
Output Grouping Method Based on a Similarity
of Boolean Functions

Petr Fišer, Pavel Kubalík, Hana Kubátová
Department of Computer Science and Engineering

Czech Technical University
Karlovo nám. 13, 121 35 Prague 2

e-mail: fiserp@fel.cvut.cz, xkubalik@fel.cvut.cz, kubatova@fel.cvut.cz

Abstract
A method allowing us to efficiently group the multi-output Boolean function outputs is

presented in this paper. Some kind of decomposition is usually involved in the logic synthesis
process. Here the circuit has to be repeatedly divided into subcircuits, until these subcircuits become
technological library elements or technology-dependent components, in general. Our
output-grouping method can be used to compute which functions of a set of Boolean functions could
share most of logic. This idea can be exploited in single-level decomposition, where a two-level
multi-output circuit is divided into several stand-alone blocks, while retaining their two-level nature.
The total size of these circuits should be kept minimal. After such single-level decomposition the
circuits are further processed by a common synthesis process.

Obtained results are shown in this paper, for a set of standard MCNC and ISCAS benchmarks.
Two general problems to be solved were considered for tests: an output-grouping based
decomposition and a parity predictor synthesis, which is used in an on-line diagnostic design.

1. Introduction
It is always necessary to perform some kind of decomposition when designing complex VLSI

circuits, with respect to available components. Most of up to now proposed methods start with a
two-level Boolean network (sum-of-products) and try to decompose it into a multi-level network. The
Boolean function is being manipulated so as to extract subfunctions common to more of its parts. This
is being done either algebraically, by finding the function’s common divisors (kernels) [1], by using
computationally demanding Boolean methods [2, 3], or by using a functional decomposition [4, 5],
lately based on BDDs [6, 7]. Nowadays, a functional bi-decomposition plays a big role, for it is
generally usable for most of applications [8, 9, 10].

Most of the previously mentioned methods are primarily intended for single-output functions, even
when they can be extended to multi-output functions. Nevertheless, there is no method strictly
determining relations between the multi-output Boolean function’s outputs. Our partitioning method is
based on grouping the output variables. There can be a relationship between several outputs of the
function found. The proposed method is based on computing the measure of a “similarity”
of functions. When two Boolean functions are similar, there is a big chance they may efficiently share
a lot of logics. Thus, grouping those “similar” functions together could be advantageous, when output
decomposition is needed. If proper output grouping is found, the resulting logic of the overall design is
significantly reduced.

The method naturally found its next application in the on-line BIST (Built-in Self-Test) design
[11, 12]. Here the functions are grouped together to form parity bits of the parity predictor. The parity
groups are generated from the original circuit outputs, by successively XOR-ing them. A choice
of outputs to be XORed plays an important role in the resulting area overhead.

The paper is structured as follows: the principles of the single-level partitioning are given in Section
2, the principles of our output grouping method based on a similarity of functions is described
in Section 3. Its application to on-line BIST is shown in Section 4, Section 5 concludes the paper.

2. Output Grouping
Let us consider a need to divide a circuit into several stand-alone blocks having a limited number

of outputs (into e.g., PLAs, PALs, GALs). These blocks have to be synthesized separately then, since
they cannot share internal signals. The blocks can share input variables only. Such a case
of decomposition will be denoted as a single-level partitioning, since the number of levels of the
circuit remains unchanged, see Fig. 1.

Figure 1: Single-level partitioning

Our task is to determine which outputs should be grouped together, i.e., finding an output grouping.

If the outputs that are to be grouped together are properly determined, the complexity of the individual
blocks is reduced.

Since the blocks cannot share the group terms (or subfunctions when they are designed as
multi-level), the total complexity of the overall design must be naturally increased, in comparison
to the all-in-one design. When our technique is used, this cost of the decomposition is reduced
to minimum.

3. Similarity-Based Output Grouping
The method is based on joining functions (i.e., outputs of multi-output functions) that are somehow

similar. Then there should be a big chance that the two functions will share a lot of logics. The task is
to determine how to compute the measure of similarity of two Boolean functions.

