Multi-Level Implementation of Asynchronous Logic Usng Two-Level Nodes

Igor Lemberski*, Petr FiSer**

* Baltic International Academy, Riga, Latvia (e-hagor.Lemberski@bsa.edu.lv)
** Czech Technical University in Prague, FIT, Depft.Digital Design, Prague, Czech Republic
(e-mail: fiserp@fit.cvut.cz)

Abstract. A novel synthesis method of a dual-rail asynchrenowilti-level logic is proposed. The logic is
implemented as a monotonous multi-level network naihimized AND-OR nodes together with the
completion detection logic. Each node is a hazesd-ktructure. It is achieved based on the prothrot
minimization constraint that the authors have fdated and proved in their previous paper. The MGG
ISCAS benchmark sets were processed and the areehead with respect to the synchronous
implementation was evaluated. Then the implemeantatomplexity of the proposed method and a state-of
the-art method based on the duplication of eveng geas compared. A considerable improvement was

obtained.

Keywords asynchronous logic, decomposition, multi-level ierpkntation, Boolean network, node

1. INTRODUCTION

The asynchronous logic is classified dependinghennhode
of interaction with the environment. In thaput-output
mode the environment is allowed to change the inpatest

once the new output state is produced. There is no

assumption about the internal signals and the enmient is
allowed to change the input state before the dirgsi
stabilized in response to the previous input stétethe
fundamental modehe logic operates based on the following
discipline: the environment changes the input stetee the
output state has changed in response to the cumguit state
and each gate inside the circuit is stable. Botlsigie
methodologies assume either bounded (a maximalevislu
known) or unbounded (a maximal value is unknownfega
and wire delays.

In case of the fundamental mode (accepted in e with
the bounded delaysghe moment when the environment may
change the input state is estimated based on thst wase
propagation delay [Unger, 1969]. Within this modehly
one input signal can be changed at a time. In [Mkwi993],

the generalized fundamental mode was proposed where

multiple input changes are allowed during a narriwe
interval. For such a mode, the method of hazarel-txeo-
level implementation was proposed [Nowick, 1995heT
multi-level (hazard not increasing) transformatierapplied
to optimize the implementation [Unger, 1969 and ¢un
1992]. The methods of hazard-free technology mappiere
proposed in [Beerel, 1996 and Siegel, 1993].

In case of thenbounded delayshe circuit should be capable
to recognize the moment when input and output sthsve
changed. For this purpose, both inputs and outpués
implemented using a dual-rail encoding. To changénaut
state the environment should reset it first (chaogso called

space state). The output state resets too, asila iefter that
the environment sets a new input state. It imphesew
output state. The multi-level implementations af thual—rail
asynchronous logic were proposed in [Cortadell&®42@nd
Ligthart, 2000]. These methods are based on thialigircuit
decomposition into simple (OR, AND, NOR, NAND, étc.
two-input gates. Further, each gate is mapped DifdS
[Sparsg, 1992] or into a so calltiteshold gatdLigthart,
2000]. As a result, the circuit total complexityvisry high.
In [Cortadella, 2004], each simple gate is doulite@nsure
monotonicityand as a result hazard-free implementation
In [Lemberski, 2009], a two-level (NOR-NOR, NAND-
NAND) dual-rail asynchronous logic suitable for rpam
onto the conventional two-level structure was afferUsing
this result, we propose a method that is basechennitial
logic function decomposition into a single-rail Bean
network, where each node is represented as a webmgic
and the network is further transformation into alehail one
to ensure monotonicity and hazard-free implementation.
Although our approach slightly increases the cowipte
of the functional logic, the completion detectiongitc
complexity reduces significantly since the numbtnodes
that should be supplied with the completion detecis less
than in [Cortadella, 2004]. As a result, consid&rab
improvement in the sense of the total complexitytisained.

2. PRELIMINARIES

2.1. Input/Output Dual-Rail Encoding

Let F = {f, &, ..., §} be an asynchronous multi-output
function ofninputsX: X = {X;, %, ... , ¥} andq outputs. Let
Y={yu Yo, .0, Yy f1i, B ..., § OY, m > g, be aset
of single output Boolean nodes obtained as a resfula
decomposition. Each node functigndepends on givenor
less number on inputy, = {z.1, Z2, --- , &} | Vel <10 Z1,



Zeo, ..., & J{X [JY}and can be implemented as a two-level
(AND-OR) complex gate (Fig. 1). We call it as agi@rail
multi-level representation

Generally, an asynchronous
1) to recognize the moment when a new input state
(generated by the environment) appears on thesrgnd the
moment when the circuit generates a new output stathe
response tothe input one; 2) to notify the enviment
onnew input and output states. After receiving the
notification, the environment can generate the riaput
state. To solve this problem, inputs/outputs arplé@mented
using a dual-rail encoding.

