Output Grouping Method Based on a Similarity
of Boolean Functions

Petr FiSer, Pavel Kubalik, Hana Kubéatova
Department of Computer Science and Engineering
Czech Technical University
Karlovo nam. 13, 121 35 Prague 2
e-mail: fiserp@fel.cvut.cz, xkubalik@fel.cvut.cz, kubatova@fel.cvut.cz

Abstract

A method allowing us to efficiently group the mudtitput Boolean function outputs is
presented in this paper. Some kind of decomposigonsually involved in the logic synthesis
process. Here the circuit has to be repeatedlgléd/into subcircuits, until these subcircuits beeom
technological library elements or technology-degerid components, ingeneral. Our
output-grouping method can be used to compute whiicttions of a set of Boolean functions could
share most of logic. This idea can be exploitesiimgle-level decomposition, where a two-level
multi-output circuit is divided into several staabne blocks, while retaining their two-level natur
The total size of these circuits should be keptiméh After such single-level decomposition the
circuits are further processed by a common syrgh@sicess.

Obtained results are shown in this paper, for atstandard MCNC and ISCAS benchmarks.
Two general problems to be solved were considemed tésts: an output-grouping based
decomposition and a parity predictor synthesisctviis used in an on-line diagnostic design.

1. Introduction

It is always necessary to perform some kind of dgmusition when designing complex VLSI
circuits, with respect to available components. Mofsup to now proposed methods start with a
two-level Boolean network (sum-of-products) andttydecompose it into a multi-level network. The
Boolean function is being manipulated so as toagktsubfunctions common to more of its parts. This
is being done either algebraically, by finding faaction’s common divisors (kernels) [1], by using
computationally demanding Boolean methods [2, B]by using a functional decomposition [4, 5],
lately based on BDDs [6, 7]. Nowadays, a functiobatlecomposition plays a big role, for it is
generally usable for most of applications [8, 9. 10

Most of the previously mentioned methods are pripamtended for single-output functions, even
when they can be extended to multi-output functioNsvertheless, there is no method strictly
determining relations between the multi-output Bawl function’s outputs. Our partitioning method is
based on grouping theutputvariables. There can be a relationship betweenraewvatputs of the
function found. The proposed method is based onpotimg the measure of a “similarity”
of functions. When two Boolean functions are simithere is a big chance they may efficiently share
a lot of logics. Thus, grouping those “similar” fitfions together could be advantageous, when output
decomposition is needed. If proper output grousnigund, the resulting logic of the overall design
significantly reduced.

The method naturally found its next applicationtlie on-line BIST (Built-in Self-Test) design
[11, 12]. Here the functions are grouped togetbdbtm parity bits of the parity predictor. The ibar
groups are generated from the original circuit atgp by successively XOR-ing them. A choice
of outputs to be XORed plays an important rolehitiesulting area overhead.

The paper is structured as follows: the princiglEthe single-level partitioning are given in Seati
2, the principles of our output grouping method dsh®n a similarity of functions is described
in Section 3. Its application to on-line BIST io8m in Section 4, Section 5 concludes the paper.

2. Output Grouping

Let us consider a need to divide a circuit intoesal stand-alone blocks having a limited number
of outputs (into e.g., PLAs, PALs, GALs). Thesedid® have to be synthesized separately then, since
they cannot share internal signals. The blocks share input variables only. Such a case
of decomposition will be denoted assmgle-level partitioning since the number of levels of the
circuit remains unchanged, see Fig. 1.

x1
x2

x3 Block 1p——vy2
x4 —vy3

= e
x5 Block 2 yS
x6 yé

x7

Figure 1: Single-level partitioning

Our task is to determine which outputs should lmeiged together, i.e., finding autput grouping
If the outputs that are to be grouped togethepaoperly determined, the complexity of the indivadiu
blocks is reduced.

Since the blocks cannot share the group terms (bfusctions when they are designed as
multi-level), the total complexity of the overalesign must be naturally increased, in comparison
to the all-in-one design. When our technique isdud@is cost of the decomposition is reduced
to minimum.