The main idea is based on these straightforward observations:

(I) Two equal functions are “very” similar
(II) Two inverse functions are very similar too, since they could differ at most by one inverter

in the final (multilevel) design

These two criteria could be combined together to form a new, general one:

(III) Two functions are similar, if a change of a value of one input variable induces a change
of values of both the functions, or the values of both functions do not change. This should
be checked for all possible input variable changes.

To quantify a vague term of a “similarity” of two Boolean functions, a scoring function

is introduced. To compute the value of the scoring function, all the functions’ minterms are processed.
For each minterm each input variable value is switched and values of the outputs of the two functions
are observed. If both values remain unchanged, the scoring function is increased by one, since this
represents the same behavior of these two functions. If both values change, regardless the logic values,
the scoring function is increased by one as well. In other cases, when one output value changes and one
not, the score remains unchanged.

The complexity of this algorithm is O(n.2n), where n is the number of input variables. For all the 2n
minterms n variable swaps are explored. The actual complexity can by reduced to ½ n.2n. Only 0→1
swaps can be considered, since all the reverse swaps will yield the same result, thus just doubling the
score.

Two equal functions will obtain the highest score by this algorithm. Two inverse functions will
obtain the highest score as well.

Such an approach is very straightforward and apparently inefficient, due to its prohibitively high
complexity. However, we have used this approach in our experiments, since functions described
by minterms were needed for on-line BIST design [12], see Section 4.

Nevertheless, the scoring function can be computed in a much more efficient way: by using a
Boolean difference function [16]. A Boolean difference of a function f(x0, …xn), with respect to an
input variable xi can be computed as:

),...,0,...,(),...,1,...,(
),...,(

00
0

nini
i

n xxxfxxxf
x

xxf =⊕==
∂

∂
 (1)

As a result we obtain a Boolean function which is equal to 1, if a change of xi induces a change

of f(x0, …xn). Thus, the size of the Boolean difference function (i.e., number of its 1-minterms)
describes the number of 1-minterms of f(x0, …xn) for which a change of xi induces a change
of f(x0, …xn). To derive the cubes for which two functions simultaneously change their value
by changing a value of xi, we compute Boolean differences of these two functions with respect to xi
and compute their intersection, i.e., a Boolean product. The size of this product will correspond to the
number of minterms, for which both functions will change a value, if xi changes.

Similarly, the number of minterms, for which both functions will not change a value, if xi changes
can be computed using a Boolean indifference, i.e., a negation of a Boolean difference:

),...,0,...,(),...,1,...,(
),...,(

00
0

nini
i

n xxxfxxxf
x

xxf =⇔==
∂

∂
 (2)

As a result, the scoring function for functions f(x0, …xn) and g(x0, …xn) is computed as:

∑
−

=














∂
∂

⋅
∂

∂
+

∂
∂

⋅
∂

∂
=

1

0

0000),...,(),...,(),...,(),...,(n

i i

n

i

n

i

n

i

n

x

xxg

x

xxf

x

xxg

x

xxf
s (3)

Notice that the complexity of the computation of the score is polynomial with n, thus it can be used

for any problem sizes. Such a method is applicable to functions described by any algebraic expression.

3.1. Example

A very simple example of the score computation is shown here, to illustrate the principles of the
method. The score for the two following functions is to be computed:

cbacacabf

bcaf

++=

+=

2

1 (4)

Boolean differences with respect to all input variables are computed for both functions and sizes

of their products are summed:

() ()

()
()

2

..

1

21

2

1

=

=+=
∂
∂

∂
∂

=⊕+=
∂
∂

+=⊕+=
∂
∂

cb

cbbcb
a

f

a

f

bccbcb
a

f

cbbcbc
a

f

()

() ()

00

0. 21

2

1

=

=
∂
∂

∂
∂

=+⊕+=
∂
∂

=⊕+=
∂
∂

b

f

b

f

aaccacaca
b

f

caaca
b

f

()

()

2

.

1

21

2

1

=

=
∂
∂

∂
∂

=⊕+=
∂
∂

=⊕+=
∂
∂

ba

ba
c

f

c

f

abbaa
c

f

baaba
c

f

Figure 2: Difference computation example

The total score obtained from the difference computation is 2 + 0 + 2 = 4.
Now the indifference score has to be computed and added, to obtain the total score:

() ()

()

()
00

0..

