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Abstract. We present a method allowing us to determine the grouping of the 
outputs of the multi-output Boolean logic function for a single-level partitioning 
and minimization. Some kind of decomposition is often needed during the 
synthesis of logic circuits and the subsequent mapping onto technology. 
Sometimes a circuit has to be divided into several stand-alone parts, among its 
outputs, or possibly its inputs. It could be a case of a design targeted into PLAs, 
GALs, or any other monolithic components having a limited number of inputs 
and/or outputs. We propose a methodology to determine the way how the 
original circuit has to be partitioned into several parts of an arbitrary size, in 
order to reduce the complexity of the individual parts. The method is based on 
our FC-Min minimizer, even when no Boolean minimization has to be involved 
here. The efficiency of the method is demonstrated on the standard MCNC 
benchmarks. 

1 Introduction 

Some kind of decomposition is always necessary to perform when designing complex 
VLSI circuits, with respect to the available components. Most of up to now proposed 
methods start with a two-level Boolean network (sum-of-products) and try to decompose it 
into a multi-level network. The Boolean function is being manipulated so as to extract 
subfunctions common to more of its parts. This is being done either algebraically, by 
finding the function’s common divisors (kernels) [1], by using computationally demanding 
Boolean methods [2, 3], or by a functional decomposition [4, 5], lately based on BDDs [6, 
7]. Nowadays, a functional bi-decomposition plays a big role, for it is generally usable for 
most of applications [8, 9, 10]. 

Most of the previously mentioned methods are primarily intended for single-output 
functions, even when they can be extended to multi-output functions. However, there is no 
method strictly determining the relations between the multi-output function’s outputs. Our 
partitioning method is based on grouping output variables. There can be a relationship 
between several outputs of the function found. This relationship can be often derived from 
the function’s group implicants. When, e.g., two outputs share most of the group implicants 



of the solution obtained after a two-level minimization, grouping these outputs together 
should be advantageous. 

We present a method allowing us to find a proper grouping of output variables, based 
on our FC-Min Boolean minimizer [11]. The reason why this minimizer was selected is that 
it naturally produces group implicants of the minimized function and thus it is able to 
properly determine the outputs that share implicants. Moreover, it is extremely fast and thus 
its use as a pre-processor to the minimization almost does not increase the total design time. 
The method allows us to split the designed circuit into an arbitrary number of parts, each 
having an arbitrary number of outputs. Hence the method can be efficiently used for a 
decomposition of logic circuits to fit into any target device (PLA, GAL, FPGA). Moreover, 
the number of inputs of the individual parts of the decomposed circuit is reduced by the 
method too. 

The paper is structured as follows: the principles of the single-level partitioning are 
given in Section 2, Section 3 briefly describes the Boolean minimizer FC-Min. The main 
ideas of our output-grouping method are stated in Section 4. The effectiveness of the 
method is documented by experimental results on the standard MCNC benchmarks in 
Section 5, Section 6 concludes the paper. 

2 Single-Level Partitioning 

There is a need to divide a circuit into several stand-alone blocks having a limited 
number of inputs and outputs (into e.g., PLAs, PALs, GALs). These blocks have to be 
synthesized separately then, since they cannot share internal signals. The blocks can share 
the input variables. Such a case of decomposition will be denoted as a single-level 
partitioning, since the number of levels of the circuit remains the same, see Fig. 1.  

 

Figure 1: Single-level partitioning 

Since the blocks cannot share the group terms (or subfunctions when they are designed 
as multi-level), the total complexity of the design is increased, in comparison to the all-in-
one design. When our technique is used, this cost of the decomposition is reduced to 
minimum. 

There are two decisions to be made: the choice of outputs to be grouped together and 
what a limited number of inputs can feed the blocks. An intensive work has been made to 
modify our Boolean minimizer BOOM [12, 13] to support the single-level partitioning, in 
order to reduce the numbers of input variables entering the blocks [14, 15]. The method 
how to determine the output grouping is presented in this paper. It is based on the FC-Min 
minimizer. For understanding the further text and the principles of the output-based 
partitioning, the main FC-Min principles will be described in the following Section. 



3 FC-Min 

The FC-Min minimizer has been developed to efficiently handle functions with a large 
number of output variables, [16]. The minimization is being conducted in a reverse way 
than the standard minimizers do. First, the cover of the on-set is found, independently on 
the source implicants. After that the minimized implicants are produced by joining the 
source implicants. This process is directed towards satisfying the cover. After that the 
implicants are expanded to reduce the number of literals. This approach makes FC-Min a 
very fast two-level group minimizer, since only implicants that will be a part of the final 
solution are produced. 