3. Similarity-Based Output Grouping

The method is based on joining functions (i.e.patg of multi-output functions) that are somehow
similar. Then there should be a big chance thatwiefunctions will share a lot of logics. The task
to determine how to compute the measure of sirtylafitwo Boolean functions.

The main idea is based on these straightforwardrghtons:

() Two equal functions are “very” similar
(I Two inverse functions are very similar too, sinkeyt could differ at most by one inverter
in the final (multilevel) design

These two criteria could be combined together tmfa new, general one:

() Two functions are similar, if a change of a valdeone input variable induces a change
of values ofboth the functions, or the values bbth functions do not change. This should
be checked for all possible input variable changes.

To quantify a vague term of a “similarity” of two oBlean functions, ascoring function
is introduced. To compute the value of the scofingtion, all the functions’ minterms are processed
For each minterm each input variable value is $witcand values of the outputs of the two functions
are observed. If both values remain unchangedstbeing function is increased by one, since this
represents the same behavior of these two functibheth values change, regardless the logic \wlue
the scoring function is increased by one as welbther cases, when one output value changes and on
not, the score remains unchanged.

The complexity of this algorithm is @¢"), wheren is the number of input variables. For all tHe 2
mintermsn variable swaps are explored. The actual complesdty by reduced to ¥%2". Only 0- 1
swaps can be considered, since all the reversesswitipyield the same result, thus just doubling th
score.

Two equal functions will obtain the highest scorethis algorithm. Two inverse functions will
obtain the highest score as well.

Such an approach is very straightforward and applgrénefficient, due to its prohibitively high
complexity. However, we have used this approacloun experiments, since functions described
by minterms were needed for on-line BIST desigr,[$8e Section 4.

Nevertheless, the scoring function can be computed much more efficient way: by using a
Boolean difference function [16]. A Boolean difface of a functiorf(xy, ...%), with respect to an
input variablex, can be computed as:

Of (Xgy--1X,)
0X;

= f(XgyeeX =1..,%,) O F(Xp,-.0% =0,...,X,) (1)

As a result we obtain a Boolean function whichdsia@ to 1, if a change of induces a change
of f(xo, ...%). Thus, the size of the Boolean difference functioe., number of its 1-minterms)
describes the number of 1-minterms f¢f, ...x) for which a change ok induces a change
of f(Xo, ...>%). To derive the cubes for which two functions sitanéously change their value
by changing a value of, we compute Boolean differences of these two fanstwith respect to;
and compute their intersection, i.e., a Boolearpcb The size of this product will correspondhe t
number of minterms, for which both functions witlange a value, i changes.

Similarly, the number of minterms, for which botim€tions will not change a value,xf changes
can be computed using a Boolean indifference,d.aggation of a Boolean difference:

5f(xg,...,xn) _

ox (Xgs--sX =1..,%,) = F(XgseesX =0,..0,X,))

As a result, the scoring function for functidfis, ...x) andg(x, ...») is computed as:

10f (%, xn)EQg(xo,... | %) 990,]
e T s | N

Notice that the complexity of the computation of 8tore is polynomial with, thus it can be used
for any problem sizes. Such a method is applicebfanctions described by any algebraic expression.

3.1. Example

A very simple example of the score computationhigven here, to illustrate the principles of the
method. The score for the two following functioega be computed:

f, =a+bc

(4)

f, =abc +ac+abc

Boolean differences with respect to all input Vilés are computed for both functions and sizes
of their products are summed:

62 (1+bc)O(bc)=b +T Z—%:(aw)ma:ac g—Ez(a+b)Da:§b
%:(bﬁ+5c)mc:b %f—;:(a6+§c)ﬂ(§c+ac):a %:(éﬁﬁ)ﬂab:l
‘;; ‘?;; (b+clb=tc %.%‘c—é:o %.%f—é:éb

|| =2 9=0 [ab =

Figure 2: Difference computation example

The total score obtained from the difference computation is 2 2 6 4.
Now the indifference score has to be computed and added aia tis total score:

‘%_f;:(hbc) = (bc)=bc %—E:(a+c) = a=a+C %—fé:(a+b) = a=a+h

%:(bﬁ+50)=» c=b %:(aﬁ+§c) - (ac+ac)=a %:(5'*35)‘:’ ab=0
a oda ob db dc dc

=0 ac| =2 =0

Figure 3: Indifference computation example

The total score obtained from the indifference cotapon is O + 2 + 0 = 2. Thus, by summing
these two scores we obtain the total score of 6.

