the problems in synthesis of the LEKU examples. Of
course, we do not claim this to be a panacea. There are two
kinds of problems: in throwing away the structure and in
discovering a better one.

A practical synthesis tool shall predict when discarding the
structure is necessary or profitable, being able to distinguish an
inappropriate circuit structure from a reasonable one. Further,
no Boolean function representation is known with worst case
size better than exponential in the number of inputs, which
means that the construction can fail anyway.

There are indications that the situation in rediscovering
a good structure is not hopeless. Many – especially older
– synthesis benchmarks are SOP-based, and therefore the
algorithms are prepared to work from a neutral description.
Potential problems with large circuits seems to lie in parallel
with the problem of large circuits representations. There is
the possibility, however, that not only the optimal solution,
but also all acceptable suboptimum solutions have a structure
that cannot result from algorithms used in that particular case.

When we attribute the difficulty of LEKU examples to a
misleading structure, we also say the problem can occur in
practice. There is no guarantee that, e.g., a high-level synthesis
tool would produce a structure as misleading as that one
generated by tech decomp from a SOP. From this point of
view, G25 is a practical circuit.

VI. CONCLUSIONS

In contrast to the results presented in [1], we have shown
that the Logic Synthesis Examples with Known Upper Bound
can be synthesized into a circuit of a reasonable size using
existing academic tools. The crux is to abandon the structure
contained in the CB(G25) and CD(G25) circuit description.
The sum-of-products can be used as a neutral circuit descrip-
tion. The neutrality lies not only in actual loss of structural
information, but also in the fact that the tools understand it as a
neutral description. To apply such an approach, synthesis tools
shall know when abandoning the structure is profitable, must
be able to construct some kind of neutral description, and must
construct a suboptimum structure from such a description.
Synthesis problems similar to the analyzed one can recur in
practice whenever a tool or a user produce a circuit with an
inappropriate structure.

ACKNOWLEDGMENT

This research has been supported by MSMT under research
program MSM6840770014 and GA102/09/1668. We are also
thankful to dr. Minkovich for the LEKU circuits, and dr.
Steinbach for the BiDecomp executable.

REFERENCES

[1] J. Cong and K. Minkovich, “Optimality study of logic synthesis for
LUT-based FPGAs”, IEEE Trans. CAD, vol. 26, pp. 230–239, Feb. 2007.
Postprint available free at: http://repositories.cdlib.org/postprints/2376.

[2] E. Sentovitch, K. Singh et al., “SIS: A System for sequential circuit
synthesis”, Univ. California, Berkeley, Tech. Rep., UCB/ERL M92/41,
May 1992.

[3] Berkeley Logic Synthesis and Verification Group, “ABC: A Sys-
tem for Sequential Synthesis and Verification”. [Online]. Available:
http://www.eecs.berkeley.edu/ alanmi/abc/.

[4] C. Yang, M. Cieselski, V. Singhal, “BDS: A BDD-Based Logic Opti-
mization System”, in Proc. 37th DAC’00, 2000, p. 92.

[5] A. Mishchenko, B. Steinbach, M. Perkowski, “An Algorithm for Bi-
Decomposition of Logic Functions”, in Proc. 38th DAC’01, 2001, p.
103.

[6] V. Bertacco and M. Damiani, “Disjunctive decomposition of logic
functions”, in Proc. ICCAD’97, 1997, pp. 78-82.

[7] R. J. Francis, J. Rose, and Z. Vranesic, “Technology mapping of lookup
table-based FPGAs for performance,” in IEEE/ACM International Con-
ference on Computer-Aided Design, 1991, pp. 568–571.

[8] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA designs”,
IEEE Trans. CAD, Vol. 13, Jan 1994, pp. 1–12.

[9] A. Mishchenko, S. Chatterjee, R. Brayton, “Improvements to Technol-
ogy Mapping for LUT-Based FPGAs”, in Proc. 43rd FPGA’06, 2006.

[10] A. Mishchenko, S. Chatterjee, R. Brayton, “DAG-Aware AIG Rewriting
– A Fresh Look at Combinational Logic Synthesis”, in Proc. 43rd
DAC’06, 2006.


