
An Efficient Multiple-Parity Generator Design for On-Line Testing on FPGA

Abstract

We propose a method to efficiently design a “parity
generator”, which is a stand-alone block producing
multiple parity bits of a given circuit. The parity
generator is designed by duplicating the original
circuit, by XOR-ing given groups of its outputs and
resynthesizing the whole circuit. The resulting circuitry
is smaller than the original circuit in most of cases.
The major task to be solved is to properly select the
groups of outputs to be XORed to obtain multiple
parity bits and maximally reduce the generator size.
A method based on principles of the FC-Min minimizer
is proposed in this paper. The parity generator can be
exploited in on-line diagnostics, to design self-checking
circuits. In our solution the self-checking circuits are
basic blocks of the modified duplex system architecture
used for increasing dependability parameters of a
reliable design based on FPGAs. The method is tested
on standard MCNC benchmark circuits and its
efficiency is evaluated.

Track area: Fault Tolerance in Digital System
Design

Topic: on-line BIST
Keywords: BIST, parity generator, on-line testing,

Boolean minimization

1. Introduction

Systems realized by Field Programmable Gate
Arrays (FPGAs) are more and more popular and
widely used in more and more applications due
to several advantages, like their high flexibility
in achieving multiple requirements such as cost,
performance and turnaround time and the possibility
of reconfiguration and later changes of the
implemented circuit, e.g., only via wireless
connections.

The FPGA circuits can be used in mission critical
applications such as aviation, medicine, space
missions, and railway applications as well [1, 2, 3].

Many FPGAs are based on SRAM memories
sensitive to Single Even Upsets (SEUs), therefore a
simple usage of FPGA circuits in mission critical
applications without using any method of error
detection (and possibly correction) is impossible.

A change of one bit in the configuration memory
leads to a change of a circuit function, often drastically.
The Concurrent Error Detection (CED) techniques
allow a faster detection of soft errors (errors which can
be corrected by reconfiguration) caused by SEUs [4, 5,
6]. SEUs can change also the content of the embedded
memory, Look-up Tables (LUTs) and other
configuration bits. These changes are not detectable
by off-line tests, therefore CED techniques have to be
used. The probability of a SEU occurrence in the
SRAM is described in [7].

The self-checking (SC) circuit (a method based on a
CED technique) is used to detect an occurrence of a
fault in the tested circuit. Only one copy of the SC
circuit is not sufficient to increase dependability
parameters. Thus, we use the Modified Duplex System
(MDS) architecture [8].

This paper presents a parity generator design
method based on parity bits grouping. The parity
groups are generated from the original circuit’s
outputs. The self checking circuit quality is determined
by an area overhead and the number of undetectable
faults while keeping dependability parameters. The
“dependability” is currently used to express the ability
of a system or of its component to correctly perform its
function, or “mission” over time [9].

Previously we have proposed an output grouping
method based on evaluating a “similarity” of the
functions [10]. Now we propose a method based on the
principles of the FC-Min minimizer [11, 12, 13]. Here
we exploit principles of sharing group implicants
among two or more outputs of the function. The groups
of outputs to be XORed are derived from the numbers
of group implicants they share.

The paper is structured as follows: the principles of
the parity generator and the dependable architecture
based on a modified duplex system are described
in Section 2. The dependability analysis is presented
in Section 3. Then the FC-Min algorithm used
to generate groups of parity bits is described
in Section 4, the principles of the grouping of the
outputs are stated in Section 5. Section 6 contains the
experimental results and Section 7 concludes the paper.

2. The Parity Generator

The self-checking circuit is constructed
by duplicating the original circuit and XORing the

outputs of the duplicate circuit, to obtain parity bits.
The code words obtained by the original circuit and the
parity generator are then compared in the Checker, see
Fig. 1.

The number of used parity bits (check bits)
significantly influences the area overhead, together
with the dependability parameters [14]. Thus, proper
number of parity bits has to be chosen, so that the
overall logic would be minimized and the
dependability of the circuit maximized.