3.2. Scoring Matrix

By computing the score for each pair of output alalés we obtain @&coring matrix It is a
symmetric matrix of dimensionsn(m), wherem is the number of output variables. The value in a
cell [i, j] represents a scoring function value for varialblaadj. The multi-output function’s outputs
are grouped together according the scoring matines. The output-grouping algorithm proceeds as
follows:

1. Assign the first output variable to the first blocgince there is no relationship between
outputs and blocks yet, it can be freely done.

2. Find the maximum scoring matrix value, correspogdia outputsi andj. These outputs
should be grouped together, since their “similavijue” is the highest one.

3. If one of these outputs is already assigned tooakblappend the second one, if possible
(maximum number of block’s outputs is not exceeded)

4. If none of them is assigned, try to find an emgtchk and assign both outputs to this block.

5. If no free block is available, try to put them batto some block.

6. If there is not enough place to put both the owjntb one block, assign them randomly.

This simple algorithm yields an assignment of alitput variables to the blocks, while the
function’s similarity is exploited. Such an algbrit could be further refined by analyzing the sagrin
matrix more thoroughly, in order to find groupsaeftputs more precisely. This will be the aim of our
further research.

3.3. Experimental Results

We have evaluated the efficiency of the algorithmsome of the MCNC benchmarks. For each
of the benchmark circuits we have performed thsgeements:

e First, the respective benchmark circuit has beammized by BOOM [13]. This experiment
has been done to estimate the circuit size wherartitioning is used.

* In the second group of experiments we have divitiedcircuit into several block®), while
all the output variables were assigned to the iddad blockspurely at random Then the
circuit has been minimized by BOOM. 100 experimemtse performed and an average value
was taken, to ensure good statistical values.

» Finally the similarity-based output grouping metheds used. We have made an experiment
similar to the previously described one, but thgpouvariables were assigned to the blocks
using the proposed method.

These three experiments will show the differencesveen the all-in-one implementation of the
benchmark circuit, the circuit divided into sevehdbcks with randomly assigned outputs and our
method. The number of blocks was selected accdydiihg number of the circuit's outputs, to be
somehow balanced with the number of outputs. Howeargy circuit may be divided into an arbitrary
number of blocks, without loosing the efficiencytbé algorithm.

The benchmark results are shown in Table 1. ARRerttenchmark name the numbers of the primary
inputs {) and outputsd) of the circuit are presented. The next columregithe number of gate
equivalents [14] of the minimized circuit. Nextetle is the number of blocks, into which the cirgsiit
being decomposed. The numbers of outputs of albtbeks were kept equal. Th&&ndom output

grouping columns shows the minimization results, for thxperiment where the outputs are assigned
to the blocks randomly. TheSifmilarity-based output groupifidabeled columns describe the results

obtained by our newly proposed method. The lastroal ‘impr.” shows the improvement against the

previous (random) method.

Table 1. Output grouping results

No decomp. Random output groupinlg _ Similaritydsheutput groupingj
bench i 0 GEs blocks GEs GEs impr.
al2 16 | 47 206.5 5 244.0 218.0 10.7%
amd 14 | 24 334.5 3 460.0 429.0 6.7%
b2 16 17 989.5 4 2018.5 1807.5 10.5%
b7 8 31 81.0 4 105.0 88.5 15.7%
b1l 8 31 81.0 4 105.5 87.5 17%
brl 12 | 8 130.0 3 215.0 186.5 13%
dk17 10 11 70.5 3 84.0 72.5 13.7%
exps 8 38 | 910.0 4 1473.0 1256.0 14.7%
luc 8 27 | 162.5 3 244.0 228.0 6.6.%

4. Application to On-LineBIST

The above-described algorithm can be very effityempplied to on-line BIST (Built-in Self-Test).
The parity predictor is used to generate propepwuparity, see Figure 2. The parity predictor is
designed by duplicating an original combinationiatwit. The output nets of the duplicate circuié ar
XORed together to obtain output check bits. Thalister outputs are being gradually XORed in the
design process, until one or more parity bits dotained (see Fig. 4). Two nets are XORed together i
each step, by using the scoring function [see 3]igThus, the number of outputs (now the paritg)bit
is being gradually decreased, until the requirethlver of parity bits is obtained. The scoring maisix
recomputed after each step, to reflect the newtgtinbd output function.

