
Fault Injection and Simulation for Fault Tolerant
Reconfigurable Duplex System

Pavel Kubalík, Jiří Kvasnička, Hana Kubátová
Department of Computer Science and Engineering

Czech Technical University in Prague
Karlovo nam. 13, 121 35 Prague 2

e-mail: (xkubalik, kvasnj1, kubatova)@fel.cvut.cz

Abstract – The implementation and the fault simulation
technique for the highly reliable digital design using two FPGAs
under a processor control is presented. Two FPGAs are used for
duplex system design, each including the combination of totally
self-checking blocks based on parity predictors to obtain better
dependability parameters. Combinatorial circuit benchmarks
have been considered in all our experiments and computations. A
Totally Self-Checking analysis of duplex system is supported by
experimental results from our proposed FPGA fault simulator,
where SEU-fault resistance is observed. Our proposed hardware
fault simulator is compared also with the software simulation. An
area overhead of individual parts implemented in each FPGA is
also discussed.

I. INTRODUCTION

Systems realized by FPGAs are more and more popular
due to several properties and advantages:

• High flexibility in achieving multiple requirements

such as cost, performance, turnaround time.
• Possible reconfiguration and later changes of the

implemented circuit e.g. only via radio net
connections.

• Mission critical applications such as aviation,
medicine, space missions or also in railway
applications [1].

FPGAs are based on SRAM memories sensitive to Single

Even Upsets [2, 3] (SEUs), therefore simple usage of FPGA
circuits in mission critical applications without any method of
SEUs detection is practically impossible.

One change of a bit in the configuration memory by SEUs
leads to a change of a circuit function, even drastically. The
CED techniques allow a faster detection of soft errors (errors
which can be corrected by the reconfiguration) caused by
Single Event Upsets (SEU) [2, 3, 4]. SEUs can change the
content of the embedded memory or Look-up Tables (LUTs)
used in the design. These changes are not detectable by off-
line tests; therefore appropriate CED techniques have to be
used. The probability of a SEU occurrence in the random
access memory (RAM) is described in [5].

The possibilities how to keep proper system functions are
based always on some redundancy. Redundancy obviously

means a great area and/or time overhead. Our proposed
structure increases dependability parameters together with
ensuring a relatively low area overhead as compared with
classical methods such as duplication or triplication [6].

The term dependability is used to encapsulate the concepts
of reliability, availability, safety, maintainability,
performability, and testability [7]. Availability is a function of
time, A(t), defined as the probability in time that a system is
operating correctly and is available to perform its function [7].
Availability computation to compare modified duplex system
with standard duplex system is described in [8].

Our solution combines on-line testing design methods with
the classical duplex design [6, 8]. It assumes the dynamic
reconfiguration of the faulty part of the system after on-line
fault detection. The most important criterion is the speed of
the fault detection and the safety of the whole circuit with
respect to the application requirement.

Our previous research shows the relation between the area
overhead and the SEUs fault coverage [9]. To ensure a small
area overhead, the SEUs fault coverage for most circuits is
less than 100%. The SEUs fault coverage varies typically
from 75% to 95%.

This paper comprises partial research results based on
software and hardware simulation experiments presented in
[10, 11, 12]. Some techniques of software simulation and
hardware emulation are described in [13].

The structure of the paper is following: the basic
classification of faults is presented in Section 2. A brief
overview of our duplex system is shown in Section 3. Our
proposed hardware emulator structure is presented Section 4.
An implementation of this emulator is described in Section 5.
Section 6 summarizes results obtained by both hardware and
software fault simulations and Section 7 concludes the paper.

II. FAULTS CLASIFICATION

There are three basic quantitative criteria in a CED field:
Fault Security (FS), Self Testing (ST) and Totally Self-
Checking (TSC) properties. These three aspects are used in an
on-line testing field to evaluate the level of safety of the
designed or modeled system.

To determine whether the circuit satisfies the TSC
property, faults have to be selected to one of four classes A, B,
C or D according [10].

• Class A – hidden faults. These are faults that do not

affect the circuit output for any allowed input vector.
Faults belonging to this class have no impact to the
FS property, but if this fault can occur, a circuit
cannot be self-testing (ST).

