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Abstract 

We propose a novel two-level Boolean minimizer 
coming in succession to our previously developed 
minimizer BOOM, so we have named it BOOM-II. It is 
a combination of two minimizers, namely BOOM and 
FC-Min. Each of these two methods has its own area 
where it is most efficiently applicable. We have 
combined these two methods together to be able to 
solve all kinds of problems efficiently, independently 
on their size or nature. The tool is very scalable in 
terms of required runtime and/or quality of the 
solution. It is applicable to functions with an extremely 
large number of both input and output variables. The 
minimization process is very flexible and can be driven 
by miscellaneous user-defined constraints, such as 
low-power design, design-for-testability and 
decomposition constraints. Some of the application 
areas are described in the paper. 

  
1. Introduction 

 
The two-level Boolean minimization problem 

occurs in many areas of the logic design [1], in the 
build-in self-test (BIST) design [2], in a design 
of control systems, etc. Since the time when the basis 
of  minimization algorithms was laid in 50’s by Quine 
and McCluskey [3], the minimization process is divided 
into two phases: generation of implicants and solution 
of the covering problem (CP). A representative of these 
principles is, e.g., ESPRESSO [4]. Lately we have 
developed the BOOM minimizer [5, 6], capable 
to handle functions with a very large number of input 
variables, basically based on the same principle. 

A common drawback of the previously mentioned 
algorithms is the limited size of the problems they can 
solve in a reasonable time. When the number of input 
variables grows to hundreds (such problems occur, 
e.g., in the BIST design), the minimization times are 
extremely long. This problem was partially solved by 
BOOM. However, the same problem can be 
encountered for functions with many outputs – the 

group minimization is quite a demanding process and 
the runtimes grow with the number of output variables 
rapidly as well. Lately we have developed an algorithm 
called FC-Min [9] solving this problem efficiently. The 
solution is being constructed from group implicants 
only, which makes the algorithm extremely fast and 
having low memory demands. On the other hand, 
FC-Min does not produce good results for functions 
with a low number of output variables. 

A method where the FC-Min and the original 
BOOM algorithms are combined together to achieve 
better results is proposed in this paper. Implicants are 
being produced both by BOOM and FC-Min and then 
they are put together into a common implicant pool. 
The final solution is then constructed by solving a 
covering problem using all the implicants. The ratio 
of runs of both algorithms can be freely adjusted, which 
produces good solution for all kinds of problems. Since 
the system is a successor of BOOM to some extent, we 
have named it BOOM-II. Since FC-Min primarily 
produces group implicants, the extremely time-
demanding implicant reduction phase can be omitted in 
BOOM-II. These effects are documented in this paper. 

This paper then discusses how the minimization 
process can be influenced by constraints, like designing 
easily decomposable functions, easily testable 
functions, low-power design, etc. 

The paper is structured as follows: Section 2 defines 
the problem statement, the structure and major 
principles of BOOM-II will be described in Section 3, 
the experimental results are shown in Section 4. The 
ways to influence the BOOM-II run are described in 
Section 5. Section 6 concludes the paper. 

 
2. Problem Statement 

 
Let us have a set of m Boolean functions of n input 

variables. The input variables will be denoted as xi, 
0 ≤ I < n, the output variables as yj, 0 ≤ j < m. The 
output values of the care terms (both minterms and 
terms of a higher dimensions may be used) are defined 
by a truth table. To the minterms that are not present in 



the truth table are implicitly assigned don’t care values. 
The number of defined terms will be denoted as p. 

Specifying a Boolean function by its on-set and off 
set, rather than by its on-set and don’t care set, is 
advantageous especially for highly unspecified 
functions, i.e., functions that have the defined values 
of only few terms, the rest are don’t cares. A typical 
example of a use of such functions can be found, e.g., 
in the build-in self-test (BIST) design [7, 8]. 

