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Abstract. We present a method allowing us to determine the grouping of the
outputs of the multi-output Boolean logic function for a single-level partitgoni
and minimization. Some kind of decomposition is often needed during the
synthesis of logic circuits and the subsequent mapping onto technology.
Sometimes a circuit has to be divided into several stand-alone parts, atsiong i
outputs, or possibly its inputs. It could be a case of a design targetdeliAg
GALs, or any other monolithic components having a limited number of inputs
and/or outputs. We propose a methodology to determine the way how the
original circuit has to be partitioned into several parts of an arbitraize, in

order to reduce the complexity of the individual parts. The method ésl lwas

our FC-Min minimizer, even when no Boolean minimization has to be involved
here. The efficiency of the method is demonstrated on the standakf MC
benchmarks.

1 Introduction

Some kind of decomposition is always necessary to penfdnen designing complex
VLSI circuits, with respect to the available componem®st of up to now proposed
methods start with a two-level Boolean network (sum-ofipcts) and try to decompose it
into a multi-level network. The Boolean function isifg manipulated so as to extract
subfunctions common to more of its parts. This is being datier algebraically, by
finding the function’s common divisors (kernels) [1], ssing computationally demanding
Boolean methods [2, 3], or by a functional decompositrd], lately based on BDDs |6,
7]. Nowadays, a functional bi-decomposition plays a big,rar it is generally usable for
most of applications [8, 9, 10].

Most of the previously mentioned methods are primantgnded for single-output
functions, even when they can be extended to multi-odtymations. However, there is no
method strictly determining the relations between theirautput function’s outputs. Our
partitioning method is based on groupiagtput variables. There can be a relationship
between several outputs of the function found. This oelatiip can be often derived from
the function’s group implicants. When, e.g., two outpugseimost of the group implicants



of the solution obtained after a two-level minimirati grouping these outputs together
should be advantageous.

We present a method allowing us to find a proper grouping @uowariables, based
on our FC-Min Boolean minimizer [11]. The reason wiig iminimizer was selected is that
it naturally produces group implicants of the minimized fiomc and thus it is able to
properly determine the outputs that share implicantseMeer, it is extremely fast and thus
its use as a pre-processor to the minimization almmest dot increase the total design time.
The method allows us to split the designed circuit artcarbitrary number of parts, each
having an arbitrary number of outputs. Hence the methodbeaefficiently used for a
decomposition of logic circuits to fit into any targevide (PLA, GAL, FPGA). Moreover,
the number of inputs of the individual parts of the decasegdacircuit is reduced by the
method too.

The paper is structured as follows: the principles ofdingle-level partitioning are
given in Section 2, Section 3 briefly describes the I8@® minimizer FC-Min. The main
ideas of our output-grouping method are stated in Sectiofhd. effectiveness of the
method is documented by experimental results on thelat@nVICNC benchmarks in
Section 5, Section 6 concludes the paper.

2 Single-Level Partitioning

There is a need to divide a circuit into several stdodeablocks having a limited
number of inputs and outputs (into e.g., PLAs, PALs, GAl$jese blocks have to be
synthesized separately then, since they cannot shareahsignals. The blocks can share
the input variables. Such a case of decomposition willderoted as a&ingle-level
partitioning, since the number of levels of the circuit remalresgdame, see Fig. 1.
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Figure 1: Single-level partitioning

Since the blocks cannot share the group terms (or sultfnsavhen they are designed
as multi-level), the total complexity of the designrisreased, in comparison to the all-in-
one design. When our technique is used, this cost of thempesition is reduced to
minimum.

There are two decisions to be made: the choice of taitpube grouped together and
what a limited number of inputs can feed the blocks. A@nsive work has been made to
modify our Boolean minimizer BOOM [12, 13] to support the krgvel partitioning, in
order to reduce the numbers of input variables enterindpldeks [14, 15]. The method
how to determine the output grouping is presented in this plpeibased on the FC-Min
minimizer. For understanding the further text and the fpies of the output-based
partitioning, the main FC-Min principles will be describedhe following Section.



3 FC-Min

The FC-Min minimizer has been developed to efficientlgdi@ functions with a large
number of output variables, [16]. The minimization isngeconducted in a reverse way
than the standard minimizers do. First, the covehefdn-set is found, independently on
the source implicants. After that the minimized irogiits are produced by joining the
source implicants. This process is directed towardsfgey the cover. After that the
implicants are expanded to reduce the number of litefais. approach makes FC-Min a
very fast two-level group minimizer, since only implitauthat will be a part of the final
solution are produced.

