
Flexible Two-Level Boolean Minimizer BOOM-II and Its Applications

Petr Fišer, Hana Kubátová
Czech Technical University

Dept. of Computer Science and Engineering, Karlovo nám. 13, 121 35, Prague 2
e-mail: fiserp@fel.cvut.cz, kubatova@fel.cvut.cz

Abstract

We propose a novel two-level Boolean minimizer
coming in succession to our previously developed
minimizer BOOM, so we have named it BOOM-II. It is
a combination of two minimizers, namely BOOM and
FC-Min. Each of these two methods has its own area
where it is most efficiently applicable. We have
combined these two methods together to be able to
solve all kinds of problems efficiently, independently
on their size or nature. The tool is very scalable in
terms of required runtime and/or quality of the
solution. It is applicable to functions with an extremely
large number of both input and output variables. The
minimization process is very flexible and can be driven
by miscellaneous user-defined constraints, such as
low-power design, design-for-testability and
decomposition constraints. Some of the application
areas are described in the paper.

1. Introduction

The two-level Boolean minimization problem

occurs in many areas of the logic design [1], in the
build-in self-test (BIST) design [2], in a design
of control systems, etc. Since the time when the basis
of minimization algorithms was laid in 50’s by Quine
and McCluskey [3], the minimization process is divided
into two phases: generation of implicants and solution
of the covering problem (CP). A representative of these
principles is, e.g., ESPRESSO [4]. Lately we have
developed the BOOM minimizer [5, 6], capable
to handle functions with a very large number of input
variables, basically based on the same principle.

A common drawback of the previously mentioned
algorithms is the limited size of the problems they can
solve in a reasonable time. When the number of input
variables grows to hundreds (such problems occur,
e.g., in the BIST design), the minimization times are
extremely long. This problem was partially solved by
BOOM. However, the same problem can be
encountered for functions with many outputs – the

group minimization is quite a demanding process and
the runtimes grow with the number of output variables
rapidly as well. Lately we have developed an algorithm
called FC-Min [9] solving this problem efficiently. The
solution is being constructed from group implicants
only, which makes the algorithm extremely fast and
having low memory demands. On the other hand,
FC-Min does not produce good results for functions
with a low number of output variables.

A method where the FC-Min and the original
BOOM algorithms are combined together to achieve
better results is proposed in this paper. Implicants are
being produced both by BOOM and FC-Min and then
they are put together into a common implicant pool.
The final solution is then constructed by solving a
covering problem using all the implicants. The ratio
of runs of both algorithms can be freely adjusted, which
produces good solution for all kinds of problems. Since
the system is a successor of BOOM to some extent, we
have named it BOOM-II. Since FC-Min primarily
produces group implicants, the extremely time-
demanding implicant reduction phase can be omitted in
BOOM-II. These effects are documented in this paper.

This paper then discusses how the minimization
process can be influenced by constraints, like designing
easily decomposable functions, easily testable
functions, low-power design, etc.

The paper is structured as follows: Section 2 defines
the problem statement, the structure and major
principles of BOOM-II will be described in Section 3,
the experimental results are shown in Section 4. The
ways to influence the BOOM-II run are described in
Section 5. Section 6 concludes the paper.

2. Problem Statement

Let us have a set of m Boolean functions of n input

variables. The input variables will be denoted as xi,
0 ≤ I < n, the output variables as yj, 0 ≤ j < m. The
output values of the care terms (both minterms and
terms of a higher dimensions may be used) are defined
by a truth table. To the minterms that are not present in

the truth table are implicitly assigned don’t care values.
The number of defined terms will be denoted as p.

Specifying a Boolean function by its on-set and off
set, rather than by its on-set and don’t care set, is
advantageous especially for highly unspecified
functions, i.e., functions that have the defined values
of only few terms, the rest are don’t cares. A typical
example of a use of such functions can be found, e.g.,
in the build-in self-test (BIST) design [7, 8].

Our task is to synthesize a two-level circuit
implementing a multiple-output Boolean function
described by a truth table, whereas this implementation
should be as small as possible. Thus, we perform a
group two-level minimization. The result will be
in form of a set of m SOP (sum-of-the-products) forms.