Our task is to synthesize a two-level circuit 
implementing a multiple-output Boolean function 
described by a truth table, whereas this implementation 
should be as small as possible. Thus, we perform a 
group two-level minimization. The result will be 
in form of a set of m SOP (sum-of-the-products) forms. 

 
3. BOOM-II Principles 

 
As it was stated in the Introduction, BOOM-II is a 

composition of two previously published minimization 
algorithms - BOOM [5, 6] and FC-Min [9]. Both the 
algorithms have their advantages and drawbacks. 
BOOM is suitable for problems with a large number 
of input variables, but it is somewhat limited regarding 
the number of output variables; for a large number 
of outputs the runtime rapidly grows and the algorithm 
begins to be less efficient as well. This is due to the 
time-demanding implicant reduction (IR) phase above 
all. BOOM is based on generation of prime implicants 
(PIs), and thus it is efficient for problems whose 
solution is constructed mostly of PIs. Thus, BOOM is 
very efficiently applicable to problems with many 
input variables and a low number of outputs. 

The second minimizer FC-Min was developed 
to handle problems with many output variables. It is 
extremely fast - the runtime grows almost linearly with 
growing number of both the input and output variables 
[9]. The solution is being constructed of group 
implicants only (particularly it does not distinguish 
between PIs and group implicants). Hence, FC-Min is 
good for problems whose solution is constructed 
of many group implicants, i.e., problems with many 
output variables. On the other hand, it is not suitable 
for functions with few outputs, since the cover of the 
on-set is being generated purely at random in this case. 

Both the algorithms were developed in their 
iterative versions. The iterative minimization is based 
on a fact that some minimization phases are driven 
by random events. Hence, two runs of the same 
algorithm on the same problem instance need not 
produce equal results. Moreover, a better solution can 
sometimes be achieved by combining implicants from 
two or more different solutions. In practice, the 
algorithm is executed several times, while all the 
implicants obtained are put together into a common 

implicant buffer. Then the covering problem (CP) is 
solved using all of them. 

A typical growth of the number of prime implicants 
as a function of the number of iterations is shown in 
Fig. 1 (thin line). This curve plots the values obtained 
during the solution of a single-output problem with 20 
input variables and 200 minterms, using BOOM only. 
Theoretically, the more implicants we have, the better 
is the solution that can be found after solving the 
covering problem. In practice, the quality of the final 
solution, measured by the number of literals in the 
resulting SOP form, improves rapidly during first few 
iterations and then remains unchanged, even though 
the number of PIs grows. See the thick line in Fig. 1. 

 
Figure 1. Growth of the number of PIs and 

decrease of SOP length during iterative 
minimization 

 
 

Figure 2: BOOM-II flowchart 
 
The idea of combining implicants from different 

minimization runs gave rise to BOOM-II. The same 
problem is solved both by BOOM and FC-Min 
(repeatedly), all the implicants are put together and the 
covering problem is solved. Prime implicants are more 
likely being picked out from the implicants obtained 
by BOOM, while the group implicants are produced 
by FC-Min. The ratio of the two algorithms can 
be adjusted manually by a FC-Min:BOOM factor. 
For example, when this factor is set to 1:1, half of the 



iterations will be conducted by BOOM and half 
by FC-Min in average. The problem of the distribution 
of implicants produced by BOOM and FC-Min is 
studied more thoroughly in Subsection 4.3. The 
flowchart of the BOOM-II system is shown in Fig. 2. 

 
3.1. Brief Summary of BOOM 
Like most other Boolean minimization algorithms, 

BOOM consists of two major phases: generation of 
implicants and the subsequent solution of the covering 
problem. At the beginning the m-output function is 
split into m single-output functions and a set of PIs is 
computed for each function. The most important part 
of the algorithm, the Coverage-Directed Search 
(CD Search), generates a sufficient set of implicants 
needed to cover the on-set of a single function. The 
implicants are then passed to the Implicant Expansion 
(IE) phase, which converts them into PIs. In the 
subsequent Implicant Reduction (IR) phase the PIs are 
being reduced to obtain group implicants. Then the 
covering problem is solved to obtain the final solution. 