Fig. 1 Single—rail multi-level Boolean network

In dual-rail logic, it is supposed that each priynaput from
the setX and output node from the s¥tmay be in one
of these three states: states 1, 0 (so called ngrkiates) or
undefined (space state). To implement a three-gtatg x;,
i=1,2, ...,ntwo signalsx” andx©® are introduced, where
x® =1 andx© = 0, if xis in state 1x = 0 andx® = 1 if
x is in state 0x® = x© = 0 if x is in the space state. The
combination x = x©@ = 1 is not allowed. Similarly,
to implement a three-state node function, the foncy.,
c=1,2,..,tshould be represented in both posit® and
negativey.? forms. Ify.? = 1,y.” = 0, then the functioy,
is in state 1, ify.? =0, y.” = 1, then the functiory, is
in state 0, ify,(1) = y.(0) = 0, then functiory, is in the space
state. The combinatioy,(1) = y,(0) = 1 is not allowed.
To change the input state, the environment shagdtrit first
to the space state and after that set it to a projeking
state. In the reset phase, the output state changesthe
working state to the space one and in the set pi@saew
output state is recognized.

As a result of the decomposition, each functignis
represented as a paif; - (Yo, y.?), wherey.", y.? describe
ON-, OFF- setsy(”’ can be generated as a complement of the
ON-set). After that each node (both ON- and OFe&fs)scan

be minimized to reduce the implementation cost.
In [Lemberski, 2009], we formulated a minimization
constraint that the two-level logic should satig€yensure a

logic should be capable:

hazard-free implementation. Namely, each funcyioshould

be represented as a pair of minimized Sum-of-Prsduc
(SoP) forms:y.= (Y, Y.9), whereY®, Y9 are ON- ,
OFF- sets of product termstin t; = &, for O(t, t): t,

t 0 Y, and t;, t; O Y. A sum of the orthogonal products
is called a Disjoint-Sum-Of-Products (DSOP). In ftadella,
2004], conditions are formulated under which a Baal
network can be implemented as hazard-free logice Th
conditions are based on each nodenotonicity and hazard-
free implementation.

3. STRUCTURE OFMULTI-LEVEL IMPLEMENTATION USING
CoMPLEX NODES

3.1. Monotonicity and Hazard-Free

Our structure is based on the concept of rti@notonicity
of the nodes introduced in [Cortadella, 2004] ark t
condition of each two-level (AND-OR) nodeazard-free
implementation proposed in [Lemberski, 2009].

Monotonicity.A nodeN. generating the functioy is positive

if for each inputz in its local fan-in it holds the following: if
the input z. is positive (negative) then the function is
positive (negative). A nodé&\. generating functiony; is
negativeif for each inputz in its local fan-in it holds the
following: if the input z, is positive (negative) then the
functiony; is negative (positive). The nodig is monotonic if
it is eitherpositiveor negative

The node monotonicity is easily achieved by thel-dai&
encoding.

Hazard-free implementatioihe Boolean network is hazard-
free if each node is hazard-free.

The hazard-free implementation of the two-level ifpes
dual-rail structures based on the formulated mination
condition: product terms implementing two-level ANER
logic should be mutually orthogonal [Lemberski, 2D0

Note that in [Cortadella, 2004], the Boolean netwarith
simple nodes (AND, OR, NAND gates, etc.) was coersd.
For such a network, the node monotonicity is thes on
requirement that guarantees its (and as a resuheowhole
network) hazard-free implementation. However, ihat the
case for the network with complex AND-OR nodes, rehe
the additional condition (to ensure the node haharel
implementation) should be formulated.