3. BOOM-II Principles

As it was stated in the Introduction, BOOM-II is a

composition of two previously published minimization
algorithms - BOOM [5, 6] and FC-Min [9]. Both the
algorithms have their advantages and drawbacks.
BOOM is suitable for problems with a large number
of input variables, but it is somewhat limited regarding
the number of output variables; for a large number
of outputs the runtime rapidly grows and the algorithm
begins to be less efficient as well. This is due to the
time-demanding implicant reduction (IR) phase above
all. BOOM is based on generation of prime implicants
(PIs), and thus it is efficient for problems whose
solution is constructed mostly of PIs. Thus, BOOM is
very efficiently applicable to problems with many
input variables and a low number of outputs.

The second minimizer FC-Min was developed
to handle problems with many output variables. It is
extremely fast - the runtime grows almost linearly with
growing number of both the input and output variables
[9]. The solution is being constructed of group
implicants only (particularly it does not distinguish
between PIs and group implicants). Hence, FC-Min is
good for problems whose solution is constructed
of many group implicants, i.e., problems with many
output variables. On the other hand, it is not suitable
for functions with few outputs, since the cover of the
on-set is being generated purely at random in this case.

Both the algorithms were developed in their
iterative versions. The iterative minimization is based
on a fact that some minimization phases are driven
by random events. Hence, two runs of the same
algorithm on the same problem instance need not
produce equal results. Moreover, a better solution can
sometimes be achieved by combining implicants from
two or more different solutions. In practice, the
algorithm is executed several times, while all the
implicants obtained are put together into a common

implicant buffer. Then the covering problem (CP) is
solved using all of them.

A typical growth of the number of prime implicants
as a function of the number of iterations is shown in
Fig. 1 (thin line). This curve plots the values obtained
during the solution of a single-output problem with 20
input variables and 200 minterms, using BOOM only.
Theoretically, the more implicants we have, the better
is the solution that can be found after solving the
covering problem. In practice, the quality of the final
solution, measured by the number of literals in the
resulting SOP form, improves rapidly during first few
iterations and then remains unchanged, even though
the number of PIs grows. See the thick line in Fig. 1.

Figure 1. Growth of the number of PIs and

decrease of SOP length during iterative
minimization

Figure 2: BOOM-II flowchart

The idea of combining implicants from different

minimization runs gave rise to BOOM-II. The same
problem is solved both by BOOM and FC-Min
(repeatedly), all the implicants are put together and the
covering problem is solved. Prime implicants are more
likely being picked out from the implicants obtained
by BOOM, while the group implicants are produced
by FC-Min. The ratio of the two algorithms can
be adjusted manually by a FC-Min:BOOM factor.
For example, when this factor is set to 1:1, half of the

iterations will be conducted by BOOM and half
by FC-Min in average. The problem of the distribution
of implicants produced by BOOM and FC-Min is
studied more thoroughly in Subsection 4.3. The
flowchart of the BOOM-II system is shown in Fig. 2.

3.1. Brief Summary of BOOM
Like most other Boolean minimization algorithms,

BOOM consists of two major phases: generation of
implicants and the subsequent solution of the covering
problem. At the beginning the m-output function is
split into m single-output functions and a set of PIs is
computed for each function. The most important part
of the algorithm, the Coverage-Directed Search
(CD Search), generates a sufficient set of implicants
needed to cover the on-set of a single function. The
implicants are then passed to the Implicant Expansion
(IE) phase, which converts them into PIs. In the
subsequent Implicant Reduction (IR) phase the PIs are
being reduced to obtain group implicants. Then the
covering problem is solved to obtain the final solution.