The whole minimization process consists of three phases: the Find Coverage phase, 
Find Implicants Phase and Expand Implicants phase. The first two phases, together with 
the concept of the iterative minimization will be described in this section. 

3.1 The Find Coverage Phase 

The Find Coverage is the essential phase of the FC-Min algorithm. The whole cover of 
the on-set of the multi-output function is found, using the output part of the source function 
only. The algorithm tries to find a cover of the on-set by finding a rectangle cover [17] of 
all the “1” values in the output matrix, and then generates implicants having the properties 
given by this cover. 

An example of such a cover is shown in Fig. 2. There is a 5-input and 5-output function 
defined by 10 terms shown, in a form of a truth table. The rest out of the total 32 terms is 
assigned as don’t cares. The result of the Find Coverage algorithm is a cover consisting of 
six coverage elements, t1 – t6. A coverage element is a Cartesian product of two sets, the 
coverage set C(ti) and the coverage mask M(ti). The coverage set describes the rows that are 
covered by ti, the coverage mask gives the output variables covered by ti. Our example 
coverage elements are shown in Table 1. 

Each coverage element describes properties of an implicant. For example, the group 
term (implicant) t1 covers “1”s of the fourth and fifth output variable (y3 and y4) in the 
vectors 4, 6 and 8. Let us note that the structure of the terms is not known yet; only the set 
of covered “1”s is known. Now it is apparent, that if we succeed in finding the implicants 
having the properties of t1 – t6 (i.e., the terms cover the appropriate “1”s), the solution will 
consist of six implicants. To solve the coverage finding problem we use a greedy heuristic, 
since it is NP-hard [16]. 
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Figure 2: Cover of the output matrix 

Table 1: Coverage elements Fig. 2 

Implicant C(ti) M(ti) 
t1 { 4, 6, 8} { y3, y4} ≡ 00011 
t2 {1, 2, 7} { y1, y2} ≡ 01100 
t3 {8, 9} { y0, y2} ≡ 10100 
t4 {3} { y1, y3} ≡ 01010 
t5 {0, 1} { y0, y1} ≡ 10000 
t6 {4, 7} { y2, y4} ≡ 00101 



3.2 Implicant Generation Phase 

The implicants forming the cover are generated in this phase. Considering the 
conditions described above, particularly the definition of the rows each cover element 
should cover (C(ti)), a simple rule the implicants have to satisfy can be derived: the 
minimum implicant satisfying the particular cover can be constructed as a minimum 
supercube of all the input vectors corresponding to the rows of the cover of ti. Moreover, 
this supercube must not intersect any term that is not included in the particular cover C(ti), 
since it would cover some zeros then. In our example, a minimum implicant t1 would be 
(-01--), because 
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The Implicant generation phase produces the minimal implicants, thus the implicants 
satisfying the above-described condition and having the maximum of literals. They can be 
further expanded to reduce the number of literals. This is being done by simply removing 
the literals from the implicants, when it is possible.  

3.3 Iterative FC-Min 

The FC-Min algorithm is not deterministic in most cases – the progress of the Find 
Coverage phase is controlled by a random number generator. Thus, a repeated run of 
FC-Min could produce different results. The idea of the Iterative FC-Min consists in 
repeating the FC-Min several times, while all the different implicants are put together and 
stored. At the end the final solution is constructed by solving a standard covering problem 
using all implicants. Even a properly selected combination of the implicants obtained from 
different iterations might produce a better solution.  

4 Grouping of the Outputs 

When the FC-Min Boolean minimizer emerged [11], the way to determine the output 
grouping has been set. The method is based on the idea of putting together output variables 
that have many common group implicants. Such output variables will more likely share 
some terms, thus grouping them together would be advantageous for a two-level 
minimization but we have found experimentally that the same effect can be observed for a 
multi-level synthesis as well. 

The main output grouping idea is simple: first, we perform a two-level minimization of 
the unmodified multi-output function. Then, from the group implicants obtained, we 
identify the output variables to be grouped and finally we perform the rest of the synthesis, 
for the partitioned circuit. Any multi-output two-level minimizer, like BOOM [13] or 
ESPRESSO [17], can be used, however it is extremely advantageous to exploit FC-Min 
here: implicants that are shared among many outputs are immediately discovered, unlike 
when any other minimizer is used. 

In the simplest case, only the Find Coverage phase needs to be used here (see 
Subsection 3.1) to obtain a satisfactory information to derive the output grouping. 
However, some covers computed in this phase may be not valid (no implicants can be 



produced for such a cover), and thus they can be misleading. Hence we execute the Find 
Implicants phase is being performed as well. 