1

21

2

1

=

==
∂
∂

∂
∂

=⇔+=
∂
∂

=⇔+=
∂
∂

bbc
a

f

a

f

bccbcb
a

f

bcbcbc
a

f

()

() ()

2

. 21

2

1

=

=
∂
∂

∂
∂

=+⇔+=
∂
∂

+=⇔+=
∂
∂

ca

ca
b

f

b

f

aaccacaca
b

f

caaca
b

f

()

()

00

0.

0

21

2

1

=

=
∂
∂

∂
∂

=⇔+=
∂
∂

+=⇔+=
∂
∂

c

f

c

f

abbaa
c

f

baaba
c

f

Figure 3: Indifference computation example

The total score obtained from the indifference computation is 0 + 2 + 0 = 2. Thus, by summing
these two scores we obtain the total score of 6.

3.2. Scoring Matrix

By computing the score for each pair of output variables we obtain a scoring matrix. It is a
symmetric matrix of dimensions (m, m), where m is the number of output variables. The value in a
cell [i, j] represents a scoring function value for variables i and j. The multi-output function’s outputs
are grouped together according the scoring matrix values. The output-grouping algorithm proceeds as
follows:

1. Assign the first output variable to the first block. Since there is no relationship between

outputs and blocks yet, it can be freely done.
2. Find the maximum scoring matrix value, corresponding to outputs i and j. These outputs

should be grouped together, since their “similarity value” is the highest one.
3. If one of these outputs is already assigned to a block, append the second one, if possible

(maximum number of block’s outputs is not exceeded).
4. If none of them is assigned, try to find an empty block and assign both outputs to this block.
5. If no free block is available, try to put them both into some block.
6. If there is not enough place to put both the outputs into one block, assign them randomly.

This simple algorithm yields an assignment of all output variables to the blocks, while the

function’s similarity is exploited. Such an algorithm could be further refined by analyzing the scoring
matrix more thoroughly, in order to find groups of outputs more precisely. This will be the aim of our
further research.

3.3. Experimental Results

We have evaluated the efficiency of the algorithm on some of the MCNC benchmarks. For each
of the benchmark circuits we have performed three experiments:

• First, the respective benchmark circuit has been minimized by BOOM [13]. This experiment
has been done to estimate the circuit size when no partitioning is used.

• In the second group of experiments we have divided the circuit into several blocks (b), while
all the output variables were assigned to the individual blocks purely at random. Then the
circuit has been minimized by BOOM. 100 experiments were performed and an average value
was taken, to ensure good statistical values.

• Finally the similarity-based output grouping method was used. We have made an experiment
similar to the previously described one, but the output variables were assigned to the blocks
using the proposed method.

These three experiments will show the differences between the all-in-one implementation of the

benchmark circuit, the circuit divided into several blocks with randomly assigned outputs and our
method. The number of blocks was selected accordingly the number of the circuit’s outputs, to be
somehow balanced with the number of outputs. However, any circuit may be divided into an arbitrary
number of blocks, without loosing the efficiency of the algorithm.

The benchmark results are shown in Table 1. After the benchmark name the numbers of the primary
inputs (i) and outputs (o) of the circuit are presented. The next column gives the number of gate
equivalents [14] of the minimized circuit. Next, there is the number of blocks, into which the circuit is
being decomposed. The numbers of outputs of all the blocks were kept equal. The “Random output

grouping” columns shows the minimization results, for the experiment where the outputs are assigned
to the blocks randomly. The “Similarity-based output grouping” labeled columns describe the results
obtained by our newly proposed method. The last column, “impr.” shows the improvement against the
previous (random) method.

Table 1. Output grouping results

 No decomp. Random output grouping Similarity-based output grouping
bench i o GEs blocks GEs GEs impr.
al2 16 47 206.5 5 244.0 218.0 10.7%
amd 14 24 334.5 3 460.0 429.0 6.7%
b2 16 17 989.5 4 2018.5 1807.5 10.5%
b7 8 31 81.0 4 105.0 88.5 15.7%
b11 8 31 81.0 4 105.5 87.5 17%
br1 12 8 130.0 3 215.0 186.5 13%
dk17 10 11 70.5 3 84.0 72.5 13.7%
exps 8 38 910.0 4 1473.0 1256.0 14.7%
luc 8 27 162.5 3 244.0 228.0 6.6.%

4. Application to On-Line BIST
The above-described algorithm can be very efficiently applied to on-line BIST (Built-in Self-Test).