• Class B – faults detectable by at least one input
vector and they do not produce an incorrect
codeword (valid code word, but incorrect one) for
other input vectors. These faults have no negative
impact to the fault-secure (FS) and ST property.

• Class C – faults that cause an incorrect codeword for
at least one input vector and they are not detectable
by any other input vector. Faults from this class
cause undetectable errors. If any fault in the circuit
belongs to this class, the circuit is neither FS, nor ST.

• Class D – faults that cause an undetectable error for
at least one vector and a detectable error for at least
one another vector. Although these faults are
detectable, they do not satisfy the FS property and so
they are also undesirable.

Classification of each fault into one of previous 4 classes

can be used to decide, whether or how much the circuit
satisfies the FS, ST and TSC properties.

III. DUPLEX SYSTEM STRUCTURE

Our previous results [9] show, that satisfying fully TSC
property with low area overhead is difficult, so we proposed a
new structure based on two FPGAs, as shown on Figure 1.

Primary
output 1

OK / FAIL

RECONFIG.
UNIT

FPGA 1

=TSC2

OK / FAIL

Primary
input

=

Primary
output 2FPGA 2

OK / FAIL

OK / FAIL

TSC1

 Figure 1: Duplex system architecture

The probability of the information correctness depends on
the FS property. When the FS property is satisfied only to
75%, the correctness of the checking information is also 75%.

It means that the signal “OK” give a correct information for
75% of occurred errors (the same probabilities for both signals
“OK” and “FAIL”).

To increase the dependability parameters we must add two
comparators, one for each FPGA. The comparator compares
outputs of both FPGAs. The fail signal is generated when the
output values are different. This information is not sufficient
to determine, which TSC circuit is wrong. Additional
information to mark out the wrong circuit is generated by the
original TSC circuit. In a case when outputs are different and
one of the TSC circuits signalizes fail function, the wrong
FPGA is correctly recognized.

The reconfiguration process is initiated after a fault is
detected. The reconfiguration solves two problems:
localization and correction of the faulty part. The time needed
to localize the faulty part is not negligible and must be
included in the calculation of dependability parameters.

When the outputs are different, and both circuits signalize a
correct function, we must stop the circuit function and the
reconfiguration process is initiated for both FPGA circuits.

After the reconfiguration process is performed, states of
both FPGAs are synchronized. It means that our modified
duplex system can be used in an application where the system
synchronization by reset is possible or another method of the
system synchronization is implemented.

Each FPGA contains a TSC circuit and a comparator. The
TSC circuit is composed of small blocks where each block
satisfies the TSC property.

IV. OUR HARDWARE EMULATOR

The hardware emulator was used to emulate SEU faults in
FPGAs. These faults are converted into bitstream faults in the
tested circuit.

The hardware emulator has great advantages in comparison
with the software simulation process mainly as concern the
speed of:

• the test vector generation process,
• a fault injection time,
• the process testing,
• respond results of test vector application.

Moreover, the fault emulation in the FPGA gives us
possibility to test bridging faults and opens in the
interconnection network. More accurate TSC parameters can
be obtained from fault injection into implemented design.

The biggest advantage of testing in hardware is speed of
emulation. Every faulty circuit reaction on every input vector
and on each possible fault has to be calculated.

This gives us number of iteration cycles
 fvI ⋅= ,
where v is the number of vectors and f is the number of faults.
This can lead to a very large number of iteration.

This iteration step takes only 1 clock pulse in hardware in
comparison with software simulation, where time of single
iteration depends on the number of gates. Therefore the
advantage of speedup grows with the size of the circuit.

To utilize the advantage of speedup, we need to be able to
switch from faulty state of the circuit to a proper state and vice
versa in a short time. The granularity of the reconfiguration
unit (the needed amount of transferred data) is a very
important factor with respect to the speedup.