3.2. Basic Structure for Node Implementation

The implementation was proposed in [Lemberski, 2009
for multi-output logic (in our case, it should be
reduced to a single-output one). It consists of thtocks
(Fig. 2): a two-level AND-OR and the completion etgton
logic. Each AND gate implements a product term iolei
after the minimization (remember, only the minintiaa that



produces mutually orthogonal terms is allowed). HEac

product term is described by the set)S(Std)| < n, where
S() is a set of termy literals (input signalsk =1, 2 ,.., p.
Since logic with the unbounded delays is supposeuh
needs a signal to indicate the moment when botatsnand
outputs are in the proper (working or space) state. this
purpose, the completion detection logic is intraticOnce
all inputs and outputs are in the working stateanse either
xPor x© andf.? orf.? are in the state 1= 1, 2, ... , n,
c=1, 2, ..., §then the signdD is going up too. To change
the input state, both inputs and outputs shoultbgbe space
state P = x@ = £® =19 =0). It results in the sign@
going down. Onc® = 0, then the new input can be set up.

£01)

f,(0)

fe( 1)

f.(0)

fo(1)

£,(0)

Fig. 2. Dual-rail two-level node
3.3.  Multi-Level Network

Given an arbitrary multi-level Boolean network (Fig. The
network is transformed into the dual-rail one basedhe
rules described in Section 2. Then, each pair afeso
representing a function in both its positive andatie form
is mapped into the structure depicted in Fig. 2e Tulti-
level structure consists of two blocks (Fig. 3)e flanctional
one implemented as a multi-level logic with twod&AND-
OR single-output nodes with a fan-in limited tBk
(remember, once given a single—rail node, thenual-dail
each input is represented as two signals) anddhgletion
detection logic that is obtained by merging the plation
detection logic of all two-level nodes. The comijaet
detection should indicate the proper state (workingpace)
of not only the network primary inputs and outphtg node

outputs as well. The logic is based ¢mrm) C-elements
together with(n+m) two-input OR gates, whemeis number
of primary inputs andn the number of nodes (including the
ones generating primary outputs). The completion detection
signalD (Fig. 3) is going up, whehoth primary inputs and
node outputs are all in a working state and goiogrdwhen
the signals mentioned are all in a space state.

Fig. 3. Dual-rail multi-level network

4. SYNTHESISPROCEDURE

The process of the synthesis of the multi-levell-daik logic
with AND-OR nodes is based on the tools ABC [Beekgl
Espresso [Brayton, 1984] and DSOP [Bernasconi, 2008
First, an ABC script is applied tothe initial aiit
representation to obtain a multi-level single-r&ibolean
network with the fan-in of each node limited koFor this,

we have decided to employ a LUT mapping synthesis
process, since each LUT is actually represented siagle-
output AND-OR node with a limited number of inpits the
ABC output format).

We have used a sequence of ABC commands recommended
for the LUT synthesis in the ABC reference guideisT
command sequence was repeated 4-times, to obtdier be
results.

strash
balance
fpga—-K k

Fig. 4. The LUT decomposition script. Substitkter the
maximum node fan-in

Then, the network is transformed into the dual-rail
representation, by computing a complement of eamthen
(using the “sharp” operator [Brayton, 1984]). Aseault, the
number of nodes is doubled, while now the node tfans
may depend or2k inputs or less (since a positive and



negative signal is represented as a separate RaRt, the
minimization is performed (using Espresso) for @leF—set
nodes to obtain the minimized functiog= (Y., Y.9),
v 0 Y v@ 0 Y9 Finally, we run DSOP [Bernasconi,
2008] for all the nodes, to obtain mutually orthogbterms.

5. EXPERIMENTAL RESULTS

5.1. Experimental background

We have processed the MCNC [Yang, 1991] and ISCAS
[Brglez, 1985, 1989] sets of benchmarks, 228 discui
altogether. We evaluate the complexity (expresseti@ gate
equivalents (GEs) number [De Micheli, 1994]) of the
proposed asynchronous implementation of theseitsrcu

For the structure proposed, we estimate the coritplekthe
functional network and the completion detection idog
separately. Then, the total complexity is calculafeo avoid
additional inverters and therefore decrease the
implementation complexity, we use negative (NAND-
NAND) gates instead of AND-OR ones in the functiona
block and NOR gates instead of OR ones in the cetiopl
detection logic. As a result, the signal D = 1 (D)7when all
inputs and outputs are in the space (working) state
Duplicated terms are implemented only once. We ssp@
technology independent synthesis (fan-ins of negatiates
and C-element are not limited). The gate complexity
estimated as follows: aminput NAND or NOR gate requires
0.51 GEs [Sparsg, 2001]. To implement antr)-input
C-element, fi+m+1) GEs are required. To implementm
two-input NOR gates, 0.6¢m) GEs are required. Totally,
(1.5n+1.5m+1) GEs are required toimplement the
completion detection logic for an-input multi-level logic
with m nodes.