The parity predictor is used to generate proper output parity, see Figure 2. The parity predictor is
designed by duplicating an original combinational circuit. The output nets of the duplicate circuit are
XORed together to obtain output check bits. The predictor outputs are being gradually XORed in the
design process, until one or more parity bits are obtained (see Fig. 4). Two nets are XORed together in
each step, by using the scoring function [see Fig. 5]. Thus, the number of outputs (now the parity bits)
is being gradually decreased, until the required number of parity bits is obtained. The scoring matrix is
recomputed after each step, to reflect the newly obtained output function.

The number of final parity bits (check bits) selected influences the area overhead, together with the
dependability parameters [12]. Thus, proper number of parity bits has to be chosen, according to the
designer’s needs.

Combinational
circuit

Inputs

}
Parity

predictor

Checker

circuit

Outputs

code
word

Check
bits

Figure 4: The on-line diagnostics design

Figure 5: The parity prediction

4.1. Parity Bits Grouping

An algorithm used for grouping the circuit’s outputs to form the parity bits is described here. The
selection of outputs to be joined by a XOR gate is of a key importance for the final design area
overhead.

Since the parity predictor is constructed by gradually joining the original circuit’s outputs
by 2-input XOR gates, our primary task is to properly choose the two outputs to be joined in each step.
The function similarity-based approach can be exploited very well. The basic idea of the algorithm
is based on these facts and assumptions:

(1) When two equal functions are joined by a XOR gate, the resulting value will be ‘0’ for all

minterms. If the values of two functions will differ in a couple of minterms only, there will be
only several ‘1’ values in the resulting XORed function. Experiments show that a low number
of ‘1’s at the output is very advantageous for the subsequent minimization process (Fig. 6).

(2) Two inverse functions, when XORed, yield a ‘1’ value for each minterm. If the output values
of two functions are inverse but a few minterms, there will be only few ‘0’ values in the result.
This is advantageous for the minimization too (Fig. 6).

(3) And, consequently, if two functions are “similar”, there is a big probability that they will share
a lot of logic in the implemented design. If these functions are joined together, there is a big
chance for an overall area reduction.

The first two statements were based on an assumption, that it is advantageous for the minimization,

when function values are either ‘0’s or ‘1’s for most of minterms. This is documented in Fig. 6.
A typical dependency of an area overhead on the number of ‘1’ values in the output is shown.
100-input and 20-output functions with 100 terms defined were minimized in this experiment. The
number of ‘1’s in the output was changing from 10% to 90% while the number of gate equivalents [14]
of the circuit obtained after a minimization using BOOM [13] was measured. We can see that low or
high values of the ratio of ‘1’s to ‘0’s involve best solutions.

10% 20% 30% 40% 50% 60% 70% 80% 90%
100

150

200

250

300

350

400

450

G
E

s

% of 1's in the output

Figure 6. Dependency of the area overhead on the ratio of output ‘1’s

The functions are described by values of all minterms, i.e., functionally, not by a netlist. Thus, the

final checker design has to be synthesized “from scratch”. This brings us an advantage, since the
synthesis process is able to recognize the similarity of functions and design the decoder efficiently.

4.2. On-Line BIST Experimental Results

Like in the previous set of experiments, our method is compared with a purely randomized method
here. All the circuit complexity values are measured as gate equivalents [14], obtained after the
synthesis. An area reduction obtained by the proposed method, with respect to the random method, is
shown in the “Red.” column. The random assignments were run 500-times and the values averaged.

Two-bit parity has been chosen for these experiments, thus the outputs were gradually XORed, until
only two remained.

Sometimes there can be observed a very significant improvement with respect to the random
method, up to more than 90%.