The principle of the Coverage-Directed Search
consists in selecting most suitable literals that should
be added to a term under construction. Thus, instead
of increasing the dimension of an implicant starting
from a minterm, we reduce an n-dimensional
hypercube by adding literals to the term, until it
becomes an implicant of the processed function. This
happens at the moment when the resulting hypercube
does not intersect any 0-term. The search for suitable
literals that should be added to a term is directed
towards finding an implicant covering as many 1-terms
as possible. To do this, implicant generation starts by
the most frequent input literal selection from the given
on-set, because the (n-1) dimensional hypercube
covering the most 1-minterms is described by the most
frequent literal appearing in the on-set. The (n-1)
dimensional hypercube found by this way is an
implicant, if it does not intersect any 0-term. If there
are some 0-minterms covered, we add another literal
(the second most frequent one) and verify whether the
new term already corresponds to an implicant by
comparing it with 0-terms that might intersect with this
term. We continue by adding literals until an implicant
is generated, then it is recorded. Then we start
searching for other implicants.

More thorough description of CD-Search and the
subsequent phases can be found, e.g., in [9, 10].

3.2. Principles of FC-Min
The FC-Min minimizer generates the solution in a

completely different way. As it was said before,
classical minimization methods consist of two major
phases: the generation of implicants and the subsequent

covering problem solution, where the irredundant set
of implicants is found in order to cover the on-set.
Such an approach might be very demanding (both
in time and space) for functions with a large number
of input and output variables.

In FC-Min, the process of generating implicants is
conducted in a reverse way. Firstly the cover of the
on-set is found. Then implicants corresponding to this
cover are generated. This reverse approach allowed us
to make a fast Boolean minimizer with extremely low
memory demands. FC-Min does not produce PIs; only
necessary group implicants are directly generated.
As the group implicants are highly important for
problems with many outputs, this makes FC-Min
superior to other minimizers for such problems. On the
other hand, FC-Min is not suitable for problems with a
small number of output variables. It is because the
cover of the on-set is being generated partially ad-hoc
here and thus proper implicants often cannot be found.
For such functions our algorithm mostly cannot
outperform the others (ESPRESSO, BOOM).

The FC-Min algorithm consists of two major
phases: the Find Coverage phase, in which the
rectangle cover [2] of the on-set is found, and the
Implicant Generation phase producing the very
implicants from this cover.

3.3. Covering Problem Solution
It can be seen from Fig. 1 that even a small subset

of PIs may give the minimum solution. However, the
quality of the final solution strongly depends on the CP
solution algorithm. It is impossible to obtain exact
solutions when having a large number of implicants,
since it is an NP-hard problem. Thus some heuristic
must be used.

After an extensive testing we have chosen a greedy
method based on computing the contributions (scoring
functions) of terms as a criterion for their inclusion into
the solution [17]. We construct a covering matrix A, its
dimension will be denoted as (r, s). The columns
correspond to the implicants, rows to the on-set terms
that are to be covered. A[i, j] = 1 if the implicant j
covers the on-set term i, A[i, j] = 0 otherwise. For each
row its strength of coverage is computed as

[]∑

=

=
s

j

i
jiA

x

1
,

1)SC((1)

Then the column contribution is computed for each
column:

∑
=

⋅=
r

i
ij xSCjiAy

1
)(],[)CC((2)

The implicant (column) with the maximum
contribution value is selected into the solution, the
contribution values are recomputed and the process is
repeated until the whole on-set is covered.

4. BOOM-II Results

4.1. Study of the Structure of the Solution
One possibility how to estimate the "usefulness"

of the incorporation of FC-Min into BOOM is
to analyze implicants in the solution. Particularly, we
have studied the origin of the implicants in the final
solution, and analyzed which one of the two algorithms
contributes to it most.

At any time, the set of implicants in the common
implicant buffer (and, of course, in the final solution
too) can be divided into these six groups:

1. Prime implicants (of at least one output function)
found by BOOM only

2. Prime implicants found both by FC-Min and
BOOM

3. Prime implicants produced by FC-Min and which
were not found by BOOM (these had to be
identified by a subsequent analysis, since
FC-Min does not recognize any PIs)

4. Group implicants found by BOOM only
5. Group implicants that have been found both

by FC-Min and BOOM
6. Group implicants produced by FC-Min only
These sets make a decomposition of the set of all

implicants. The union of these six subsets gives all the
implicants, the subsets are disjoint, see Fig. 3. It can be
better visualized by a Venn’s diagram:

Figure 3. BOOM-II implicants

We have minimized a randomly generated function
of 20 input variables, 20 outputs, having 10%
of explicit both input and output don't cares and 500
defined terms. The ratio FC-Min:BOOM was set
to 1:1.