Combinational
circuit

Inputs

}
Parity

predictor

Checker

circuit

Outputs

code
word

Check
bits

Figure 1: The self-checking circuit design

2.1. MDS architecture

When self-testing and self-checking parameters are
satisfied to 100%, also the totally self checking (TSC)
parameter is satisfied to 100% [9]. Our previously
obtained results show that to fulfill the TSC property
to reach 100% is difficult [15], so we are using a
modified duplex system (MDS) architecture [9] based
on two FPGAs, see Fig. 2.

Primary
output 1

OK / FAIL

RECONFIG.
UNIT

FPGA 1

=TSC2

OK / FAIL

Primary
input

=

Primary
output 2

FPGA 2

OK / FAIL

OK / FAIL

TSC1

Figure 2. The MDS architecture

Each FPGA has its primary inputs, primary outputs
and two pairs of checking signals OK/FAIL. The
probability of the information correctness depends
on the Fault Security (FS) property. When the FS
property is satisfied only to 75%, the correctness of the
checking information is also 75%. It means that the
signal “OK” give a correct information for 75%

of occurred errors (the same probabilities for both
signals “OK” and “FAIL”).

3. Dependability Analysis

To evaluate the influence of a sequence of the SEUs
faults, a more precise definition of “a single fault” is
needed. Availability computations for dependability
analysis are used. In the following text we will assume
that a “single data damaging” is defined as follows:

• It will occur at a single time event that is
arbitrarily located at the time axis.

• The fault can change a data item located within the
FPGA configuration memory. Both FPGAs can
be affected with the same probability. We
assume that a single fault changes only one bit
of the FPGA configuration memory. Each bit
in the FPGA configuration memory can be
attacked with the same probability.

• The time between any two single faults is
sufficient enough to enable a single fault to be
successfully detected and corrected. If not, a
multiple fault occurs.

Some basic rules are defined to calculate the

availability parameters. We assume that:
• There is at least one input vector occurring

between two SEUs which cause an output
to differ from the normal operation.

• SEUs occurring in an unused logic do not change
the function of the used part, therefore these
faults are hidden.

• The comparator and the checker fully satisfy TSC
property.

• The area overhead of the comparator and the
checker is negligible.

• The reconfiguration unit loads correct
configuration data after the fault being detected.

• The time needed to reconfigure the faulty part
depends on the configuration data size.

• The fault occurred in the unused logic does not
cause the damage of the whole FPGA.

The Markov model shown in Fig. 3 describes our

architecture.

OF
2
�
s(1-FS)�s/2

2
�
sFS�s

H

Figure 3. Model of our modified duplex system

There are three states (O, F, H). The O state
(operational) represents the regular fault-free state
of the system, where both FPGAs operate correctly. It

means that the malfunction function is signalized
neither by the TSC circuit, nor by the comparator.

There is a transition from O to F state (one FPGA is
faulty) corresponding to the situation when a fault
occurs in one FPGA and this fault is detected by one
of the TSC circuits. The system enters this state with a
probability FS. � is the failure rate for one bit of a
configuration memory and s is the size of a
configuration memory. The number 2 in the 2λsFS
expression means that one of two FPGAs can be
affected by SEUs. The reconfiguration process is
initiated only for the faulty FPGA. The repair rate is
represented by � . The second FPGA is running
correctly, and therefore performs the function of the
system.

Some faults are not detected, when the output vector
is an incorrect codeword. The probability that the
occurred fault causes an incorrect codeword is equal
to 1-FS. In this case, the system comes to the state H.

The H state (hazard) means that the system is in the
hazard state. The hazard state is detected (e.g., by the
comparators), because the output vectors are not
identical. Both FPGAs have to be reconfigured in this
case. The repair rate is equal to � /2, because each
FPGA is being reconfigured separately. If it is possible
to reconfigure both FPGAs at the same time, the
availability parameters will increase.

()
1

012
2

02

0
2

2

=++

=−−

=−

=−−

HFO

O
H

OF

H
FO

ppp

pFSs
ps

pFSsps

ps
psps

λµ
λµ

µµλ

 (1)

The described model introduces four parameters:

the failure rate (�), the repair rate (µ), the fault security
(FS) and the configuration memory size (s). These
parameters are discussed in the next section. Now let
us transform the Markov model into a system
of equations describing the steady state probabilities
of each of the states (Equations 1). The system
of equations is completed with a normalisation
condition.