Split

intersecting
terms

MCNC & ISCAS
benchmarks

Minimization
BOOM /

Espresso

Conversion
two level on
multi level
network

Single/
multiple
parity

predictor

Minimization
BOOM /Espresso

Conversion
to VHDL

BENCH

PLA

PLA

PLA

BENCH

Original
circuit

Original Check bits
predictor

FPSLIC testing
enviroment

FPSLIC benchmark
macro

VHDL VHDL

Syntesize VHDL
Synplify

Syntesize VHDL
Synplify

EDIF EDIFBenchmark
macro

Testing
enviroment

System Designer &
Figaro IDS

VHDL VHDL

FPSLIC
(HW fault injection

and exhaustive
testing)

Fault area
selection,

reconf. data
Bitstream MD4 bitstream

Bitstream data

Results

Figure 2: Hardware emulation design flow

The granularity of dynamic reconfiguration makes
ATMEL’s company FPGA family AT40K (especially
AT94K, which embed AVR) suitable hardware for the
proposed hardware fault emulator.

The hardware emulator presents a collection of the
software tools and Atmel AT40K testing board. The design
flow of hardware emulator of circuit is shown on Figure 2.
The software tools are used to convert benchmarks from
“.pla” format to “.vhdl” format. These software tools also
allow the self-checking modification of the original circuit.
The synthesis and the mapping process are fulfilled manually
by Atmel FPSLIC design tool.

The final bitstream is put into Atmel FPGA. In a software
tool the complete bitstream is analyzed and areas concerning
the fault injection selected. The selection has to be done in
software due to limited capacity of SRAM in AVR, which can
not hold the whole bitstream.

V. IMPLEMENTATION OF BENCHMARKS TESTING IN FPGA

The schematic diagram of the hardware emulator (shown in
Figures 3 and 4) is like as the schematic diagram of the fault
classification presented in [10].

 The hardware part of emulator is based on Atmel FPSLIC
development board. It is divided into AVR part and FPGA
part, see Figure 3.

The AVR controls the test process and reconfiguration.
The partial bitstream concerning faulty areas is loaded into the
SRAM, which is shared between AVR and FPGA. This
bitstream is further analyzed with respect to the real
occupation of LUTs in AVR for its reconfiguration use in
FPGA. A correct bitmask for the test injection is obtained by
the analysis of bitstream/LUT use. This analysis is performed
in AVR, because it needs less computation power than the
transfer of analysis results (considering the time of testing).

FPGA

Tested
benchmark

Test
generator

Comp

checker

Fault
class
logic

AVR

reconfiguration

Ref.
benchmark

SRAM

Commands Results

Figure 3: Basic hardware emulation diagram

The fault classification result can be obtained separately for
each fault or distribution of all faults into 4 categories (see
section 2) can be obtained as a result.

The exhaustive test must be processed for an on-line test.
The testing vectors are generated automatically and only a set
of tested faults are loaded.

The FPGA part consists of one benchmark, which is under
the test, and one reference copy of benchmark, which is
present as a fast source of an error-free output, which is
further compared with the tested copy. The result of
comparison together with the result of a correct codeword
checking is used to classify the fault.

The reconfiguration process is performed during the idle
phase of testing (when the previous exhaustive test is finished
and the new one hasn’t begin) to ensure no testing during the
reconfiguration process. The reconfiguration process begins
by putting the FPGA into the correct state (restoring the

bitstream from the previous fault) and than continues by
uploading a new fault into the bitstream.

The structure of emulator in FPGA (see Figure 4) needs the
additional registers to ensure a maximal clock frequency.

Only one-bit counters are necessary to decide the category
which the injected fault belongs into, therefore they occupy
only one logic cell in the FPGA structure.

clk

sreset

start

vectorSelect

userVector

finish

u

v

TestGenerator

sreset

start

clk

testVector
finish

0

1

DFF

clk

D Q

TestedCircuit1

testVector Result

TestedCircuit2

testVector Result

DFF

clk

D Q

DFF

clk

D Q

Checker

result codeword

Comparator

result1 equal
result2

V

U

Sum1bit

in Sum_U
start
sreset
clk

Sum1bit

in Sum_V
start
sreset
clk

Figure 4: Structure of benchmark test

Parity checkers and comparators are used both in the
hardware emulator (non-TSC versions) and in a dependable
system based on duplex system [6]. Therefore special
attention to them will be paid.

