DIRECT IMPLEMENTATION OF PETRI NET BASED MODEL IN FPGA

Hana Kubatova

Department of Computer Science and Engineering,
Faculty of Electrical Engineering
Czech Technical University in Prague
Karlovo namesti 13, 121 35 Praha 2

kubatova@fel.cvut.cz

Abstract: This paper shows that a non-deterministic system modeled by Petri-nets
(analyzed and simulated by professional software tools, e.g. Design/CPN, JARP,
before its hardware implementation) can be successfully hardware implemented
(here in an FPGA). We have concentrated to the models with really concurrent
actions, with different types of dependencies (mutual exclusion, parallel, scheduled)
and their direct hardware implementation. Our Petri-nets model need not be
equivalent to a FSM, it means that our Petri-net model can non-deterministically
choose a transition to be fired from several enabled ones. The way how such non-
determinism can be hardware implemented and moreover how to obtain this
hardware automatically is presented in this paper. The way how to do it, how to
describe Petri-net model in VHDL, how to translate the real Petri-net model
described in PNML (Petri Nets Markup Language) to VHDL with respect to Xilinx
synthesized coding hints and the quantitative results from its FPGA implementation
will be shown. Copyright © 2004 DESDes'04
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1. INTRODUCTION

Petri-nets (PN) are a well established mechanism for
system modeling. They are mathematically defined
formal model and can be subjected to a large variety
of systems. PN based models have been widely used
due to their easy understanding, declarative, logic
based and modular modeling principles and finally
due to their possible graphic representation. Our
research and experiments were exited by the
expanding of the Petri-nets in the hardware design
process (Adamski, 2001; Erhard, ef al., 2001; Gomes
and Barros 2001; Khomenko, et al., 2003; Uzam, et
al., 2001; Yakovlev, et al., 2000, Yakovlev, et al.,
2000b).

Our methodology is intended to the high level design
of the processor or control system architecture. It
allows the development of PN models at some Petri-
nets design tool (Design/CPN, JARP, CPN Tools —
see DesignCPN; JARP 2002; CPN Tools) the
analysis and simulation of the model by these tools.
After this high-level design has been developed and

validated it becomes possible, through the automatic
translation to VHDL description to employ FPGA
implementation that will allow a custom device to be
rapidly prototyped and tested. An FPGA version of a
digital circuit is likely to be slower than an equivalent
ASIC version, due to FPGA regular and regularly
structured wiring channels rather then custom-built
logic, but the easier custom design changes,
possibility of an easy FPGA reconfiguration and
arelatively easy manipulation make FPGAs very
good final implementation bases for experiments.

Most models used in the hardware design process are
equivalent to the finite state machine (FSM)
(Adamski, 2001; Erhard, et al., 2001; Gomes and
Barros 2001; Uzam, ef al., 2001). It is said that the
resulting hardware must be deterministic. But we
have presented such real models, that are not
equivalent to a FSM and their real behavior were
tested on the final FPGA design kit platform
(Projects 2003). Therefore we have concentrated to
those models with really concurrent actions, with
different types of dependencies (mutual exclusion,



parallel, scheduled) and  their = hardware

implementation.

In our recent publications (Kubatova, 1998, 1999,
2001, 2003, 2003b; Koblizek, 2001) we searched for
the automatic transmission from the PN formal
description, described, analyzed and tested by some
used software tool for the PN design (e.g.
Design/CPN) to its hardware implementation. Our
Petri-nets hardware structure has been block oriented.
These basic building blocks (places and transitions)
are connected automatically by the translation
process from the output of Petri-nets software tool
according to the real model. The VHDL description
of the basic blocks and also of the all model has used.

The main problem was the hardware implementation
of the random choice of one transition to be fired
from more enabled ones. This property is an essential
difference between our approach and those
considering only the PN model equivalent to the
FSM. This non-determinism seems to be very
important and basic for modeling by the real Petri-net
and for the modeling of real world problems (Ceska,
1994; Khomenko, et al., 2003, Yakovlev, et al.,
2000b). The real PN models are widely used for such
recent applications, where embedded fail-safe system
is necessary to be modeled at the different levels of
abstraction, where the appropriate trade-off between
hardware and software parts is searched for (Kopetz,
1997; HW/SW System Design, 1995).