The number of final parity bits (check bits) sedetinfluences the area overhead, together with the
dependability parameters [12]. Thus, proper nundfgrarity bits has to be chosen, according to the
designer’s needs.

Checker
Inputs [Combinational|_ Qutputs ‘H
circuit
code
word

Parity Check
predictor bits

Figure 4: The on-line diagnostics design

STEP 1 STEP 2 STEP 3 STEP 4 STEP 5

Figure 5: The parity prediction

4.1. Parity Bits Grouping

An algorithm used for grouping the circuit’s outpud form the parity bits is described here. The
selection of outputs to be joined by a XOR gatefia key importance for the final design area
overhead.

Since the parity predictor is constructed by gréigugining the original circuit's outputs
by 2-input XOR gates, our primary task is to prépehoose the two outputs to be joined in each.step
The function similarity-based approach can be dtgrdovery well. The basic idea of the algorithm
is based on these facts and assumptions:

(1) When two equal functions are joined by a XOR géte, resulting value will be ‘0’ for all
minterms. If the values of two functions will diffin a couple of minterms only, there will be
only several ‘1’ values in the resulting XORed ftion. Experiments show that a low number
of ‘1’s at the output is very advantageous forghbsequent minimization process (Fig. 6).

(2) Two inverse functions, when XORed, yield a ‘1’ valfor each minterm. If the output values
of two functions are inverse but a few mintermgréhwill be only few ‘0’ values in the result.
This is advantageous for the minimization too (Big.

(3) And, consequently, if two functions are “similathere is a big probability that they will share
a lot of logic in the implemented design. If thdaactions are joined together, there is a big
chance for an overall area reduction.

The first two statements were based on an assumplkiat it is advantageous for the minimization,
when function values are either ‘0's or ‘1's for shaf minterms. This is documented in Fig. 6.
A typical dependency of an area overhead on thebeurof ‘1’ values in the output is shown.
100-input and 20-output functions with 100 termdirsial were minimized in this experiment. The
number of ‘1's in the output was changing from 1@#®0% while the number of gate equivalents [14]
of the circuit obtained after a minimization usiBQOM [13] was measured. We can see that low or
high values of the ratio of ‘1’s to ‘0’s involve &tesolutions.

450
400
350

300

GEs

250

200

150 4

100

10% 20% 30% 40% 50% 60% 70% 80% 90%
% of 1'sin the output

Figure 6. Dependency of the area overhead on tleeafoutput ‘1's

The functions are described by values of all mmtgri.e., functionally, not by a netlist. Thus, the
final checker design has to be synthesized “fromatsh”. This brings us an advantage, since the
synthesis process is able to recognize the sityilafifunctions and design the decoder efficiently.

4.2. On-LineBIST Experimental Results

Like in the previous set of experiments, our metlsodompared with a purely randomized method
here. All the circuit complexity values are measluss gate equivalents [14], obtained after the
synthesis. An area reduction obtained by the pregh@sethod, with respect to the random method, is
shown in the Red’ column. The random assignments were run 500-tiamekthe values averaged.

Two-bit parity has been chosen for these experispehtis the outputs were gradually XORed, until
only two remained.

Sometimes there can be observed a very signifitaptovement with respect to the random
method, up to more than 90%.

Table 2. Comparison results

Circuit | Random [GEs] Similarity [GEs] Red.
alul 967 156 83.9 %
apla 128 76 40.6 %
b1l 36 21 417 %
brl 80 68 15%
alu2 418 40 90.4 %
alu3 433 320 26.1 %

51488 364 241 33.8%
5386 87 73 16.1 %

5. Conclusions

A novel circuit decomposition and output groupingthod is presented in this paper. It is based
on an evaluation of a “similarity” of Boolean fuiars. Functions that are found to be “similar” €har
a lot of logic, thus, when they are grouped togethmany resources are spared. The output grouping
retains a two-level nature of the circuit, hencecatt it a single-level partitioning.