Figure 4 shows the distribution of all the implicants
that were ever produced after 50 iterations. We can see
that 93% of them are prime implicants produced
by BOOM, which seemingly puts the rest (i.e., all the
group implicants) into an unimportant minority.
However, the distribution of implicants in the final
(and thus also the best) solution is shown in Fig. 5.
Here, these make only 58% of the solution, while the

group implicants begin to play an important role. The
most important observation is that FC-Min
significantly contributes to the solution both by group
implicants and PIs. The majority of implicants was
found by BOOM, however we must consider
significantly shorter runtime of FC-Min comparing
to BOOM (especially the IR phase).

Let us note that the total number of implicants
generated in 50 iterations was more than 40000
(in Fig. 4), the solution consisted of 516 implicants
(in Fig. 5). Thus, we can claim that BOOM often
produces many unnecessary PIs, while FC-Min
produces a low number of implicants, which often
could form a significant part of the solution. However,
to reach the best results, running both the BOOM and
FC-Min is required.

 1 - BOOM PIs
 2 - Common PIs
 3 - FC-Min PIs
 4 - BOOM non-PIs
 5 - Common non-PIs
 6 - FC-Min non-PIs

0.41%0.21%1.6%1.6%3%

93%

1 - BOOM PIs
 2 - Common PIs
 3 - FC-Min PIs
 4 - BOOM non-PIs
 5 - Common non-PIs
 6 - FC-Min non-PIs

4.5%
3.3%

9.1%

6.4%
19%

58%

Figures 4, 5. Distribution of all the implicants

and the implicants in the solution respectively

4.2. Comparison Results
In order to estimate the efficiency of the method, we

have compared the results obtained by different
methods. The result quality and minimization runtime
are compared in Table 1 (see the end of the paper).
Several artificial benchmarks were run by ESPRESSO
[1], BOOM, FC-Min, BOOM-II and BOOM-II where
the implicant reduction phase was turned off. All the
BOOM and FC-Min algorithms were run for 100
iterations. The sizes of benchmarks are indicated in the
leftmost column by the number of input variables (n),
output variables (m) and number of terms (p). The
resulting circuit size is given in gate equivalents. For
each instance size 20 benchmarks were processed and
the obtained results averaged.

It can be seen that for circuits having many input
variables BOOM significantly overpowers ESPRESSO
both in time and result complexity. ESPRESSO is
faster for benchmarks having many outputs, however
BOOM yields better results for this case. BOOM-II
efficiently combines the advantages of BOOM and
FC-Min. A good result quality is retained from
BOOM, while there is a significant speed-up given
by-FC-Min. Moreover, additional speed-up is reached,
when the implicant reduction phase of BOOM is
omitted in BOOM-II. It can be seen that it is fully
substituted by FC-Min, since there is no quality loss.

Notice that all the algorithms (except for
ESPRESSO) were run for 100 iterations. If they were
run for one iteration only, the runtime would be more
than 100-times shorter, whereas the result quality only
slightly worse.

4.3. BOOM-II Average Time Complexity
In order to properly estimate the dependency of the

runtime on the instance sizes, we have minimized 20
different problem instances of the same size and
averaged the results. The graphs in Figures 6a, b, c,
show the average dependency of the runtime on the
number of defined terms, for ESPRESSO (a), BOOM
(b) and FC-Min (c). The values of the fixed parameters
are indicated inside of the figures. It can be seen that
the ESPRESSO complexity grows almost linearly,
while the curves representing BOOM and FC-Min
grow apparently faster. On the other hand, the runtime
growth, with respect to the number of input variables,
is very positive for BOOM and FC-Min, see Figures
7a, b, c. The ESPRESSO runtime grows almost
exponentially, while for BOOM it remains almost
constant. In FC-Min, the runtime grows linearly.