The principle of the Coverage-Directed Search 
consists in selecting most suitable literals that should 
be added to a term under construction. Thus, instead 
of increasing the dimension of an implicant starting 
from a minterm, we reduce an n-dimensional 
hypercube by adding literals to the term, until it 
becomes an implicant of the processed function. This 
happens at the moment when the resulting hypercube 
does not intersect any 0-term. The search for suitable 
literals that should be added to a term is directed 
towards finding an implicant covering as many 1-terms 
as possible. To do this, implicant generation starts by 
the most frequent input literal selection from the given 
on-set, because the (n-1) dimensional hypercube 
covering the most 1-minterms is described by the most 
frequent literal appearing in the on-set. The (n-1) 
dimensional hypercube found by this way is an 
implicant, if it does not intersect any 0-term. If there 
are some 0-minterms covered, we add another literal 
(the second most frequent one) and verify whether the 
new term already corresponds to an implicant by 
comparing it with 0-terms that might intersect with this 
term. We continue by adding literals until an implicant 
is generated, then it is recorded. Then we start 
searching for other implicants. 

More thorough description of CD-Search and the 
subsequent phases can be found, e.g., in [9, 10]. 

 
3.2. Principles of FC-Min 
The FC-Min minimizer generates the solution in a 

completely different way. As it was said before, 
classical minimization methods consist of two major 
phases: the generation of implicants and the subsequent 

covering problem solution, where the irredundant set 
of implicants is found in order to cover the on-set. 
Such an approach might be very demanding (both 
in time and space) for functions with a large number 
of input and output variables. 

In FC-Min, the process of generating implicants is 
conducted in a reverse way. Firstly the cover of the 
on-set is found. Then implicants corresponding to this 
cover are generated. This reverse approach allowed us 
to make a fast Boolean minimizer with extremely low 
memory demands. FC-Min does not produce PIs; only 
necessary group implicants are directly generated. 
As the group implicants are highly important for 
problems with many outputs, this makes FC-Min 
superior to other minimizers for such problems. On the 
other hand, FC-Min is not suitable for problems with a 
small number of output variables. It is because the 
cover of the on-set is being generated partially ad-hoc 
here and thus proper implicants often cannot be found. 
For such functions our algorithm mostly cannot 
outperform the others (ESPRESSO, BOOM). 

The FC-Min algorithm consists of two major 
phases: the Find Coverage phase, in which the 
rectangle cover [2] of the on-set is found, and the 
Implicant Generation phase producing the very 
implicants from this cover. 

 
3.3. Covering Problem Solution 
It can be seen from Fig. 1 that even a small subset 

of PIs may give the minimum solution. However, the 
quality of the final solution strongly depends on the CP 
solution algorithm. It is impossible to obtain exact 
solutions when having a large number of implicants, 
since it is an NP-hard problem. Thus some heuristic 
must be used. 

After an extensive testing we have chosen a greedy 
method based on computing the contributions (scoring 
functions) of terms as a criterion for their inclusion into 
the solution [17]. We construct a covering matrix A, its 
dimension will be denoted as (r, s). The columns 
correspond to the implicants, rows to the on-set terms 
that are to be covered. A[i, j] = 1 if the implicant j 
covers the on-set term i, A[i, j] = 0 otherwise. For each 
row its strength of coverage is computed as 
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The implicant (column) with the maximum 
contribution value is selected into the solution, the 
contribution values are recomputed and the process is 
repeated until the whole on-set is covered. 

 
4. BOOM-II Results 

 
4.1. Study of the Structure of the Solution 
One possibility how to estimate the "usefulness" 

of the incorporation of FC-Min into BOOM is 
to analyze implicants in the solution. Particularly, we 
have studied the origin of the implicants in the final 
solution, and analyzed which one of the two algorithms 
contributes to it most. 