Note, that the complexity of the sequential logiemory
(flip-flops, latches) is not included in the result

5.2. Selection of k

The first issue addressed in the experiments isropep

selection ofk (maximum node fan-in). For lardes, there

often arise problems with computing complementsthef

nodes, for an exponential complexity of the operatiMore

importantly, nodes with a high fan-in are difficuid be

implemented in technology. On the other hand, srkiall

induce more nodes, which makes the completion tletec
logic more complex.

A similar problem has been encountered in the desfghe
FPGA fabrics, when deciding for the optimum looktaples
(LUT) size [Gao, 2005]. It has been found that iempénting
the design using 4- or 5- input LUTs brings moshddfis.
We have also reproduced this observation by peifm
numerous experiments. An example is shown in Figob
the 9sym MCNC benchmark circuit. We have synthesized
this circuit using the LUT-decomposition script €séig. 4),

for k varying from 2 to 20. The total complexity of the
asynchronous logic (i.e., the functional logic withe
completion detection) was measured. A deep global
minimum can be observed fkr= 4. Very similar results are
obtained from a vast majority of other benchmarkugts, for
both decomposition scripts. For this reason, alftillowing
experiments will be performed fér= 4.

4000
3500 A

3000 +
2500 A

GEs

2000 A

1500
1000
500

Fig. 5. Influence ok on the size of the resulting logic

5.3. Standard Benchmarks Results

Results obtained for selected MCNC [Yang, 1991] and
ISCAS [Brglez, 1985, 1989] benchmark circuits are
presented in the summary Table 1. We have evaluatd
area overhead of our proposed asynchronous loggme
method w.r.t. a conventional synchronous desigrenThve
have compared our method with a state-of-the-art
asynchronous logic design method proposed in [@elta,
2004]. In all the cases, 4-input AND-OR nodes are
considered.

In Table 1, first, the benchmark name and numbérgso
primary inputs and outputs,(d) are given. Synthesis results
obtained by decomposing the original circuit intmetwork
of 4-input AND-OR nodes are shown in the followitngplet

of columns ‘Synchronos”. The first column indicates the
number of network levels (critical path), the numbe
of decomposed circuit nodes follows, the last callshows
the complexity of the circuit's synchronous implertation,

in terms of GEs.

The complexity of the proposed asynchronous meitel
implementation of the circuits is shown next. Coexgies
of the functional logic (Funct. GE%) and the completion
detection logic (CD GES) are shown first, then the values
are summed together to obtain the final asynchrerogic
complexity (‘Total GES$). The area increase of the
asynchronous logic w.r.t. the synchronous implewaién is
shown in the next column Qver?).

Complexities of the  asynchronous multi-level



implementation proposed in [Cortadella, 2004] ahevn
inthe next triplet of columns. Again, the functdn
completion detection and total complexities areegivThe
area reduction obtained by our method, w.r.t. [Getla,
2004], is shown in the last table columingpr”).

5.4. Summary of the Experiments

We have processed 228 benchmark circuits altogetfiee
area overhead of the asynchronous implementation,
compared to the synchronous implementation is aszé

by 64% in the average. When compared to the efdtiee-

art approach, we have obtained an average impraweme
of 17%. However, for some circuits, the improvement
reaches up to 40%.

6. CONCLUSION

A novel synthesis method of a dual-rail asynchrenouwlti-

level logic is proposed. The logic is implementasl a
monotonous multi-level network of minimized AND-OR
nodes together with the completion detection lodtach
node is a hazard-free structure. It is achievecdam the
product term minimization constraint (product termgst be
mutually orthogonal) that the authors have formadaand
proved in[Lemberski, 2009]. The MCNC and ISCAS
benchmarks were processed and the complexity of the
synchronous and asynchronous implementations was
compared. For the asynchronous logic, the areaheaeris
64% in the average. In comparison with the statthefart
approach, we reached a 17% area improvement in the
average.

ACKNOWLEDGMENT

For the second author, this research has been gegpo
by MSMT under research program MSM6840770014 and
GA102/09/1668.

REFERENCES

Beerel, P., Yun, K.Y., and Chou, W.C. (1996). Oyziimj
Average-Case Delay in Technology Mapping of Burst-
Mode Circuits, IEEE Int. Symp. on Advanced Reskearc
in Asynchronous Circuits and Systems, pp. 244-259.