100 200 300 400 500
0

5

10

15

20

25

ESPRESSO
20 inputs
10 outputs

Ti
m

e
[s

]

Terms

100 200 300 400 500
0

2000

4000

6000

8000

10000

12000

BOOM
20 inputs
10 outputs

Ti
m

e
[s

]

Terms

100 200 300 400 500
0

100

200

300

400

500

600

FC-Min
20 inputs
10 outputs

T
im

e
[s

]

Terms

Figures 6a, 6b, 6c. Dependency on the number

of terms

50 100 150 200 250 300

0

500

1000

1500

2000

2500

ESPRESSO
5 outputs
200 terms

Ti
m

e
[s

]

Input variables

50 100 150 200 250 300

0

100

200

300

400

500

BOOM
5 outputs
200 terms

Ti
m

e
[s

]

Input variables

50 100 150 200 250 300
20

40

60

80

100

120 FC-Min
5 outputs
200 terms

Ti
m

e
[s

]

Input variables

Figures 7a, 7b, 7c. Dependency on the number

of input variables

5. Influencing BOOM-II Run

Sometimes it is advantageous to influence the
minimization process to satisfy, or at least near to some
technological constraints. Here are some of them:

Decomposition constraints. A two-level minimizer
can “help” the subsequent decomposition phase
to perform better. Particularly, when the circuit is to be
divided into several stand-alone blocks, using, e.g., the
bi-decomposition [16] or functional decomposition
[18], these blocks should share minimum inputs.

The simplest case of such decomposition is the
single-level partitioning. It is based on dividing the
circuit into a given number of blocks, so that their
two-level nature is retained. The blocks may share the
primary inputs, each block generates several outputs.
The SOP terms cannot be shared among the blocks.
This is illustrated by Figure 8. Here a logic function

of 7 inputs x1-x7 and 6 outputs y1-y6 is decomposed
into two 5-input and 3-output blocks while each block
is a two-level (AND-OR) circuit.

Figure 8. A single-level partitioning

In a case of functions having many input variables,
there is a big freedom in choosing implicants (and
consequently literals) to the solution. Thus, the
minimization should be influenced so that the input
variables are not shared between blocks. On the other
hand, the FC-Min Find Cover phase can be modified
to produce results satisfying the output grouping.

Design-for-testability (DFT). To synthesize an
easily testable circuit, we try to reduce the sizes of the
cones. Thus, the number of inputs driving each output
variable should be minimized.

Load Balancing. In some cases it is desirable to
design circuits with balanced loads of its inputs. This
means that the number of branching of the circuit’s
inputs should be kept balanced. Moreover, for a
low-power design the number of branching should be
kept minimal.

5.1. BOOM Algorithm Modification
CD-Search. This is the essential phase that has to be

modified. The algorithm is based on a gradual addition
of literals into the terms. Recall that the candidate
literals are being selected using a scoring function,
which is the frequency of occurrence. Thus, it is easy
to modify this scoring function to manifest the
constraints.

For the partitioning purposes we modify the scoring
function, so that the frequency of the literal that is
already included in the processed block is multiplied
by some factor, and is thus preferred to other literals.
The higher this factor is, the smaller is the number
of input variables entering the blocks.

For DFT purposes, further modification is very
similar to the previous one: input variables that are
already included in the current partial SOP form of the
currently processed variable are preferred.

When applying the load balancing, we penalize
variables entering other blocks.

Implicant Expansion. In this phase the literals are
being removed from the terms. It could be modified
to adopt some constraints as well, e.g., by preferring a
removal of the literal that would yield a reduction
of the number of inputs entering the block (for
partitioning).

Implicant Reduction. Here, as well, many group
implicants are being produced from one PI. It is
possible to modify the scoring function defining the
candidate literals for inclusion, however we have found
that the effect of this modification is negligible.

5.2. FC-Min Algorithm Modification
Find-Coverage. Since this phase does not directly

influence the selection of what literals would be
included in the solution, its modification would be
meaningless.