At any time, the set of implicants in the common 
implicant buffer (and, of course, in the final solution 
too) can be divided into these six groups: 

1. Prime implicants (of at least one output function) 
found by BOOM only 

2. Prime implicants found both by FC-Min and 
BOOM 

3. Prime implicants produced by FC-Min and which 
were not found by BOOM (these had to be 
identified by a subsequent analysis, since 
FC-Min does not recognize any PIs) 

4. Group implicants found by BOOM only 
5. Group implicants that have been found both 

by FC-Min and BOOM 
6. Group implicants produced by FC-Min only 
These sets make a decomposition of the set of all 

implicants. The union of these six subsets gives all the 
implicants, the subsets are disjoint, see Fig. 3. It can be 
better visualized by a Venn’s diagram: 

 

Figure 3. BOOM-II implicants 

We have minimized a randomly generated function 
of 20 input variables, 20 outputs, having 10% 
of explicit both input and output don't cares and 500 
defined terms. The ratio FC-Min:BOOM was set 
to 1:1. 

Figure 4 shows the distribution of all the implicants 
that were ever produced after 50 iterations. We can see 
that 93% of them are prime implicants produced 
by BOOM, which seemingly puts the rest (i.e., all the 
group implicants) into an unimportant minority. 
However, the distribution of implicants in the final 
(and thus also the best) solution is shown in Fig. 5. 
Here, these make only 58% of the solution, while the 

group implicants begin to play an important role. The 
most important observation is that FC-Min 
significantly contributes to the solution both by group 
implicants and PIs. The majority of implicants was 
found by BOOM, however we must consider 
significantly shorter runtime of FC-Min comparing 
to BOOM (especially the IR phase). 

Let us note that the total number of implicants 
generated in 50 iterations was more than 40000 
(in Fig. 4), the solution consisted of 516 implicants 
(in Fig. 5). Thus, we can claim that BOOM often 
produces many unnecessary PIs, while FC-Min 
produces a low number of implicants, which often 
could form a significant part of the solution. However, 
to reach the best results, running both the BOOM and 
FC-Min is required. 
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Figures 4, 5. Distribution of all the implicants 

and the implicants in the solution respectively 

4.2. Comparison Results 
In order to estimate the efficiency of the method, we 

have compared the results obtained by different 
methods. The result quality and minimization runtime 
are compared in Table 1 (see the end of the paper). 
Several artificial benchmarks were run by ESPRESSO 
[1], BOOM, FC-Min, BOOM-II and BOOM-II where 
the implicant reduction phase was turned off. All the 
BOOM and FC-Min algorithms were run for 100 
iterations. The sizes of benchmarks are indicated in the 
leftmost column by the number of input variables (n), 
output variables (m) and number of terms (p). The 
resulting circuit size is given in gate equivalents. For 
each instance size 20 benchmarks were processed and 
the obtained results averaged. 

It can be seen that for circuits having many input 
variables BOOM significantly overpowers ESPRESSO 
both in time and result complexity. ESPRESSO is 
faster for benchmarks having many outputs, however 
BOOM yields better results for this case. BOOM-II 
efficiently combines the advantages of BOOM and 
FC-Min. A good result quality is retained from 
BOOM, while there is a significant speed-up given 
by-FC-Min. Moreover, additional speed-up is reached, 
when the implicant reduction phase of BOOM is 
omitted in BOOM-II. It can be seen that it is fully 
substituted by FC-Min, since there is no quality loss. 



Notice that all the algorithms (except for 
ESPRESSO) were run for 100 iterations. If they were 
run for one iteration only, the runtime would be more 
than 100-times shorter, whereas the result quality only 
slightly worse. 