The even and odd parity can by calculated by the following
equations:

a) Even parity

 1210 −⊕⊕⊕⊕= ninininincodeword …
b) Odd parity

 1210 −⊕⊕⊕⊕= ninininncodeword …

in3

in5

in2

in4

Codeword

in1

in0

a) Optimal tree

in3

in4

in2

in5
Codeword

in1

in0

b) Unbalance tree

Figure 5: Optimal and unbalanced tree

The occupied area of even parity checker does not depend
on the realized structure and it is equal to both optimal and
unbalance variant. Only the final delay depends on realized
structure. The optimal tree structure keeps smaller delay than
the delay for unbalance tree structure. The difference between
these two variants is shown in Figure 5. The example is based
on 2-input XOR.

The area occupied by n-long vector in FPGA with p-input

can be expressed by the formula:

⎥
⎥

⎤
⎢
⎢

⎡
−
−

=
1
1

p
nM

, where M is the number of LUTs used.

The solution presented above is fulfilled for even parity

checker realizing only “CheckOK” signal. The odd parity
checker must be used to generate “CheckFAIL” signal. These
signals together form the TSC version of a checker, under the
condition that they don’t share any logic between them. The
area of the even and odd parity is equivalent. The number of
LUTs M used in AT40K for even parity checker is:

⎥⎥
⎤

⎢⎢
⎡ −

=
3

1nM

, where M is the number of LUTs and n is the number of

inputs.

The output of the comparator can be calculated by this

equation:

11221100 ... −− ⊕⋅⋅⊕⋅⊕⋅⊕= nn srsrsrsrequal .

The structure of a comparator is shown in Figure 6. The

comparator is used to analyze whether the primary output is
correct. In the final solution, the comparator is used only for
outputs leaving an FPGA.

The comparator can be divided into 2 phases: a) comparing
pairs of input (producing sub-equals iii srse ⊕=) and b)

final collecting of sub-equals (into equal ∏=
i

iseeq).

The calculation of the area occupied by a comparator must
consider the architecture of a logic cell, especially the number
of inputs to LUT. It is hard to map sub-equals to a LUT with
the odd number of inputs. Only even-input LUTs are
optimally used for sub-equal functions.

LUT

LUT

Input0(0)

Input0(1)

Input1(0)

input1(1)

subequal0

LUT

Input0(2)

Input0(3)

Input1(2)

input1(3)

subequal1

LUT

Input0(4)

Input0(5)

Input1(4)

input1(5)

subequal2

LUT

Input0(6)

Input0(7)

Input1(6)

input1(7)

subequal3

equal

Figure 6: Comparator

Resulting size of TSC versions of the comparator and the
checker is described in section 6. The area occupied by the
checker and the comparator in our hardware emulator is only
half-size, because non-TSC versions are present.

The problem of AND-tree of sub-equal size enumerating is
similar to a parity tree, therefore calculation will be omitted.

The number of LUTs M used for the comparator in worse
case is:

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡
−⎥⎥

⎤
⎢⎢
⎡

+⎥⎥
⎤

⎢⎢
⎡=

3

1
2

2

n
n

M

, where M is the number of 4-input LUTs and n is the
number of inputs. The size of checker and comparator is not
dramatically high.

The test is divided into two parts. These parts are
composed from a safe test set and a risk test set. Our hardware
simulator can test only a part of the safe test set composed
mainly from look-up-table tests. This test set covers only 11
percents of the AT40K bitstream size. The risk test set is
composed of interconnection tests and can cause shorts. To
the risk test set consist of the interconnection between cells
(23 percents), the interconnection inside cells (36 percents)
and 30 percent belong to others configuration bits (for
example clock distribution, input/output cell and RAMs).

VI. SIMULATION RESULTS

The simulation design methodology shown in Figure 2 was
used to generate bitstream for many MCNC benchmarks. The
benchmark’s bitstream was loaded into Atmel FPGA. The
faults were injected only into used parts of LUTs. The fault
injection into unused logic would increase only number of
undetected faults. The unused logic is generated in a case
when less than 4-inputs LUTs are used. The hidden faults can
obviously occur in the unused logic, therefore it is not
possible to detect them by any way.