The whole minimization process consists of three gdiatheFind Coveragephase,
Find Implicants Phasend Expand Implicantgphase. The first two phases, together with
the concept of the iterative minimization will be delsed in this section.

3.1 TheFind Coverage Phase

The Find Coverage is the essential phase of the FCalorithm. The whole cover of
the on-set of the multi-output function is found, using dlutput part of the source function
only. The algorithm tries to find a cover of the on-setfinding a rectangle cover [17] of
all the “1” values in the output matrix, and then gates implicants having the properties
given by this cover.

An example of such a cover is shown in Fig. 2. Tleee5-input and 5-output function
defined by 10 terms shown, in a form of a truth table. fBisé out of the total 32 terms is
assigned as don't cares. The result of the Find Covexlggeithm is a cover consisting of
Six coverage elements; — . A coverage element is a Cartesian product of two gets,
coverage set Gjtand thecoverage mask MJt The coverage set describes the rows that are
covered byt;, the coverage mask gives the output variables coverdad Owur example
coverage elements are shown in Table 1.

Each coverage element describes properties of an ampliEor example, thgroup
term (implicant)t; covers “1"s of the fourth and fifth output variablg @ndy,) in the
vectors 4, 6 and 8. Let us note that the structure dfetimes is not known yet; only the set
of covered “1"s is known. Now it is apparent, that & wucceed in finding the implicants
having the properties @f — t; (i.e., the terms cover the appropriate “1"s), the safutidll
consist of six implicants. To solve the coverage figdoroblem we use a greedy heuristic,
since it is NP-hard [16].

; y° Ya Table 1: Coverage elements Fig. 2
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Figure 2: Cover of the output matrix b {4, 4 {y2 ya} = 00101




3.2 Implicant Generation Phase

The implicants forming the cover are generated in thfmse. Considering the
conditions described above, particularly the definitidnthe rows each cover element
should cover C(t)), a simple rule the implicants have to satisfy dan derived: the
minimum implicant satisfying the particular cover can be constructed amsiramum
supercubeof all the input vectors corresponding to the rows ofdiwer oft,. Moreover,
this supercube must not intersect any term that isnchided in the particular covél(t),
since it would cover some zeros then. In our examphajnamum implicantt; would be
(-01--), because

00110
10110

10101
Z01--

The Implicant generation phase produces the minimalicanus, thus the implicants
satisfying the above-described condition and having thermamiof literals. They can be
further expanded to reduce the number of literals. Thigiisg done by simply removing
the literals from the implicants, when it is possible

3.3 lterative FC-Min

The FC-Min algorithm is not deterministic in most casethe progress of the Find
Coverage phase is controlled by a random number genefdios, a repeated run of
FC-Min could produce different results. The idea of ttexative FC-Min consists in
repeating the FC-Min several times, while all the défe implicants are put together and
stored. At the end the final solution is constructeddlyiisg a standard covering problem
using all implicants. Even a properly selected combinatiothe implicants obtained from
different iterations might produce a better solution.

4 Grouping of the Outputs

When the FC-Min Boolean minimizer emerged [11], the wagdtermine the output
grouping has been set. The method is based on the idedind pagether output variables
that have many common group implicants. Such output blasiawill more likely share
some terms, thus grouping them together would be advantageoua two-level
minimization but we have found experimentally that thme effect can be observed for a
multi-level synthesis as well.

The main output grouping idea is simple: first, we perfartwo-level minimization of
the unmodified multi-output function. Then, from the groupplicants obtained, we
identify the output variables to be grouped and finally wéopen the rest of the synthesis,
for the partitioned circuit. Any multi-output two-levelimmizer, like BOOM [13] or
ESPRESSO [17], can be used, however it is extremelgradgeous to exploit FC-Min
here: implicants that are shared among many outputsremediately discovered, unlike
when any other minimizer is used.

In the simplest case, only the Find Coverage phase need® used here (see
Subsection 3.1) to obtain a satisfactory informationderive the output grouping.
However, some covers computed in this phase may be ndt (wal implicants can be



produced for such a cover), and thus they can be misleaderge we execute the Find
Implicants phase is being performed as well.

4.1 Grouping Matrix

The grouping of the outputs is derived from the valid coveoddgiee on-set. Since often
there are big numbers of group implicants (coverage eksjinand output variables, it is
not easy to combine the influences of the implicants.NAvve found that an efficient way
to estimate the grouping of the outputs is by constructiggoaping matrix G.lt is a
symmetric matrix of dimensionsn[ m|, wherem is the number of output variables. The
value Gj, j] defines the strength binding the two output variabksdj together.