 
4.3. BOOM-II Average Time Complexity 
In order to properly estimate the dependency of the 

runtime on the instance sizes, we have minimized 20 
different problem instances of the same size and 
averaged the results. The graphs in Figures 6a, b, c, 
show the average dependency of the runtime on the 
number of defined terms, for ESPRESSO (a), BOOM 
(b) and FC-Min (c). The values of the fixed parameters 
are indicated inside of the figures. It can be seen that 
the ESPRESSO complexity grows almost linearly, 
while the curves representing BOOM and FC-Min 
grow apparently faster. On the other hand, the runtime 
growth, with respect to the number of input variables, 
is very positive for BOOM and FC-Min, see Figures 
7a, b, c. The ESPRESSO runtime grows almost 
exponentially, while for BOOM it remains almost 
constant. In FC-Min, the runtime grows linearly. 
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Figures 6a, 6b, 6c. Dependency on the number 

of terms 
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Figures 7a, 7b, 7c. Dependency on the number 

of input variables 
 

5. Influencing BOOM-II Run 
 

Sometimes it is advantageous to influence the 
minimization process to satisfy, or at least near to some 
technological constraints. Here are some of them: 

Decomposition constraints. A two-level minimizer 
can “help” the subsequent decomposition phase 
to perform better. Particularly, when the circuit is to be 
divided into several stand-alone blocks, using, e.g., the 
bi-decomposition [16] or functional decomposition 
[18], these blocks should share minimum inputs. 

The simplest case of such decomposition is the 
single-level partitioning. It is based on dividing the 
circuit into a given number of blocks, so that their 
two-level nature is retained. The blocks may share the 
primary inputs, each block generates several outputs. 
The SOP terms cannot be shared among the blocks. 
This is illustrated by Figure 8. Here a logic function 



of 7 inputs x1-x7 and 6 outputs y1-y6 is decomposed 
into two 5-input and 3-output blocks while each block 
is a two-level (AND-OR) circuit. 

 

 

Figure 8. A single-level partitioning 

In a case of functions having many input variables, 
there is a big freedom in choosing implicants (and 
consequently literals) to the solution. Thus, the 
minimization should be influenced so that the input 
variables are not shared between blocks. On the other 
hand, the FC-Min Find Cover phase can be modified 
to produce results satisfying the output grouping. 

Design-for-testability (DFT). To synthesize an 
easily testable circuit, we try to reduce the sizes of the 
cones. Thus, the number of inputs driving each output 
variable should be minimized. 

Load Balancing. In some cases it is desirable to 
design circuits with balanced loads of its inputs. This 
means that the number of branching of the circuit’s 
inputs should be kept balanced. Moreover, for a 
low-power design the number of branching should be 
kept minimal. 

 
5.1. BOOM Algorithm Modification 
CD-Search. This is the essential phase that has to be 

modified. The algorithm is based on a gradual addition 
of literals into the terms. Recall that the candidate 
literals are being selected using a scoring function, 
which is the frequency of occurrence. Thus, it is easy 
to modify this scoring function to manifest the 
constraints. 

For the partitioning purposes we modify the scoring 
function, so that the frequency of the literal that is 
already included in the processed block is multiplied 
by some factor, and is thus preferred to other literals. 
The higher this factor is, the smaller is the number 
of input variables entering the blocks. 

For DFT purposes, further modification is very 
similar to the previous one: input variables that are 
already included in the current partial SOP form of the 
currently processed variable are preferred. 

When applying the load balancing, we penalize 
variables entering other blocks. 

 

Implicant Expansion. In this phase the literals are 
being removed from the terms. It could be modified 
to adopt some constraints as well, e.g., by preferring a 
removal of the literal that would yield a reduction 
of the number of inputs entering the block (for 
partitioning). 

Implicant Reduction. Here, as well, many group 
implicants are being produced from one PI. It is 
possible to modify the scoring function defining the 
candidate literals for inclusion, however we have found 
that the effect of this modification is negligible. 

 
5.2. FC-Min Algorithm Modification 
Find-Coverage. Since this phase does not directly 

influence the selection of what literals would be 
included in the solution, its modification would be 
meaningless. 

Implicant Generation. This phase is fully 
deterministic and cannot be influenced in any way. 