FOSS ppA += (2)

The value of the steady-state availability ASS is a

sum of probabilities for all working states (Equation 2).

4. FC-Min

The output grouping method is based on the
FC-Min minimizer principles [11, 12]. FC-Min has
been developed to efficiently handle functions with a
large number of output variables. The minimization is
being conducted in a reverse way than the standard
minimizers do. First, the group cover of the on-set
of all functions is found, independently on the source
implicants. After that the minimized implicants are
produced by processing the source implicants, in order
to satisfy (and validate) the cover. Thus, group
implicants are generated directly, not like in other
minimization methods by reducing prime implicants
of single functions.

This approach makes FC-Min a very fast two-level
group minimizer, since only implicants that will be a
part of the final solution are produced.

The minimization process consists of two processes:
the Find Coverage algorithm and Implicants
Generation.

4.1. The Find Coverage Algorithm

The Find Coverage algorithm is the essential phase
of FC-Min. The whole cover of the on-set of the
multi-output function is found, using the output part
of the source function only. The algorithm tries to find
a cover of the on-set by finding a rectangle cover [16]
of all the “1” values in the output matrix (description
of the function’s on-set), and then it generates
implicants having the properties given by this cover.

An example of such a cover is shown in Fig. 3.
There is shown a 5-input and 5-output function defined
by 10 terms, in a form of a truth table. The rest out
of the total 32 terms is assigned as don’t cares. The
result of the Find Coverage algorithm is a cover
consisting of six coverage elements, t1 – t6. A coverage
element is a Cartesian product of two sets, the
coverage set C(ti) and the coverage mask M(ti). The
coverage set describes the rows that are covered by ti,
the coverage mask gives the output variables covered
by ti. Our example coverage elements are shown
in Tab. 1.

Each coverage element describes a potential
implicant. For example, the group term (implicant) t1
covers “1”s of the fourth and fifth output variable (y3
and y4) in vectors 4, 6 and 8. Let us note that the
structure of the terms is not known yet; only the set
of covered “1”s is known. Now it is apparent, that if
we succeed in finding the implicants having the
properties of t1 – t6 (i.e., the terms cover the appropriate
“1”s), the solution will consist of six implicants.
To solve the coverage finding problem we use a greedy
heuristic, since it is NP-hard, see [12] for details.

11010 10000
10000 11100
01001 01100
01111 01010
00110 00111
01110 00000
10110 00011
00001 01101
10101 10111
11100 10100

{y -y0 4

Figure 4: Cover of the output matrix

Table 1: Coverage elements from Fig. 4

Implicant C(ti) M(ti)
t1 { 4, 6, 8} { y3, y4} ≡ 00011
t2 {1, 2, 7} { y1, y2} ≡ 01100
t3 {8, 9} { y0, y2} ≡ 10100
t4 {3} { y1, y3} ≡ 01010
t5 {0, 1} { y0, y1} ≡ 10000
t6 {4, 7} { y2, y4} ≡ 00101

4.2. Implicant Generation

After each coverage element is produced, it has
to be validated, i.e., we must verify, whether there exist
an implicant covering the “1”s in C(ti) × M(ti). This is
done by directly generating the respective implicant.
If this process fails, the coverage element is discarded
and another one is computed.

Considering the conditions described above,
particularly the definition of the rows each cover
element should cover (C(ti)), a simple rule the
implicants have to satisfy can be derived: the minimum
implicant satisfying the particular cover can be
constructed as a minimum supercube of all the input
vectors corresponding to the rows of the cover of ti.
Moreover, this supercube must not intersect any term
that is not included in the particular cover C(ti), since it
would cover some zeros then. In our example, a
minimum implicant t1 would be (-01--), because of:

00110
10110
10101
-01--

5. The Output Grouping

The idea of grouping the multiple-output function’s
outputs to form multiple parity bits is straightforward:
we try to group together outputs having many common
group implicants. Such outputs will more likely share
some terms, thus grouping them together would be

advantageous for a two-level minimization of the
source multi-output function. We have found
experimentally that the same effect can be observed for
a multi-level synthesis as well; the outputs sharing
many group implicants share a lot of logics in the
multi-level implementation of the function as well
[13]. When these outputs are connected by a XOR gate
to form a parity bit, the overall logic could be
furthermore reduced, since only one output needs to be
produced then.