Implicant Generation. This phase is fully
deterministic and cannot be influenced in any way.

Implicant Expansion. In this phase the number
of literals in the final set of SOP forms is being
significantly reduced, by up to 70%. Thus, here we can
decide what literals will be included in the solution.
For the partitioning based minimization, literals
of input variables that are not included in the currently
processed block are tried for removal at first, and only
when no such a removal is possible, literals
of variables that are entering the processed block are
tried for removal.

For the load-balancing and minimization, literals
of variables included in other blocks are removed first.

In a DFT design, we remove literals that are not
included in current SOP forms of output variables, for
which the currently processed term is an implicant.

5.3. Modification of CP Solution Algorithm
Modifying the CP solution algorithm is of a key

importance to reach good results. Consider that the CP
solver selects only a small number of implicants from a
huge implicant pool and constructs the final solution.
Thus, if the algorithm were not modified, it could spoil
all the effort made in the previous phases.

In fact, any CP solver can be used, whereas only
one condition has to be fulfilled: the solver has to be a
greedy additive heuristic algorithm, i.e., the implicants
have to be added to the solution one by one. Modifying
an exact solver could also be possible, however it
would complicate the construction of a cost function
here. Moreover, the common state-space pruning
techniques [19] cannot be used here.

For the partitioning purposes, the CP is solved for
each block individually, so that we prevent sharing the
implicants among the blocks. We will consider the CP

algorithm described in Subsection 3.3. To apply the
partitioning, additional weights are assigned to the
implicants, thus the weights modify the contributions.
Input variables used in particular blocks are recorded
during the process. The weights of the implicants are
proportional to the number of new input variables they
would add to the currently processed block if they were
selected into the solution. The more input variables are
newly added into a given block by a term, the less
likely will be this term selected.

For the load minimization purposes the weights can
be modified so that implicants containing inputs
entering other blocks will be penalized.

5.4. Output Grouping
The FC-Min Find Cover phase directly derives

group implicants, or respectively only the set of output
variables they the implicants share. This information
can be advantageously exploited to derive an output
grouping. It is a set of output variables that should be
grouped together in one block (see Fig. 8). Several
function’s outputs are generated by each of these
blocks, but the blocks cannot share any internal signals.
Then it will be advantageous to group the outputs into
blocks in such a way, so that output functions sharing
many implicants are grouped in one block.

A Grouping Matrix based approach has been
proposed in [11]. It involves a symmetric matrix
of dimensions [m, m], where m is the number of output
variables. The value G[i, j] defines the strength binding
the two output variables i and j together. The G matrix
is constructed from the cover obtained in the Find
Cover phase. Here a set of coverage masks is produced.
The coverage mask is a binary vector representing a set
of output variables sharing a group implicant. Its size is
equal to m (number of outputs), a ‘1’ value in the i-th
position means that the i-th output variable is
implicated.

At the beginning, the matrix is filled with zeros.
Then all coverage masks are processed one by one.
For each coverage mask and each two pairs (i, j) of ‘1’s,
the value of G[i, j] is increased by one. After processing
all the fault masks, the G-matrix contains values
describing the “binding force” of the output variables.
The value of a cell G[i, j] represents the number
of group implicants that are common to output variables
i and j. Thus, outputs having high binding force should
be more likely grouped together.

Thus, after the G-matrix is computed, distribution
of the function’s outputs among the blocks is
generated. Outputs having the highest binding force
should be grouped together, thus we process the matrix
starting by finding the highest value (let it be G[i, j])
and grouping the respective two variables (i, j) together
into one block. Then the second maximum value in the
i-th and j-th rows (columns) is found and the respective

variable is included into the block. This is being done
until the maximum number of the block’s outputs is
exhausted. Then the search continues from the start,
while the already assigned variables are removed from
the matrix.

The precision of the G matrix can be improved
by using a repetitive FC-Min, i.e., by recording many
more implicants. For details see [11].