Implicant Expansion. In this phase the number 
of literals in the final set of SOP forms is being 
significantly reduced, by up to 70%. Thus, here we can 
decide what literals will be included in the solution. 
For the partitioning based minimization, literals 
of input variables that are not included in the currently 
processed block are tried for removal at first, and only 
when no such a removal is possible, literals 
of variables that are entering the processed block are 
tried for removal. 

For the load-balancing and minimization, literals 
of variables included in other blocks are removed first. 

In a DFT design, we remove literals that are not 
included in current SOP forms of output variables, for 
which the currently processed term is an implicant. 

 
5.3. Modification of CP Solution Algorithm 
Modifying the CP solution algorithm is of a key 

importance to reach good results. Consider that the CP 
solver selects only a small number of implicants from a 
huge implicant pool and constructs the final solution. 
Thus, if the algorithm were not modified, it could spoil 
all the effort made in the previous phases. 

In fact, any CP solver can be used, whereas only 
one condition has to be fulfilled: the solver has to be a 
greedy additive heuristic algorithm, i.e., the implicants 
have to be added to the solution one by one. Modifying 
an exact solver could also be possible, however it 
would complicate the construction of a cost function 
here. Moreover, the common state-space pruning 
techniques [19] cannot be used here. 

For the partitioning purposes, the CP is solved for 
each block individually, so that we prevent sharing the 
implicants among the blocks. We will consider the CP 



algorithm described in Subsection 3.3. To apply the 
partitioning, additional weights are assigned to the 
implicants, thus the weights modify the contributions. 
Input variables used in particular blocks are recorded 
during the process. The weights of the implicants are 
proportional to the number of new input variables they 
would add to the currently processed block if they were 
selected into the solution. The more input variables are 
newly added into a given block by a term, the less 
likely will be this term selected. 

For the load minimization purposes the weights can 
be modified so that implicants containing inputs 
entering other blocks will be penalized. 

 
5.4. Output Grouping 
The FC-Min Find Cover phase directly derives 

group implicants, or respectively only the set of output 
variables they the implicants share. This information 
can be advantageously exploited to derive an output 
grouping. It is a set of output variables that should be 
grouped together in one block (see Fig. 8). Several 
function’s outputs are generated by each of these 
blocks, but the blocks cannot share any internal signals. 
Then it will be advantageous to group the outputs into 
blocks in such a way, so that output functions sharing 
many implicants are grouped in one block. 

A Grouping Matrix based approach has been 
proposed in [11]. It involves a symmetric matrix 
of dimensions [m, m], where m is the number of output 
variables. The value G[i, j] defines the strength binding 
the two output variables i and j together. The G matrix 
is constructed from the cover obtained in the Find 
Cover phase. Here a set of coverage masks is produced. 
The coverage mask is a binary vector representing a set 
of output variables sharing a group implicant. Its size is 
equal to m (number of outputs), a ‘1’ value in the i-th 
position means that the i-th output variable is 
implicated. 

At the beginning, the matrix is filled with zeros. 
Then all coverage masks are processed one by one. 
For each coverage mask and each two pairs (i, j) of ‘1’s, 
the value of G[i, j] is increased by one. After processing 
all the fault masks, the G-matrix contains values 
describing the “binding force” of the output variables. 
The value of a cell G[i, j] represents the number 
of group implicants that are common to output variables  
i and j. Thus, outputs having high binding force should 
be more likely grouped together. 

Thus, after the G-matrix is computed, distribution 
of the function’s outputs among the blocks is 
generated. Outputs having the highest binding force 
should be grouped together, thus we process the matrix 
starting by finding the highest value (let it be G[i, j]) 
and grouping the respective two variables (i, j) together 
into one block. Then the second maximum value in the 
i-th and j-th rows (columns) is found and the respective 

variable is included into the block. This is being done 
until the maximum number of the block’s outputs is 
exhausted. Then the search continues from the start, 
while the already assigned variables are removed from 
the matrix. 