4.1 Grouping Matrix 

The grouping of the outputs is derived from the valid coverage of the on-set. Since often 
there are big numbers of group implicants (coverage elements) and output variables, it is 
not easy to combine the influences of the implicants. We have found that an efficient way 
to estimate the grouping of the outputs is by constructing a grouping matrix G. It is a 
symmetric matrix of dimensions [m, m], where m is the number of output variables. The 
value G[i, j] defines the strength binding the two output variables i and j together. 

The G-matrix is computed from the temporary matrix G’. The G’ matrix is being 
constructed during the coverage generation process. Firstly, the matrix is filled with zeros. 
After each valid coverage element is produced, the values in all the positions in G’ 
corresponding to all the couples of variables in M(ti) are increased by one. In our example 
(Fig. 2), after t1 is found, the cells G’[3, 4] and G’[4, 3] are set to one. This describes an 
increased likelihood that the outputs y3 and y4 will be grouped together. The whole G’ 
matrix computation process for our example is shown in Fig. 3. 
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Figure 3: G’-matrix construction 

It is a very simple example, however, in practice the G’-matrix mostly contains values 
bigger than 1. Bigger values indicate that the respective two variables have more than one 
common implicants in the solution. 

The precision of the grouping can be improved by an Iterative FC-Min (see 3.3). 
To eliminate the effect of unequal numbers of terms in different solutions, the G’-matrix is 
transformed into a G-matrix in the following way: first, we find a minimal non-zero (gmin) 
and maximal (gmax) value in G’. Then, each cell in G is computed as: 

G[i, j] = (G’[ i, j] - gmin) / (gmax - gmin) (1) 

Thus, all the values are transformed into the interval <0, 1>. (In our example, where 
gmax = gmin = 1, the transformation has no meaning.) This process will be called a G-matrix 
normalization. In the repeated FC-Min run, the G-matrices are being summed together. 

We will continue constructing the G-matrix using our example. Let us assume that the 
FC-Min phase has been run one more time yielding a different solution as it is shown in 
Table 2. The solution consists of 7 terms. 

Table 2: Different solution of the example 

Implicant C(ti) M(ti) PLA term & output 
t1 { 4} { y2, y3, y4} ≡ 00111 00110 00111 
t2 {7} { y1, y2, y4} ≡ 01101 00001 01101 
t3 {3} { y1, y3} ≡ 01010 11010 10000 
t4 {1, 8} { y0, y2} ≡ 10100 01111 01010 
t5 {1, 2, 7} { y1, y2} ≡ 01100 1--0- 10100 
t6 {4, 6, 8} { y3, y4} ≡ 00011 --00- 01100 
t7 { 0} { y0} ≡ 10000 -01-- 00011 

 



Then the second G’-matrix will be constructed like we show in Fig. 4. E.g., for the t1 
term grouping together the variables y2, y3 and y4 the cells G’[2, 3], G’[2, 4], G’[3, 4], 
G’[3, 2], G’[4, 2] and G’[4, 3] will be set to 1, since they represent all the combinations of 
the output variables. 
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Fig. 4: G’-matrix construction (2) 

The G’-matrix obtained contains values higher than 1, thus it has to be normalized using 
the formula (1), see Fig. 5. After that the two G’-matrices (see Fig. 3 and Fig. 5) are 
summed together, to obtain the final G-matrix, in Fig. 6. 
 

0    0     0.5    0       0   
0    0     1      0.5     0.5 
0.5  1     0      0.5     1 
0    0.5   0.5    0       1 
0    0.5   1      1       0 

Fig. 5: Normalized G’-matrix 

0    0     1.5    0       0   
0    0     2      1.5     0.5 
1.5  2     0      0.5     2 
0    1.5   0.5    0       2 
0    0.5   2      2       0 

Fig. 6: Normalized G’-matrix 

4.2 Deriving the Output Grouping 

After the G-matrix computing, the distribution of the function’s outputs among the 
blocks has to be found. Let us assume that all the blocks have a limited strictly given 
number of outputs. The algorithm will proceed as follows: first, we find the maximum value 
in the G-matrix, let it be G[i, j]. When there are more possibilities for a choice, one is 
selected at random. Both the respective output variables (i, j) are assigned to the first block. 
After that we look for the next highest value in the i-th and j-th G-matrix rows. The new 
output variable corresponding to the selected column is added to the block under 
construction. This process is repeated until all the outputs of the block under processing are 
assigned. Then we repeat the process from the beginning, for the remaining blocks. 