The G-matrix is computed from themporary matrix G.The G’ matrix is being
constructed during the coverage generation process. Fitstlynatrix is filled with zeros.
After each valid coverage element is produced, the valuesl the positions in G’
corresponding to all the couples of variable$/ift)) are increased by one. In our example
(Fig. 2), aftert; is found, the cells G’[3, 4] and G’[4, 3] are set to onbis describes an
increased likelihood that the outputs andy, will be grouped together. The whole G’
matrix computation process for our example is showrign 3.

00000 00000 00000 00100 00100 00100
00000 00000 00100 00100 00110 00110
00000 b 00000 B 01000 ts 11000 t 11000 to 11001
00000  ----- > 00001 ----- > 00001 ----- > 00001 ----- > 01001 ----- > 01001
00000 00010 00010 00010 00010 00110

Figure 3: G’-matrix construction

It is a very simple example, however, in practice @mnatrix mostly contains values
bigger than 1. Bigger values indicate that the respeativevariables have more than one
common implicants in the solution.

The precision of the grouping can be improved by an IterafC-Min (see 3.3).
To eliminate the effect of unequal numbers of terms fiemrint solutions, the G’-matrix is
transformed into a G-matrix in the following way: firste find a minimal non-zeragin)
and maximal@may value in G’. Then, each cell in G is computed as:

Gli, j] = (G'[i, j] - Imin) / (Gmax - Gmin) (1)
Thus, all the values are transformed into the intex@al1>. (In our example, where
Omax = Omin = 1, the transformation has no meaning.) This processwittalled a&-matrix
normalization.In the repeated FC-Min run, the G-matrices are beingredrtogether.
We will continue constructing the G-matrix using ouample. Let us assume that the
FC-Min phase has been run one more time yieldingfarent solution as it is shown in
Table 2. The solution consists of 7 terms.

Table 2: Different solution of the example

Implicant C(t) M(t;) PLA term & output
t; {4 {¥2, ¥5 ¥4} =00111 00110 00111
t {7} {y1, ¥, ya} =01101 00001 01101
t3 {3} {y1, ¥} =01010 11010 10000
ty {1, 8 {Yo, ¥} =10100 01111 01010
ts {1,2, % {y1, 5} =01100 1--0- 10100
T {4,6,8 {ys, ys} =00011 --00- 01100
t; {0} {yo} = 10000 -01-- 00011




Then the second G’-matrix will be constructed like we showig. 4. E.g., for thé;
term grouping together the variablgs ys andy, the cells G’[2, 3], G'[2, 4], G'[3, 4],
G'[3, 2], G'[4, 2] and G’[4, 3] will be set to 1, since thegpresent all the combinations of
the output variables.

00000 00000 00000 00000 00100 00100 00100
00000 00000 00101 00111 00111 00211 00211
00000 | @ | ooo11 L | 01012 B | 01012 b | 1101 5 | 12012 6 | 1501
00000 | ----> | 00101 | ----> | 00101 | ----> | 01101 | ----> | 01101 | ----> | 01101 | ----> | 01102
00000 00110 01210 01210 01210 01210 01220

Fig. 4: G’-matrix construction (2)

The G’-matrix obtained contains values higher thands thhas to be normalized using
the formula (1), see Fig. 5. After that the two G-rnias (see Fig. 3 and Fig. 5) are
summed together, to obtain the final G-matrix, in Fig. 6.

0 0 0.5 0 0 0 0 1.5 0 0

0 0 1 0.5 0.5 0 0 2 1.5 0.5

0.5 1 0 0.5 1 1.5 2 0 0.5 2

0 0.5 0.5 0 1 0 1.5 0.5 0 2

0 0.5 1 1 0 0 0.5 2 2 0
Fig. 5: Normalized G’-matrix Fig. 6: Normalized G’-matrix

4.2 Deriving the Output Grouping

After the G-matrix computing, the distribution of then€tion’s outputs among the
blocks has to be found. Let us assume that all the blbake a limited strictly given
number of outputs. The algorithm will proceed as follofivst, we find themaximunvalue
in the G-matrix, let it be G[j]. When there are more possibilities for a choiceg @
selected at random. Both the respective output variéibi@sre assigned to the first block.
After that we look for the next highest value in thd andj-th G-matrix rows. The new
output variable corresponding to the selected columradded to the block under
construction. This process is repeated until all the esitpithe block under processing are
assigned. Then we repeat the process from the beginairiefremaining blocks.