The main output grouping idea is simple: first, we
perform a two-level minimization of the unmodified
multi-output function. Then we identify the output
variables to be grouped together by evaluating the
numbers of group implicants common to the outputs,
the outputs in each group of outputs are joined into one
XOR gate and the whole circuit is resynthesized by SIS
[17] to obtain a multilevel network (or LUTs) or by
ESPRESSO [18] for a two-level implementation of the
parity generator.

5.1. Grouping Matrix

As it was stated before, the grouping of the outputs
is derived from the valid coverage of the on-set. Since
there are often big numbers of possible group
implicants (coverage elements) and output variables, it
is not easy to combine the influences of the implicants.
We have found that an efficient way to estimate the
grouping of the outputs is by constructing a grouping
matrix G. It is a symmetric matrix of dimensions
[m, m], where m is the number of output variables. The
value G[i, j] defines the “binding strength” of the two
output variables i and j.

The G matrix is being constructed during the
coverage generation process. Firstly, the matrix is
filled with zeros. After each valid coverage element is
produced, the values in all the positions in G
corresponding to all the couples of variables in M(ti)
are increased by one. In our example (Fig. 4), after t1 is
found, the cells G[3, 4] and G[4, 3] are set to one. This
describes an increased likelihood that the outputs y3
and y4 will be grouped together. The whole G-matrix
computation process is shown in Fig. 5.

00000
00000
00000
00000
00000

t1

----->

00000
00000
00000
00001
00010

t2

----->

00000
00100
01000
00001
00010

t3

---->

00100
00100
11000
00001
00010

t4

----->

00100
00110
11000
01001
00010

t6

----->

00100
00110
11001
01001
00110

Figure 5: G-matrix construction

It is a very simple example, however, in practice the
G-matrix mostly contains values greater than 1.
Greater values indicate that the respective two
variables have more than one common implicants
in the solution.

5.2. Deriving the Output Grouping

There have been no assumptions or requirements for
the number of parity bits (i.e., groups of outputs) until
now. The G-matrix just describes the binding strengths
of every two function’s outputs. Now the distribution
of the function’s outputs among the groups has to be
found. Let us note that any number of groups (parity
bits) can be generated by this method, according the
designer’s needs.

We use a simple greedy algorithm. First, we
compute the nominal group size N, by dividing the
number of function’s outputs by the number
of required parity bits. This would be the average
number of outputs forming one parity bit. Then the
algorithm proceeds as follows: first, we find the
maximum value in the G-matrix, let it be G[i, j]. When
there are more possibilities for a choice, one is selected
at random. Both the respective output variables (i, j)
are assigned to the first group. After that we look for
the next highest value in the i-th and j-th G-matrix
rows, thus we find the output that “suits most” to one
of the two selected ones. This new output is added
to the group under construction. This process is
repeated until N outputs are assigned to the group.
Then we repeat the process from the beginning,
to generate all the groups.

6. Experimental Results

6.1. The Overall Synthesis Process

The overall synthesis process, i.e., the way how all
the tests have been performed will be described in this
subsection.

The source functions for our experiments were the
MCNC [19] benchmark circuits. The parity generator
design process has been held in the following steps:

1. First, the MCNC benchmark described as a
PLA structure has to be pre-processed, in order
to generate the function’s on-set and off-set,
which is needed for FC-Min. This is done
by ESPRESSO [18].

2. The circuit is then processed by FC-Min,
to generate its group implicants.

3. The grouping matrix and, subsequently, the
grouping of the outputs, is derived from the
group implicants.

4. The obtained groups of outputs are XORed,
to obtain the parity bits. This is done

by converting the original circuit’s PLA into a
BLIF [17] file by SIS [17] and appending the
XOR gates to the outputs.