Let us assume that our example function is to be divided into two blocks, each having 3 
outputs. Since the final G-matrix contains six maximums “2”, one cell is selected at 
random, e.g. G[1, 2]. The variables y1 and y2 will be included into the first block. Then we 
search for the maximum value in the rows 1 and 2. The only possibility is G[2, 4], thus y4 is 
included into the first block. The remaining two outputs are assigned to the second block. 
Thus, the decomposition will be [{y1, y2, y4}, { y0, y3}]. 

The computational time needed to make the output assignment is negligible, comparing 
to the whole minimization process, even for a large number of output variables.  

5 Experimental Results 

All the experiments were performed on the standard “hard” MCNC benchmarks. For 
each of the benchmark circuits we have made three experiments: 

• First, the respective benchmark circuit has been minimized by BOOM [13] and then 
decomposed into two-input gates, using SIS 1.2 [18]. The script.rugged has been 
used, together with the tech_decomp -a 2 command to decompose the circuit into a 



network of 2-input gates. This experiment has been done to estimate the circuit size 
when the partitioning is used. 

• In the second group of experiments we have divided the circuit into several blocks 
(b), while all the output variables were assigned to the individual blocks purely at 
random. Then the circuit has been minimized by BOOM-II, using the method 
described in [15]. After that we have performed a decomposition into a multi-level 
network, as described in the previous paragraph. 

• Finally we have exploited our output grouping method, based on FC-Min. We have 
made a similar experiment to the previously described one, but the output variables 
were assigned to the blocks using the method proposed here. The FC-Min has been 
run for 10 iterations here. 

 
These three experiments will show the differences between the all-in-one 

implementation of the benchmark circuit, the circuit divided into several blocks with 
randomly assigned outputs and our new method. The number of blocks was selected so to 
be the number of the inputs of the blocks approximately 10. However, any circuit may be 
divided into an arbitrary number of blocks. We have found experimentally, that the results 
do not vary significantly. We have observed a reduction of the number of the inputs 
entering the blocks when our method is used. Each input is entering each block in a worst 
case. When a proper decomposition is used, the number of inputs entering the blocks is 
reduced. 

The benchmark results are shown in Table 3. After the benchmark name the numbers of 
the primary inputs (i) and outputs (o) of the circuit are presented. The next column gives 
the number of 2-inupt gates after the two-level minimization and decomposition by SIS. 
Next, there is the number of blocks, into which the circuit is being decomposed. The 
numbers of outputs of all the blocks are equal. The “Random output grouping” columns 
describe the minimization and decomposition results, for the experiment where the outputs 
are assigned to the blocks randomly. The “inputs” column describes the average number of 
inputs entering the blocks. The “FC-Min based output grouping” labeled columns describe 
the results obtained by our FC-Min based output grouping method. The last column, 
“ impr.” shows the improvement against the previous (random) method. 

We can observe that the improvement reaches almost up to 40% of total gates. Even the 
number of inputs is reduced when our method is used. Due to this fact, the decomposed 
circuit can be implemented into devices having fewer inputs than the original circuit has. 
Let us note that the same reduction of the area of the circuit decomposed by our method can 
be observed even when no minimization is performed. However, the number of inputs 
entering the blocks is not reduced. 

Table 3: The experimental results 

  No decomp.  Random output grouping FC-Min based output grouping 
bench i o gates blocks gates inputs gates inputs impr. 

duke2 22 29 454 3 676 21.3 517 18.3 24% 
jbp 36 57 422 6 755 25 600 20.2 21% 
mainpla 27 54 3865 6 5742 25.2 4506 24.7 22% 
mish 94 43 136 5 156 23.4 136 20.8 13% 
misj 35 14 61 3 78 15.7 75 15 4% 
soar 83 94 610 10 1424 35.6 970 26.7 32% 
spla 16 46 427 5 1033 15.6 811 15.6 22 % 
ti 47 72 763 7 1496 34 1173 23.7 22% 
x2dn 82 56 193 6 331 23.5 206 16.5 38% 



6 Conclusions 

We have proposed a method of decomposition of a two-level circuit into several parts, 
by its outputs. The decomposition is based on a grouping of the outputs of the circuit, so 
that the output variables which share many group terms in the two-level representation of 
the minimized function are grouped together. The output grouping retains a two-level 
nature of the circuit, hence we call it a single-level partitioning. 

The method is based on our two-level minimizer FC-Min, even when no minimization 
has to be involved here. A significant reduction of logic can be observed, when compared 
to the random output distribution. The same reduction of logic can be observed when the 
output grouping method is used without a subsequent two-level minimization. However, 
when the minimization is used, the number of inputs entering the blocks is reduced too. The 
method is efficiently applicable even when no two-level minimization is used. The results 
do not vary, even when a multi-level decomposition is used to synthesize the final logic. 
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