A very efficient application of the method to an-love BIST design is proposed. Here the circuit
outputs are joined together by XOR gates, to forpaity predictor. The parity predictor outputs are
compared with the outputs of the original circaitd thus the proper circuit’s function is checkelde
proposed method helps to reduce the parity prediotpc overhead to minimum. The area overhead
reduction sometimes reaches more than 90% with whempared to a random method.

The results obtained by using our method are ptedeand compared with a random-based
approach. Standard MCNC and ISCAS benchmarks veae. u

Acknowledgement

This research has been supported by MSMT undeamas@rogram MSM 6840770014 and by a
grant GA102/04/0737

References

[1] R. K. Brayton, C. T. McMullen: The Decompositiand Factorization of Boolean Expressions, In Pobthe IEEE
International Symposium on Circuits and Systems4pp54, 1982

[2] S. Muroga, Y. Kambayashi, J. C. Lai, J. N. @dy: The Transduction Method — Design of LogicWwatks Based on
Permissible Functions, IEEE Trans. on Computer38d0), pp. 1404-1424, 1989

[3] T. Stanion, C. Sechen: Boolean Division andté&@zation using Binary Decision Diagrams, IEEE isan CAD, CAD-
13(9), pp. 1179-1184, 1994

[4] R. L. Ashenhurst: The Decomposition of SwitahiRunctions, In Proc. of International Symposiunttoa Theory of
Switching, pp. 74-116, 1957

[5] J. P. Roth, R. M. Karp: Minimization over Boale Graphs, IBM Journal of Research and Developnvit,6, No. 2, pp.
227-238, 1962

[6] R. E. Bryant: Graph-Based Algorithms for Boaideunction Manipulation, IEEE Trans. on Comput€&rs35(8), pp. 677-
691, 1986

[7] Y. T. Lai, M. Pedram, S. Vrudhula: BDD Basedddeposition of Logic for Functions with Applicatisho FPGA
Synthesis, In Proc. Design Automation Conferenpefg2-647, 1993

[8] T. Sasao, J. T. Butler: On Bi-Decompositiond.ofjic Functions, ACM/IEEE International Workshop bbogic Synthesis,
Tahoe City, California, 1997

[9] A. Mischenko, B. Steinbach, M. Perkowski: Angakithm for Bi-decomposition of Logic Functions, Rmoc. of Design
Automation Conference, pp. 103-108, 2001

[10] L. Jozwiak, S. Bieganski: Information Transdeos in Information-driven Circuit Synthesis, Pr80th Euromicro
Symposium on Digital Systems Design (DSD'04), Rer{®), 31.8. - 3.9.04, pp. 288-297

[11] P. Kubalik, P. FiSer, H. Kubatova: Minimizatiof the Hamming Code Generator in Self Checkinguils, Proceedings of
the International Workshop on Discrete-Event Sysbesign - DESDes'04. Zielona Gora: University c#l@na Gora,
2004, s. 161-166

[12] P. Kubalik, P. Fi3er, H. Kubatova: Fault Taler System Design Method Based on Self-CheckinguiEs; Proc. 12th
International On-Line Testing Symposium 2006 (IOL0@, Lake of Como, Italy, July 10-12, 2006

[13] J. Hlavika, P. FiSer: BOOM - A Heuristic Boolean Minimiz&€omputers and Informatics, Vol. 22, 2003, No.d, 19-51

[14] G. De Micheli: Synthesis and Optimization afial Circuits. McGraw-Hill, 1994

[15] D. K. Pradhan: Fault-Tolerant Computer Sysf@esign, Prentice-Hall, Inc., New Jersey, 1996

[16] Ch. Posthoff, B. Steinbach: Logic Functionsl &quations — Binary Models for Computer Sciengeirger, Berlin,
Heidelberg, New York, 2004, pp. 1 — 392