5. The obtained parity generator is resynthesized
by SIS, in order to obtain its PLA description
(by collapsing the network), or to decompose it
into LUTs. The number of literals in the SOP
(sum-of-products) form for a PLA and the
number of LUTs are counted then, to make an
estimation of the size of the parity generator.
Since the design is targeted to FPGAs, only
4-LUTs will be considered from now on.

6.2. The Efficiency of the Method

In order to evaluate the efficiency of the proposed
method, we have compared the FC-Min based parity
bits grouping with a purely random grouping. We have
tested the method on standard MCNC benchmark
circuits [19]. We have varied the number of parity bits
from one to the number of the circuit’s outputs. One
limit, the 1-parity bit case, involves XORing all of the
circuit’s outputs, thus any “smart” output grouping
method cannot come into effect. The second limit case,
i.e., the number of parity bits equal to the number
of outputs, corresponds to the original circuit (no
XORs).

For each benchmark circuit and a given number
of parity bits, 500 random and 500 FC-Min based
output groupings have been generated and the average
of each was taken.

A typical growth of the number of look-up tables
(LUTs) for the FPGA realization obtained by SIS [17]
is shown in Fig. 6 for a sqr6 MCNC [19] benchmark
circuit. The size of the circuit grows with the number
of parity bits here. It can be concluded that by XORing
the circuit’s output its size is reduced after resynthesis;
producing the parity bits only is advantageous, with
respect to the total area.

On the other hand, Fig. 7 shows the alu2 benchmark
results. Here the number of LUTs increases with
decreasing the number of the parity bits, thus adding
XORs to the circuit inputs involves the circuit size
growth, even after the resynthesis. Such benchmarks
typically are hard-to-synthesize functions with many
XOR gates, like ALUs. Adding XOR gates to their
output just increases their complexity and, moreover,
standard synthesis tools, like SIS [17] and ESPRESSO
[18] are not able to handle such circuits efficiently
[20]. Fortunately, such cases are quite rare, see Tab. 2.

Two curves are shown in figures 6 and 7. One curve
corresponds to the FC-Min based output grouping, one
to a random grouping. We can see that the FC-Min
grouping always produced a circuit having fewer
literals. Of course, the curves meet at the two limit

cases (no parity and 1-parity bit), since no grouping is
involved in these cases.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

5

10

15

20

25

30

35

40

Random

FC-Min

sqr6

LU
T

s

Parity bits

Figure 6: The sqr6 MCNC example

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Random

FC-Min

alu2

LU
T

s

Parity bits

Figure 7: The alu2 MCNC example

The summary results obtained from several MCNC
benchmarks [19] are shown in Tab. 2. The “Bench”
column shows the benchmark name, the number of its
outputs follows (m). The ratio of the size of a 1-parity
generator to the original circuit is shown in the next
column (“Ratio”). 100% means no difference, circuits
having the ratio less than 100% correspond to the
Fig. 6 case (i.e., the area is reduced by XORing the
circuit’s outputs), ratios higher than 100% correspond
to the Fig. 7 case. It can be seen that the area of some
benchmarks is rapidly reduced after XORing the
outputs (newbyte, p82, t3, tms), however, for some
benchmarks, the area is drastically increased (for alu1
almost 40x!). As we have stated before, this is due to a
fact that the added XOR gate complicates the logic
after resynthesis to such extend, so that standard
synthesis tools are not able to handle these functions
efficiently [see 20].

The average and maximum improvement obtained
by our output grouping method, with respect to the
random grouping is shown in the next two columns,
in terms of the number of LUTs, obtained by SIS [17].
The number of parity bits, where the maximum

improvement was reached is indicated in the
parentheses in the “Max. impr.“ column.
Measurements equal to these made to obtain figures 6
and 7 have been performed for all the benchmark
circuits. All the respective dependency curves were
similar to these shown in figures 6 and 7, the FC-Min
based grouping method always gave better or
approximately equal results than the random based
approach.