Results of hardware fault emulation are shown in Table 1.
Here “Circuit” is benchmark name, “Inputs” and “Outputs”
are numbers of primary inputs and primary outputs, “Original
circuit” means a number of used LUTs for original circuit,
“Parity generator” means a number of used LUTs for the
parity generator, “Number of all faults” are all tested faults
and “A, B, C, D” are classes derived by our fault
classification.

Table 1: Result of fault simulation - classes

C
ir

cu
it

In
pu

ts

O
ut

pu
ts

O
ri

gi
na

l c
ir

cu
it

[L
U

T
s]

Pa
ri

ty
 g

en
er

at
or

 [L
U

T
s]

N
um

be
r

of
 a

ll
fa

ul
ts

A
 (h

id
de

n
fa

ul
ts

)

B
 (d

et
ec

te
d

fa
ul

ts
)

C
 (u

nd
et

ec
te

d
fa

ul
ts

)

D
 (t

em
po

ra
ry

 d
et

ec
te

d)

alu1 12 8 8 47 656 0 656 0 0
alu2 10 8 44 47 1072 109 935 0 28
alu3 10 8 45 45 1044 130 877 8 29
Apla 10 12 48 25 900 141 625 5 129
br1 12 8 50 15 810 141 456 69 144
s1488 14 25 310 50 4286 638 3060 85 503
s1494 14 25 276 53 3938 645 2785 67 441
s2081 18 9 22 25 536 22 494 0 20
s386 13 13 57 18 976 170 646 25 135

Results of ST, FS properties and area occupation are shown

in Table 2., Here “Circuit” is benchmark name, “Original
circuit” is number of used LUTs for original circuit, “Parity
generator” is number of used LUTs for parity generator,
“Area overhead” is area needed for parity generator in
percentage, “TSC checker” and “TSC comparator” are
numbers of used LUTs for TSC checker and output TSC
comparator, “ST coverage, FS coverage” are self-testing and
fault secure properties in hardware emulation, “FS coverage in
SW” is fault secure property in software simulation and “Test
time” is time needed for full test execution in hardware
emulation.

The resulting FS property of tested circuit is higher than
70% for all benchmarks, even better on average. The area
overhead depends on tested benchmarks. For 50% of
benchmarks the area overhead is less than 50%. The

benchmarks “alu” are typical problem for single parity
generator.

Table 2: ST and FS properties results
C

ir
cu

it

O
ri

gi
na

l c
ir

cu
it

[L
U

T
s]

Pa
ri

ty
 g

en
er

at
or

 [L
U

T
s]

A
re

a
ov

er
he

ad
 [%

]

T
SC

 c
he

ck
er

[L
U

T
]

T
SC

 c
om

pa
ra

to
r[

L
U

T
s]

ST
 c

ov
er

ag
e[

%
]

FS
 c

ov
er

ag
e

[%
]

FS
 c

ov
er

ag
e

in
 S

W
 [%

]

alu1 8 47 588 6 14 100.0 100.0 100
alu2 44 47 107 6 14 89.83 97.4 92
alu3 45 45 100 6 14 86.78 96.5 90
apla 48 25 52.1 8 16 83.78 85.1 83
br1 50 15 30.0 6 10 74.07 73.7 63
s1488 310 50 16.1 16 34 83.13 86.3 86
s1494 276 53 19.2 16 34 81.92 87.1 86
s2081 22 25 114 6 16 95.90 96.3 96
s386 57 18 31.6 8 18 80.02 83.6 71

The software simulator is slower than the hardware

emulator. Results of consumed time are described in Table 3.
Here “Circuit” is benchmark name, “Inputs” are numbers of
primary inputs and primary outputs, “Software simulation” is
time needed for full test execution in software simulation,
“Hardware emulation” is time needed for a full test execution
in the hardware emulation, “SW/HW time rate” is the speedup
factor between the hardware and software simulation time.