To illustrate the effectiveness of the proposed
output grouping method, the results of the
decomposition of several “hard” MCNC benchmarks
are shown in Table 2. The benchmarks were
decomposed into several blocks, each of them having
approximately 10 outputs. In the first experiment, the
outputs were distributed among the blocks randomly,
in the second experiment the FC-Min based grouping
was used. Then the divided two-level benchmarks were
synthesized using SIS [12] and decomposed into
2-input NAND gates. After the benchmark name the
number of its output is shown (m), then the number
of blocks (B). The number of two-input NAND gates
obtained after the synthesis, where the random
grouping is used is shown next (random) and the
results of the proposed method are presented in the
“FC-Min” column. The percentage improvement is
computed in the last column.

Table 2. Output grouping results
bench m B random FC-Min impr.
duke2 29 3 676 517 24%

jbp 57 6 755 600 21%
mainpla 54 6 5742 4506 22%

mish 43 5 156 136 13%
misj 14 3 78 75 4%
soar 94 10 1424 970 32%
spla 46 5 1033 811 22 %

ti 72 7 1496 1173 22%
x2dn 56 6 331 206 38%

6. Conclusions

We have presented a flexible two-level Boolean

minimizer constructed as a combination of two
previously proposed methods. Each of the single
methods excels for different problem sizes, and the
nature of the solution obtained by the two algorithms
differs as well. Joining them together in an adjustable
manner allowed us to make a universal minimizer
suitable for all kinds and sizes of problems. The time
demanding implicant reduction phase can be often
completely omitted and fully substituted by FC-Min.
Criterion of the quality of the solution can be selected
too, which makes BOOM-II a good minimizer for any
hardware implementation of the circuit. The iterative

minimization allows us to find a trade-off between the
runtime and the quality of the solution.

Individual minimization algorithms can be modified
so that many technological constraints, like
decomposition, DFT or low power design, can
be satisfied. The FC-Min main phase is exploited
to derive the output grouping, i.e., the main
decomposition parameters.

The algorithm was tested on random and standard
MCNC benchmarks.

Acknowledgement

This research was supported by a grant

GA 102/04/0737 and MSM6840770014.

References

[1] S. Hassoun and T. Sasao, „Logic Synthesis and

Verification", Boston, MA, Kluwer Academic
Publishers, 2002, 454 pp.

[2] Agarwal, Kime, Saluja: “A tutorial on BIST, part 1:
Principles”. IEEE Design & Test of Computers, vol. 10,
No.1 March 1993, pp.73-83, part 2: Applications, No.2
June 1993, pp.69-77

[3] E.J. McCluskey, “Minimization of Boolean functions”,
The Bell System Technical Journal, 35, No. 5, Nov.
1956, pp. 1417-1444

[4] R.K. Brayton et al., “Logic minimization algorithms for
VLSI synthesis”, Boston, MA, Kluwer Academic
Publishers, 1984, 192 pp.

[5] J. Hlavička and P. Fišer, „BOOM - a Heuristic Boolean
Minimizer”, Proc. ICCAD 2001, San Jose, Cal. (USA),
4.-8.11.2001, 439-442

[6] P. Fišer and J. Hlavička, „BOOM - A Heuristic Boolean
Minimizer“, Computers and Informatics, Vol. 22, 2003,
No. 1, pp. 19-51

[7] M. Chatterjee and D.K. Pradhan, „A BIST Pattern
Generator Design for Near-Perfect Fault Coverage“,
IEEE Transactions on Computers, vol. 52, no. 12, 2003,
pp. 1543-1558

[8] P. Fišer, J. Hlavička and H. Kubátová, „Column-
Matching BIST Exploiting Test Don't-Cares“. Proc. 8th
IEEE Europian Test Workshop (ETW'03), Maastricht
(NL), 25.-28.5.2003, pp. 215-216

[9] P. Fišer, J. Hlavička and H. Kubátová, „FC-Min: A Fast
Multi-Output Boolean Minimizer“, Proc. Euromicro
Symposium on Digital Systems Design (DSD'03),
Antalya (TR), 3.-5.9.2003