It can be seen that the FC-Min based output
grouping method yields a substantial improvement
with respect to the random method, so we can say it is
efficient. However, for some benchmark circuits, the
average improvement is negligible or even negative
(e.g., ex1010, f51m, inc, in0, newpla, t3). These are
probably mostly symmetric functions, where any
“smart” output grouping method cannot help.

Table 2: Output grouping results

Bench m Ratio Avg. impr. Max. impr.

alu1 8 3950.0% 11.7% 37.9% (4)
alu2 8 284.8% 25.3% 42.9% (3)
alu3 8 356.7% 3.5% 8.9% (4)
apla 12 32.2% 13.8% 28.0% (4)
b10 11 23.7% 4.7% 12.9% (8)
b12 9 255.2% 12.7% 38.0% (2)
bc0 11 21.8% 11.0% 24.3% (8)
br1 8 35.9% 7.4% 18.9% (5)
br2 8 15.7% 13.4% 36.4% (4)
dk17 11 38.2% 7.9% 14.7% (9)
dk27 9 50.0% 4.6% 14.3% (2)
dk48 17 100.0% 2.4% 9.1% (5)
ex1010 10 14.3% 0.1% 3.0% (7)
exp 18 16.4% 10.2% 19.1% (12)
f51m 8 51.4% -2.1% 0.0% (0)
gary 11 21.2% 7.9% 8.4% (8)
in0 11 21.1% 0.8% 9.0% (9)
in2 10 33.3% 6.1% 21.3% (7)
in5 14 77.4% 6.1% 21.3% (3)
in7 10 86.2% 30.4% 51.5% (2)
inc 9 16.7% -1.0% 9.1% (6)
m1 12 11.1% 6.8% 33.3% (4)
m2 16 13.3% 15.6% 32.4% (4)
m3 16 13.9% 7.1% 24.5% (4)
m4 16 16.8% 12.6% 28.9% (5)
mlp4 8 20.0% 6.6% 26.9% (6)
mp2d 14 151.4% 25.1% 42.0% (3)
newapla 10 14.3% 0.1% 3.0% (7)
newbyte 8 6.3% 11.7% 37.9% (4)
newcpla 16 52.4% 17.4% 28.2% (6)

Bench m Ratio Avg. impr. Max. impr.

newcpla2 10 19.4% 29.9% 53.3% (3)
p82 14 8.6% 4.3% 20.0% (10)
sex 14 47.4% 23.4% 38.1% (9)
sqr6 12 18.9% 13.9% 25.0% (9)
t2 16 102.9% 17.4% 43.8% (2)
t3 8 2.7% -0.9% 0.0% (0)
t4 8 192.9% 6.8% 28.6% (4)
tms 16 8.3% 10.1% 27.3% (10)

6.3. The Dependability Parameters

The parity net grouping methodology is used
to increase the dependability of the system based
on the MDS architecture. The availability
computations were used to compare our modified
duplex system with a standard duplex system and with
TMR (Triple Modular Redundancy) system.
Availability is a function of a time, A(t), defined as the
probability that a system is operating correctly and is
available to perform its functions at an instant of a time
t. This section follows the Section 3 describing our
modified duplex system with the Markov model and
with dependability equations.

Firstly, the model parameters are discussed. The
failure rate (�) depends on the probability that the
impacting SEUs will change a bit in the FPGA
configuration memory. The effect of the SEUs
impacting on random access memory RAM is
described in [7]. In this article authors tested many
systems with different size and type of memory and
calculated SEU failure rate. In our calculation we have
taken into account results presented in [7] and we set
the “failure rate” parameter to:

][8.1 15 −−= heλ (3)

We assume more than one device with embedded

RAM, therefore the failure rate parameter was
increased.

The repair rate (µ) depends on the time needed for
the reconfiguration of an FPGA. The clock frequency
was set to 25 MHz. The configuration memory size s
(needed for each benchmark) was calculated as a
product of the configuration memory size for
AT94K40 ATMEL FPSLIC and the circuit area
overhead (AO[%]).