Berkeley Logic Synthesis and Verification Group, @BA
System for Sequential Synthesis and Verification'.
http://www.eecs.berkeley.edu/~alanmi/abc/.

Bernasconi, A., Ciriani, V., Luccio, F., and Padgli, (2008).

A New Heuristic for DSOP Minimization, Proc. 8tht.In
Workshop on Boolean Problems (IWSBP'08), Freiberg,
Germany, 18.-19.9.2008, pp. 169-174.

Brayton, R.K., et al. (1984).ogic minimization algorithms
for VLSI synthesjs Boston, MA, Kluwer Academic
Publishers, 192 pp.

Brglez, F. and Fujiwara, H. (1985). A Neutral Nsttlof 10
Combinational Benchmark Circuits and a Target
Translator in Fortan, Proc. of ISCAS 1985, pp. 688-

Brglez, F., Bryan, D., and Kozminski, K. (1989).
Combinational Profiles of Sequential Benchmark
Circuits, Proc. of ISCAS, pp. 1929-1934.

Cortadella, J., Kondratyev, A., Lavagno, L., andi8, C.
(2004). Coping with the Variability of Combinatidna
Logic Delays, IEEE Int. Conf. On Computer Desigp,
505-508.

De Micheli, G. (1994)Synthesis and Optimization of Digital
Circuits. McGraw-Hill.

Gao, H., Yang, Y., Ma, X., and Dong, G. (2005). Asé&s
of the effect of LUT size on FPGA area and delapgis
theoretical derivations, Proc. of the Sixth Inteiworzal
Symposium on Quality of Electronic Design”, 21.-33.
pp. 370-374.

Kung, D. (1992). Hazard-Non-Increasing Gate-Level
Optimization Algorithm, IEEE Int. Conf. On Computer
Aided Design, pp. 631-634.

Lemberski, I. and FiSer, P. (2009). AsynchronousTwvel
Logic of Reduced Cost, IEEE Symposium on Design and
Diagnostics of Electronic Circuits and Systems, inpr
15-17, 2009, Liberec, Czech Republic, pp. 68-73.

Ligthart, M., Fant, K., Smith, R., Taubin, A., and
Kondratyev, A. (2000). Asynchronous Design Using
Commercial HDL Synthesis Tools, 6-th Int. Symp. on
Advanced Research in Asynchronous Circuits and
Systems, pp. 114-125.

Nowick, S.M. (1993). Automatic Synthesis of Burstié
Asynchronous Controllers, Ph.D. thesis, Stanfort
University, March 193.

Nowick, S.M. and Dill, D.L. (1995). Exact Two-Level
Minimization of Hazard-Free Logic with Multiple-lp
ChangeslEEE CAD vol. 14, August 1995, pp. 986-997.

Siegel, P., Micheli, G.D., and Dill, D. (1993). Awmhatic
Technology Mapping for Generalized Fundamental
Mode Asynchronous Designs, IEEE Design Automation
Conference, pp. 61-67.

Sparsg, E.J., Staunstrup, J., and M. Dantzer-Semgii®92)
Design of delay insensitive circuits using multigi
structures, In Prc. of the Conference on Europeasidh
Automation, pp. 15-20.

Sparsg, E.J. and Furber, S. (2001Principles
of Asynchronous Circuit DesignKluwer Academic
Publishers, 337 p.

Unger, S.H. (1969).Asynchronous Sequential Switching
Circuits, John Wiley & Sons, Inc.

Yang, S. (1991). Logic Synthesis and Optimization
Benchmarks User Guide, Technical Report 1991-IWLS-
UG-Saeyang, MCNC, Research Triangle Park, NC.