Table 2. Comparison results

Circuit Random [GEs] Similarity [GEs] Red.
alu1 967 156 83.9 %
apla 128 76 40.6 %
b11 36 21 41.7 %
br1 80 68 15 %
alu2 418 40 90.4 %
alu3 433 320 26.1 %

s1488 364 241 33.8 %
s386 87 73 16.1 %

5. Conclusions
A novel circuit decomposition and output grouping method is presented in this paper. It is based

on an evaluation of a “similarity” of Boolean functions. Functions that are found to be “similar” share
a lot of logic, thus, when they are grouped together, many resources are spared. The output grouping
retains a two-level nature of the circuit, hence we call it a single-level partitioning.

A very efficient application of the method to an on-line BIST design is proposed. Here the circuit
outputs are joined together by XOR gates, to form a parity predictor. The parity predictor outputs are
compared with the outputs of the original circuit, and thus the proper circuit’s function is checked. The
proposed method helps to reduce the parity predictor logic overhead to minimum. The area overhead
reduction sometimes reaches more than 90% with when compared to a random method.

The results obtained by using our method are presented and compared with a random-based
approach. Standard MCNC and ISCAS benchmarks were used.

Acknowledgement
This research has been supported by MSMT under research program MSM 6840770014 and by a

grant GA102/04/0737

References
[1] R. K. Brayton, C. T. McMullen: The Decomposition and Factorization of Boolean Expressions, In Proc. of the IEEE

International Symposium on Circuits and Systems, pp. 49-54, 1982
[2] S. Muroga, Y. Kambayashi, J. C. Lai, J. N. Culliney: The Transduction Method – Design of Logic Networks Based on

Permissible Functions, IEEE Trans. on Computers, C-38(10), pp. 1404-1424, 1989
[3] T. Stanion, C. Sechen: Boolean Division and Factorization using Binary Decision Diagrams, IEEE Trans on CAD, CAD-

13(9), pp. 1179-1184, 1994
[4] R. L. Ashenhurst: The Decomposition of Switching Functions, In Proc. of International Symposium on the Theory of

Switching, pp. 74-116, 1957
[5] J. P. Roth, R. M. Karp: Minimization over Boolean Graphs, IBM Journal of Research and Development, Vol. 6, No. 2, pp.

227-238, 1962
[6] R. E. Bryant: Graph-Based Algorithms for Boolean Function Manipulation, IEEE Trans. on Computers, C-35(8), pp. 677-

691, 1986
[7] Y. T. Lai, M. Pedram, S. Vrudhula: BDD Based Decomposition of Logic for Functions with Applications to FPGA

Synthesis, In Proc. Design Automation Conference, pp. 642-647, 1993
[8] T. Sasao, J. T. Butler: On Bi-Decompositions of Logic Functions, ACM/IEEE International Workshop on Logic Synthesis,

Tahoe City, California, 1997
[9] A. Mischenko, B. Steinbach, M. Perkowski: An Algorithm for Bi-decomposition of Logic Functions, In Proc. of Design

Automation Conference, pp. 103-108, 2001
[10] L. Jozwiak, S. Bieganski: Information Trans-coders in Information-driven Circuit Synthesis, Proc. 30th Euromicro

Symposium on Digital Systems Design (DSD'04), Rennes (FR), 31.8. - 3.9.04, pp. 288-297
[11] P. Kubalík, P. Fišer, H. Kubátová: Minimization of the Hamming Code Generator in Self Checking Circuits, Proceedings of

the International Workshop on Discrete-Event System Design - DESDes'04. Zielona Gora: University of Zielona Gora,
2004, s. 161-166

[12] P. Kubalík, P. Fišer, H. Kubátová: Fault Tolerant System Design Method Based on Self-Checking Circuits, Proc. 12th
International On-Line Testing Symposium 2006 (IOLTS'06), Lake of Como, Italy, July 10-12, 2006

[13] J. Hlavička, P. Fišer: BOOM - A Heuristic Boolean Minimizer, Computers and Informatics, Vol. 22, 2003, No. 1, pp. 19-51
[14] G. De Micheli: Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994
[15] D. K. Pradhan: Fault-Tolerant Computer System Design, Prentice-Hall, Inc., New Jersey, 1996
[16] Ch. Posthoff, B. Steinbach: Logic Functions and Equations – Binary Models for Computer Science, Springer, Berlin,

Heidelberg, New York, 2004, pp. 1 – 392