][233 bitsAOks ⋅= (4)

Dependability calculations are processed firstly for

a single parity and then for a multiple parity. In the
multiple parity case 2 or 3 parity nets were selected.

Our results of improved availability parameters are
shown in Tab. 3. Here “Bench” is the name of the
benchmark circuit, “AO” is the area overhead, “FS” is
the probability that a fault is detected by a code word,
“ASS” is the steady-state availability and “Impr. ASS”
indicates the improvement of ASS against single parity
when multiple parity is used.

The availability of the original duplex system is
0,999978249. The availability parameter is the same as
for the triplex system in the case when FS property is
100%.

Our results show that area overhead is higher in a
case when we use multiple parities. Due to more parity
nets increase observability of the tested benchmark the
FS parameter is higher. The value of the FS parameter
depends on the used algorithm to create parity nets.

7. Conclusions

We have proposed an efficient method to design a
multiple parity generator for on-line BIST. The method
is based on properly choosing the original circuit’s
outputs to be XORed to obtain respective parity bits.
The choice is being done by determining outputs that
share many group implicants in the two-level
representation of the multi-output function. These
outputs share a lot of combinational logic and, most
likely, the amount of the overall logic would be
decreased when these outputs would be joined together
by a XOR gate.

The availability parameters of the MDS architecture
based on self-checking circuits have been calculated.
The results show that using the multiple parity bits
increase the availability parameters at the price of a
higher area overhead, with respect to the single parity
case.

The efficiency of the method has been approved
by an experimental evaluation on standard MCNC
benchmark circuits.

References
[1] -----------, “FPGA Based Design of Raiway's Interlocking

Equipment”, In Proc. of EUROMICRO Symposium on Digital
System Design, Rennes (FR), 31.8. - 3.9. 2004, pp 467-473.

[2] D. Ratter, ” FPGAs on Mars”, www.xilinx.com,Xcell Journal
Online, 2004.

[3] Actel Corporation.:”Historic Phoenix Mars Mission Flies Actel
RTAX-S Devices”, www.actel.com, 2007.

[4] L. Sterpone and M. Violante, “A design flow for protecting
FPGA-based systems against single event upsets “, DFT2005,
20th IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, pp. 436 – 444.

[5] QuickLogic Corporation.: Single Event Upsets in FPGAs,
2003, www.quicklogic.com

[6] M. Bellato, P. Bernardi, D. Bortalato, et al., “Evaluating the
effects of SEUs affecting the configuration memory of an

SRAM-based FPGA”, Design Automation Event for Electronic
System in Europe 2004, pp. 584-589.

[7] E. Normand, “Single Event Upset at Ground Level,” IEEE
Transactions on Nuclear Science, vol. 43, 1996, pp. 2742-2750.

[8] -----------,, “Dependable Design for FPGA based on Duplex
System and Reconfiguration”, In Proc. of 9th Euromicro
Conference on Digital System Design, Los Alamitos: IEEE
Computer Society, 2006, pp. 139-145.

[9] D.K. Pradhan, “Fault-Tolerant Computer System Design”,
Prentice-Hall, Inc., New Jersey, 1996.

[10] -----------,, “Output Grouping Method Based on a Similarity of
Boolean Functions”, Proc. 7th Int. Workshop on Boolean
Problems (IWSBP'06), Freiberg, Germany, 21.-22.9.2006, pp.
107-113

[11] -----------,. FC-Min: A Fast Multi-Output Boolean Minimizer,
Proc. 29th Euromicro Symposium on Digital Systems Design
(DSD'03), Antalya (TR), 1.-6.9.2003, pp. 451-454.

[12] -----------,, “Boolean Minimizer FC-Min: Coverage Finding
Process”, Proc. 30th Euromicro Symposium on Digital Systems
Design (DSD'04), Rennes (FR), 31.8. - 3.9.04, pp. 152-159.

[13] -----------,, “Output Grouping-Based Decomposition of Logic
Functions”:, Proc. 8th IEEE Design and Diagnostics of
Electronic Circuits and Systems Workshop 2005 (DDECS'05),
Sopron, HU, 13.-16.4.2005, pp. 137-144.