Table 1. Comparison results

Benchmark circuit Synchronous Proposed asynchronous Cortadella, 2004
Funct. Funct. CD Total

Name n q Lev. | Nodes GEs GEs Over. GEs GEs GEs Impr.
al2 16 47 2 62 140.5 297 66% 281 1705 51, 8%
alcom 15 38 2 50 875 179 277.5 68 179 107{5282.5 2%
alul 12 8 1 8 27.5 62.5 71% 55 58 113 1T1%
b2 16 17 7 643 2038.5 4348 53375 62% 407 36 25| 6613 19%
b9 41 21 3 49 130 273 68% 260 226 486 1p%
bc0 26 11 7 510 1683.5 3534.% 43395 61% 3367105.3 54725 21%
c1355 41 32 4 74 751 1595 17685 5% 1502 5674 2176.5 19%
c2670 233 140 7 300 936 1831 2490.5 62%  1872346.5 3218.5 23%
c7552 207 108 8 600 3110.5 6329. p 589221 6| 34435 9664.5 23%
c8 28 18 3 69 211 419.5 564.5 63 422 313 735 3% 2
c880 60 26 8 122 562.5 1186.5 1460.5 61% 11p500 7 | 1825 20%
cc 21 20 2 25 51 105.5 69% 102 89.5 191]513%
chkn 29 7 8 158 497 1068 5 63% 994 640 6341 17%
cht 47 36 3 46 165.5 358 498.5 676 331 262 3 59| 16%
cordic 23 2 8 614 1801 3926.5 4883 63% 36022542 5856 17%
count 35 16 4 46 169 388 510.5 676 338§ 263/5601.5 15%
cps 24 109 5 701 1676.5 3628 5.5 4704.5 6% 3353984 5337 12%
cu 14 11 3 20 53.5 110.5 162.5 676 107 80.5 5187. 13%
dalu 75 16 11 466 1971 4226.1 5039 61% 39424372 6379 21%
dcl 4 7 1 7 48 73 47% 96 55 151 40%
dc2 8 7 4 36 130.5 275 340.5 62 261 1735 5434 22%
duke2 22 29 5 238 478 983 656 956 524|5 80.%34| 7%
e64 65 65 4 332 559.5 1119 67% 1119 595 14 17| 0%
ex4 128 28 6 206 673.5 1501 66% 1347 10602407 18%
ex5p 8 63 6 1132 2487 5219.% 6930.5 64%  49[74804.3 7778.5 11%
ex’ 16 5 4 38 147.5 327 64% 295 197.6 492\517%
example2 85 66 4 132 395.5 893.5 122( 6% 791625 1416 14%
f51m 8 8 4 80 233 486 62% 466 292 758 9% 1
frgl 28 3 6 209 485.5 1020.5 65% 971 560 1531.5 10%
frg2 143 139 6 524 1339 3084 5 67% 2678876 4554 11%
i10 257 224 12 871 3034.5 6335.5 5.5 8017 6% 6960 3842.5 9911.5 19%
i2 201 1 5 75 171.5 356.5 771.5 78 343 455/5 98.57 3%
i3 132 6 3 46 214 492 72% 428 460 888 14%
ibm 48 17 5 87 275 649.5 68ﬁ/o 550 4345 498 | 13%
misex2 25 18 3 45 86.5 215 7306 173 139 312 -3%
s1196 32 32 7 220 672.5 1467. 1843.5 64% 134868 2213 17%
s15850.1 611 684 13 1293 3997, 8498 9.5 11108846 | 7995 5500 13495 189
s$35932 1763 2048 4 3200 1065§ 2267 3.5 2968688% | 21316| 14150.% 354665 16%
s382 24 27 3 55 165 359 469.5 65% 33 229 559 16%
s38417 1664 1742 9 3610 12308 2619 41 §324616 | 17528.5 42144p 219
s9234.1 247 250 8 681 2202.% 4664 6.5 632405 2933.5 7338.5 199
s953 45 52 4 197 447.5 950.5 1280 6%%  89b .5590 1485.5 14%
too_large 38 3 7 2707 6017 125884. D5 6492034 | 6151 18185 8%
ts10 22 16 3 48 256 528 600 512 346 858 26%
ttt2 24 21 5 152 404 929.5 b 66P0 80§ 550, 3581 12%
unreg 36 16 2 48 136 305 69|% 272 247 519 % Y7
vda 17 39 5 413 835 1637.5 5 62]% 16Y0 5887. 2557.5 11%
x2dn 82 56 4 95 218 438 674.5 6806 436 371|5 07.58 16%
x3 135 99 5 333 1073.5 2299 6406 2147 $5503697.5 19%
x4 94 71 5 210 542 1232.5 16805 686 1084 830.51914.5 12%
x6dn 39 5 6 172 552.5 1204.5 64% 1105 1.573| 1836.5 17%
xparc 41 73 12 1530 4804.5 9986 1.5 123375 6L%09 5777.5 15386.5 20%
Total 64% 17%