The precision of the G matrix can be improved 
by using a repetitive FC-Min, i.e., by recording many 
more implicants. For details see [11]. 

To illustrate the effectiveness of the proposed 
output grouping method, the results of the 
decomposition of several “hard” MCNC benchmarks 
are shown in Table 2. The benchmarks were 
decomposed into several blocks, each of them having 
approximately 10 outputs. In the first experiment, the 
outputs were distributed among the blocks randomly, 
in the second experiment the FC-Min based grouping 
was used. Then the divided two-level benchmarks were 
synthesized using SIS [12] and decomposed into 
2-input NAND gates. After the benchmark name the 
number of its output is shown (m), then the number 
of blocks (B). The number of two-input NAND gates 
obtained after the synthesis, where the random 
grouping is used is shown next (random) and the 
results of the proposed method are presented in the 
“FC-Min” column. The percentage improvement is 
computed in the last column. 

Table 2. Output grouping results 
bench m B random FC-Min impr. 
duke2 29 3 676 517 24% 

jbp 57 6 755 600 21% 
mainpla 54 6 5742 4506 22% 

mish 43 5 156 136 13% 
misj 14 3 78 75 4% 
soar 94 10 1424 970 32% 
spla 46 5 1033 811 22 % 

ti 72 7 1496 1173 22% 
x2dn 56 6 331 206 38% 

 
6. Conclusions 

 
We have presented a flexible two-level Boolean 

minimizer constructed as a combination of two 
previously proposed methods. Each of the single 
methods excels for different problem sizes, and the 
nature of the solution obtained by the two algorithms 
differs as well. Joining them together in an adjustable 
manner allowed us to make a universal minimizer 
suitable for all kinds and sizes of problems. The time 
demanding implicant reduction phase can be often 
completely omitted and fully substituted by FC-Min. 
Criterion of the quality of the solution can be selected 
too, which makes BOOM-II a good minimizer for any 
hardware implementation of the circuit. The iterative 



minimization allows us to find a trade-off between the 
runtime and the quality of the solution. 

Individual minimization algorithms can be modified 
so that many technological constraints, like 
decomposition, DFT or low power design, can 
be satisfied. The FC-Min main phase is exploited 
to derive the output grouping, i.e., the main 
decomposition parameters. 

The algorithm was tested on random and standard 
MCNC benchmarks. 
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Table 1. Comparison results 
ESPRESSO BOOM FC-Min BOOM-II BOOM-II, no IR bench 

n / m / p GEs Time [s] GEs Time [s] GEs Time [s] GEs Time [s] GEs Time [s] 
10 / 5 / 200 646.33 0.37 647.75 7.30 666.92 29.93 640.73 24.19 640.90 23.20 
50 / 5 / 200 318.73 51.36 276.35 486.53 300.18 65.54 287.43 272.37 290.00 226.90 

100 / 5 / 200 256.90 194.68 241.90 399.80 254.30 72.37 252.15 216.70 254.82 176.74 
200 / 5 / 200 220.88 786.50 216.40 349.41 220.72 89.16 223.05 190.16 221.60 154.64 
300 / 5 / 200 205.40 1717.60 206.68 323.84 205.57 109.50 209.18 193.45 206.97 151.13 
20 / 10 / 50 179.07 0.44 140.80 8.16 149.40 3.14 141.60 7.73 141.43 7.02 

20 / 10 / 200 855.45 4.44 711.23 806.33 799.80 60.50 720.70 617.11 719.50 549.58 
20 / 10 / 300 1349.55 8.43 1151.72 2331.87 1291.28 157.61 1159.83 1694.60 1160.90 1558.31 
20 / 10 / 400 1880.55 14.20 1611.60 5352.55 1817.08 300.37 1628.33 3890.65 1627.25 3488.69 
20 / 10 / 500  2444.25 19.34 2106.10 9410.28 2381.10 473.23 2121.80 6910.24 2118.70 6572.62 

 