[10] P. Fišer and H. Kubátová, “Boolean Minimizer FC-Min:
Coverage Finding Process”, Proc. 30th Euromicro
Symposium on Digital Systems Design (DSD'04),
Rennes (FR), 31.8. - 3.9.04, pp. 152-159

[11] P. Fišer and H. Kubátová, “Output Grouping-Based
Decomposition of Logic Functions”, Proc. 8th IEEE
Design and Diagnostics of Electronic Circuits and
Systems Workshop 2005 (DDECS'05), Sopron, HU,
13.-16.4.2005, pp. 137-144

[12] E.M. Sentovich, et al.: “SIS: A System for Sequential
Circuit Synthesis”, Electronics Research Laboratory
Memorandum No. UCB/ERL M92/41, University of
California, Berkeley, CA 94720, 1992

[13] P. Fišer and H. Kubátová, “Single-Level Partitioning
Support in BOOM-II”, Proc. 2nd Descrete-Event
System Design 2004 (DESDes'04), Dychów, Poland,
15.-17.9.04, pp. 149-154

[14] S. Yang, „Logic Synthesis and Optimization
Benchmarks User Guide“, Technical Report 1991-
IWLS-UG-Saeyang, MCNC, Research Triangle Park,
NC, January 1991

[15] P. Fišer and H. Kubátová, “Two-Level Boolean
Minimizer BOOM-II”, Proc. 6th Int. Workshop on
Boolean Problems (IWSBP'04), Freiberg, Germany, 23.-
24.9.2004, pp. 221-228

[16] A. Mishchenko, B. Steinbach and M. A. Perkowski, "An
algorithm for bi-decomposition of logic functions",
Proc. DAC '01, pp. 103-108.

[17] O. Coudert: Two-level logic minimization: an overview,
Integration, the VLSI journal, 17-2, pp. 97-140, Oct.
1994

[18] L. Józwiak, A. Chojnacki: High-quality Sub-function
Construction in Functional Decomposition Based on
Information Relationship Measures, DATE'2001 -
Design, Automation, and Test in Europe Conference,
Munich, Germany, 13-16 March, 2001, ISBN 0-7695-
0993-2, IEEE Computer Society Press, Los Alamitos,
CA, USA, 2000, pp. 383-390.

[19] E. I. Goldberg, L. P. Carloni, T. Villa, R. K. Brayton,
and A. L. Sangiovanni-Vincentelli. Negative Thinking
in Branch-and-Bound: the Case of Unate Covering.
IEEE Transactions on Computer-Aided Design, 19(3),
pp. 281-294, March 2000.

Table 1. Comparison results
ESPRESSO BOOM FC-Min BOOM-II BOOM-II, no IR bench

n / m / p GEs Time [s] GEs Time [s] GEs Time [s] GEs Time [s] GEs Time [s]
10 / 5 / 200 646.33 0.37 647.75 7.30 666.92 29.93 640.73 24.19 640.90 23.20
50 / 5 / 200 318.73 51.36 276.35 486.53 300.18 65.54 287.43 272.37 290.00 226.90

100 / 5 / 200 256.90 194.68 241.90 399.80 254.30 72.37 252.15 216.70 254.82 176.74
200 / 5 / 200 220.88 786.50 216.40 349.41 220.72 89.16 223.05 190.16 221.60 154.64
300 / 5 / 200 205.40 1717.60 206.68 323.84 205.57 109.50 209.18 193.45 206.97 151.13
20 / 10 / 50 179.07 0.44 140.80 8.16 149.40 3.14 141.60 7.73 141.43 7.02

20 / 10 / 200 855.45 4.44 711.23 806.33 799.80 60.50 720.70 617.11 719.50 549.58
20 / 10 / 300 1349.55 8.43 1151.72 2331.87 1291.28 157.61 1159.83 1694.60 1160.90 1558.31
20 / 10 / 400 1880.55 14.20 1611.60 5352.55 1817.08 300.37 1628.33 3890.65 1627.25 3488.69
20 / 10 / 500 2444.25 19.34 2106.10 9410.28 2381.10 473.23 2121.80 6910.24 2118.70 6572.62