[14] -----------,, “Fault Tolerant System Design Method Based on
Self-Checking Circuits”, Proc. 12th International On-Line
Testing Symposium 2006 (IOLTS'06), Lake of Como, Italy,
July 10-12, 2006.

[15] -----------,, “Minimization of the Hamming Code Generator in
Self Checking Circuits”, Proceedings of the International
Workshop on Discrete-Event System Design (DESDes'04).
Zielona Gora: University of Zielona Gora, 2004, s. 161-166.

[16] S. Hassoun and T. Sasao, „Logic Synthesis and Verification",
Boston, MA, Kluwer Academic Publishers, 2002, 454 pp.

[17] E.M. Sentovich et al. “SIS: A System for Sequential Circuit
Synthesis”, Electronics Research Laboratory Memorandum No.
UCB/ERL M92/41, University of California, Berkeley, CA
94720, 1992.

[18] R.K. Brayton, et al. „Logic Minimization Algorithms for VLSI
Synthesis”, Boston, MA, Kluwer Academic Publishers, 1984.

[19] S. Yang, “Logic Synthesis and Optimization Benchmarks User
Guide”, Technical Report 1991-IWLS-UG-Saeyang, MCNC,
Research Triangle Park, NC, January 1991

[20] J. Cong and K. Minkovich, “Optimality Study of Logic
Synthesis for LUT-Based FPGAs”, Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on
CAD, Vol. 26, Issue 2, Feb. 2007, pp. 230 – 239.

Table 3: Improved availability parameters

Single parity Multiple parity Bench.
AO FS ASS AO FS ASS

Impr.
ASS

alu1 3337.5% 100.0% 1 275.00% 100.00% 1 0.0%
apla 40.5% 74.3% 0.999988965 76.19% 87.21% 0.999991356 18.2%
b10 26,7% 92,6% 0,999997416 44,40% 95,83% 0,999998095 3,4%
b12 95.8% 95.9% 0.999996581 179.17% 98.08% 0.999996779 1.1%
dk17 41.9% 84.9% 0.999993387 100.00% 95.23% 0.999995824 13.9%
dk48 96.7% 88.7% 0.99999049 103.33% 91.91% 0.999992718 15.4%
ex1010 7.3% 81.7% 0.999995417 19.47% 89.59% 0.99999677 7.3%
ex7 246,2% 97,6% 0,999993744 328,21% 98,84% 0,999995215 8,7%
f51m 50.0% 87.2% 0.999993736 72.22% 88.48% 0.999992583 -7.4%
gary 25.3% 90.6% 0.99999679 54.36% 94.94% 0.999997356 3.0%
inc 15,9% 86,2% 0,999995968 43,18% 93,05% 0,999996922 5,1%
m1 9.7% 84.0% 0.999995812 29.03% 97.44% 0.999999059 15.6%
m3 33,3% 93,7% 0,999997565 60,32% 97,41% 0,999998547 4,8%
mp2d 61.3% 88.2% 0.999993322 87.10% 92.96% 0.99999467 8.2%
mlp4 17,8% 94,5% 0,99999834 49,50% 97,64% 0,999998833 2,4%
newapla 43.8% 85.3% 0.999993388 75.00% 92.81% 0.999995204 10.7%
newbyte 11.1% 100.0% 1 33.33% 100.00% 1 0.0%
newcpla1 54.3% 90.3% 0.999994977 47.83% 94.94% 0.999997577 13.5%
newcpla2 25.0% 75.7% 0.999991741 58.33% 86.96% 0.999992914 8.0%
p82 14.7% 85.3% 0.999995793 20.59% 90.33% 0.999996931 6.1%
sex 57.9% 83.6% 0.999991106 84.21% 92.35% 0.999994391 20.4%
sqr6 14.3% 94.9% 0.999998551 45.24% 96.87% 0.999998578 0.1%
t2 56,3% 91,1% 0,999995271 81,25% 92,69% 0,999994781 -2,9%
tms 8,1% 84,9% 0,999996162 23,23% 91,32% 0,999997128 5,1%