Table 3: Software/hardware simulation time

Circuit Inputs
SW

simulation
[s]

HW
emulation

[s]

SW/HW
time
rate

alu1 12 34.0 0.92 37.0
alu2 10 9.0 0.41 22.0
alu3 10 6.9 0.41 16.8
apla 10 6.0 0.34 17.6
B11 8 0.8 0.06 13.3
br1 12 18.0 1.10 16.4

s1488 14 2406.3 23.82 101.0
s1494 14 2518.9 21.84 115.3
s2081 18 1217.9 49.30 24.7
S27 7 0.1 0.03 3.3
s386 13 677.7 2.49 272.2

The time for reconfiguration is negligible in comparison

with exhaustive test of circuit. All hardware simulation time
cover testing time, reconfiguration time, reconfiguration
preparation time and AVR overhead. The synthesis time is not
included in results.

VII. CONCLUSION

The hardware fault emulator for our modified duplex
system based on two FPGAs has been presented. In this
emulator we are able to calculate FS, ST and TSC parameters
of tested circuit more exactly than in the software simulator.

Experimental results of several benchmarks show
consistency between the software fault simulation results and
hardware fault emulation results, see Table 2.

Our future work will be dedicated to several practical case
studies (e.g., railway applications). We will focus on the fault
list creation, which would make shorts and opens testing
possible, either based on the fault injection into the
interconnection of the FPGA (the risk test set) or based on the
transformation of the risk test set into the safe LUT testing.

VIII. ACKNOWLEDGMENTS

This research has been supported in part by the
MSM6840770014 research program.

IX. REFERENCES
[1] Dobiáš, R., Kubátova, H.:“FPGA Based Design of Raiway's Interlocking

Equipment”, In Proceedings of EUROMICRO Symposium on Digital
System Design. Piscataway: IEEE, 2004, pp 467-473.

 [2] QuickLogic Corporation.: Single Event Upsets in FPGAs, 2003,
www.quicklogic.com

[3] Bellato, M., Bernardi, P., Bortalato, D., Candelaro, A., Ceschia, M.,
Paccagnella, A., Rebaudego, M., Sonza Reorda, M., Violante, M.,
Zambolin, P.: “Evaluating the effects of SEUs affecting the
configuration memory of an SRAM-based FPGA.” Design Automation
Event for Electronic System in Europe 2004, pp. 584-589.

[4] Sterpone, L., Violante, M.: “A design flow for protecting FPGA-based
systems against single event upsets “, DFT2005, 20th IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 436 –
444.

[5] Normand, E.: “Single Event Upset at Ground Level,” IEEE Transactions
on Nuclear Science, vol. 43, 1996, pp. 2742-2750.

[6] Dobiáš, R., Kubalík, P., Kubátová, H.: “Dependability Computations for
Fault-Tolerant System Based on FPGA”, In Proceedings of the 12th
International Conferrence on Electronics, Circuits and Systems, IEEE
Circuits and Systems Society, 2005, vol. 1, pp. 377-380.

[7] Pradhan, D. K., Fault-Tolerant Computer System Design, Prentice-Hall,
Inc., New Jersey, 1996.

[8] Kubalik, P., Dobias, R., Kubatova, H.: “Dependable Design for FPGA
based on Duplex System and Reconfiguration”, In Proceedings of 9th
Euromicro Conference on Digital System Design, Los Alamitos: IEEE
Computer Society, 2006, pp. 139-145.

[9] Kubalík, P., Fiser, P., Kubátová, H.: “Minimization of the Hamming
Code Generator in Self Checking Circuits”, Proceedings of the
International Workshop on Discrete-Event System Design - DESDes'04.
Zielona Gora: University of Zielona Gora, 2004, pp. 161-166.

[10] Kafka L., Kubalík P., Kubátová H., Novák O.: “Fault Classification for
Self-checking Circuits Implemented in FPGA”, Proceedings of IEEE
Design and Diagnostics of Electronic Circuits and Systems Workshop.
Sopron University of Western Hungary, 2005, pp. 228-231.

[11] Kafka, L.: “Design of TSC circuits implemented in FPGA”, CTU FEE,
2004, (in Czech).

[12] Kvasnicka, J.: “Highly Reliable Design Based on FPGA circuits”, CTU
FEE, 2006, (in Czech).

[13] Kafka, L., Novak, O.: “FPGA-based fault simulator”, In Proceedings of
the 2006 IEEE Workshop on Design and Diagnostics of Electronic
Circuits and Systems DDECS2006, CTU Prague 2006, vol. 1, pp. 274-
278.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