Let us assume that our example function is to belelivinto two blocks, each having 3
outputs. Since the final G-matrix contains six maximui®§ one cell is selected at
random, e.g. G[1, 2]. The variablgsandy, will be included into the first block. Then we
search for the maximum value in the rows 1 and 2. Themoggibility is G[2, 4], thug, is
included into the first block. The remaining two outputsasgigned to the second block.
Thus, the decomposition will bey, y2, ya}, { Yo, Y3}

The computational time needed to make the output assignsneegligible, comparing
to the whole minimization process, even for a langmlmer of output variables.

5 Experimental Results

All the experiments were performed on the standard “hardNRMenchmarks. For
each of the benchmark circuits we have made threeime@s:
» First, the respective benchmark circuit has been mieanizy BOOM [13] and then
decomposed into two-input gates, using SIS 1.2 [18].sthept . rugged has been
used, together with theech_deconp -a 2 command to decompose the circuit into a



network of 2-input gates. This experiment has been donstitoate the circuit size
when the partitioning is used.

* In the second group of experiments we have divided thaitcirdo several blocks
(b), while all the output variables were assigned toinkévidual blockspurely at
random Then the circuit has been minimized by BOOM-II, usthg method
described in [15]. After that we have performed a decompasitito a multi-level
network, as described in the previous paragraph.

* Finally we have exploited our output grouping method, based@Min. We have
made a similar experiment to the previously described lrtethe output variables
were assigned to the blocks using the method proposed lerd=C-Min has been
run for 10 iterations here.

These three experiments will show the differenceswéen the all-in-one
implementation of the benchmark circuit, the circuividkd into several blocks with
randomly assigned outputs and our new method. The numlidoakis was selected so to
be the number of the inputs of the blocks approximately bveder, any circuit may be
divided into an arbitrary number of blocks. We have fouxgeamentally, that the results
do not vary significantly. We have observed a reductionhef number of the inputs
entering the blocks when our method is used. Each inputasiey each block in a worst
case. When a proper decomposition is used, the numbepuientering the blocks is
reduced.

The benchmark results are shown in Table 3. After thetbeark name the numbers of
the primary inputsij and outputsd) of the circuit are presented. The next column gives
the number of 2-inupt gates after the two-level minimmatnd decomposition by SIS.
Next, there is the number of blocks, into which thecuwiris being decomposed. The
numbers of outputs of all the blocks are equal. The “Randatput grouping” columns
describe the minimization and decomposition resultsthierexperiment where the outputs
are assigned to the blocks randomly. Timptits' column describes the average number of
inputs entering the blocks. The “FC-Min based output groupiigéled columns describe
the results obtained by our FC-Min based output groupindghadetThe last column,
“impr.” shows the improvement against the previous (random)adeth

We can observe that the improvement reaches almost4{94of total gates. Even the
number of inputs is reduced when our method is used. Duastdatit, the decomposed
circuit can be implemented into devices having fewer inphda the original circuit has.
Let us note that the same reduction of the area dittit decomposed by our method can
be observed even when no minimization is performed. Mexyeghe number of inputs
entering the blocks is not reduced.

Table 3: The experimental results

No decomp. Random output grouping FC-Min based output grouping
bench i 0 gates blocks gates inputs gates inppts impy.

duke?2 22 29 454 3 676 21.3 517 18.3 24%

jbp 36 57 | 422 6 755 25 600 20.2 21%
mainpla | 27 54 3865 6 5742 25.2 4506 24.7 22%
mish 94 | 43 136 5 156 23.4 136 20.8 13%

misj 35 14 61 3 78 15.7 75 15 4%

soar 83 94 | 610 10 1424 35.6 970 26.7 32%
spla 16 46 427 5 1033 15.6 811 15.6 22 %

ti 47 72 763 7 1496 34 1173 23.7 22%
x2dn 82 56 193 6 331 23.5 206 16.5 38%




6 Conclusons

We have proposed a method of decomposition of a two-@&nelit into several parts,
by its outputs. The decomposition is based on a groupitlgeobutputs of the circuit, so
that the output variables which share many group terrtiseinwo-level representation of
the minimized function are grouped together. The output groumtens a two-level
nature of the circuit, hence we call it a single-lgyattitioning.

The method is based on our two-level minimizer FC-Mirerewhen no minimization
has to be involved here. A significant reduction of logan be observed, when compared
to the random output distribution. The same reductiologt can be observed when the
output grouping method is used without a subsequent two4eweiization. However,
when the minimization is used, the number of inputerarg the blocks is reduced too. The
method is efficiently applicable even when no two-lawnimization is used. The results
do not vary, even when a multi-level decomposition islusesynthesize the final logic.
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