The process of the automatic translation from the PN
model to the real design is expressed in Fig. 1. The
real well-known software tools for Petri-nets or
Colored Petri-nets (CPN) design analysis and
simulation having the outputs in PNML can be used
as an input. From the PNML language model
description the VHDL description according Xilinx
synthesized coding hints (Xilinx HDL Coding Hints
2002) of the modeled designed system can be
obtained by our program pnml2vhdl. Its output — the
VHDL description of a modeled system can be the
input to some CAD system for an FPGA or ASIC
final implementation.

Our experiments were performed for JARP (JARP,
2002), Design/CPN (DesignCPN) and CPN Tools
(CPN Tools) as description and verification tools for
the PN model, the Xilinx CAD system for the FPGA
design and simulation and the FPGA circuit Spartan
platforms for the real hardware implementation and
experiments (The Product Data Sheets, 2002;
Projects, 2003).

The paper is organized as follows. The brief
description of a PNML language is in section 2.
Section 3 contains graphical and functional
descriptions of Petri-nets basic building blocks used
for its hardware implementation and simple example
for the connection of these blocks. The brief
experiment description for the dinning philosophers’

problem, the producer-consumer PN model and a
very primitive (but with its hardware implementation
by an FPGA design kit) experiment with a railway
critical rail are described in section 4. Both the
practical results with comparisons and the structure
of our improved methodology are presented in
section 5.

Petri Net model
,l,PNML

PN-blocks VHDL
source decription

PnmIi2vhdI
translation

HW implementation
FPGA

v

time simulation
Xilinx Foundation

Fig. 1. Algorithm description

2. PNML-LANGUAGE

The PNML format (Petri Net Markup Language) is
the data exchange format for Petri-nets description
(Petri Net Markup Language, 2002). It is based on
XML language. The PNML file can contain several
nets structured to pages. Every net contains places,
transitions and arcs with attributes (name, initial
marking, etc.) and the graphic information. There is
the PNML description of the place in Fig. 2. The
place has the identifier (id) here p/, the place name
<name>, the initial marking <initialMarking> with
their attributes <value> (the number of tokens) and
<graphical> (the absolute position of the object
“position” or the relative position “offset”).

<place id="pl">

<graphics>

<position x="-20" y="10"/>
</graphics>

<name>

<value>ready to produce</value>
<graphics>

<offset x="0" y="0"/>
</graphics>

</name>

<initialMarking>
<value>1</value>
<graphics>

<offset x="0" y="0"/>
</graphics>
</initialMarking>

</place>

Fig. 2. PNML description of the place



3. BASIC BUILDING BLOCKS AND THEIR
CONNECTIONS

The translation from PNML to the VHDL description
is derived from the net structure. We have used
modular description of net components — net’s
elements. The basic element is a place (Fig. 3). Each
place has to contain information about the actual
number of tokens as an output - out place. It has 2
input signals in_place (logical OR of the edges from
transitions to places) and ack place (the transition
firing signal for tokens taking from places). The
realization is the counter with the next standard
signals: clk, reset and ce (for action enabling). The
VHDL input parameter is the size of this counter.

The transitions remove tokens from their input places
and put them into their output places. The transition
can be fired only when it is enabled. The selection
what from more enabled transition shall be fired is
performed in the block “Random selection”.
Transitions are implemented by a structure of logic
expressions — the AND-gate for transition enabling
and next signal for selection the transition to be fired
from more enabled ones. The enabled transitions are
marked by the inputs of the AND gate (Fig. 4).

———in_place out_place f———monm

PLACE

— ack_place

clk ce reset

Fig. 3. A place — counters with control logic parts.
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Fig. 4. A transition

The block “random selection” selects one transition
to be fired from all enabled ones. For the possible
hardware implementation of random numbers
generator see (Chu and Jones, 1999; Shackleford, et
al., 2002). The block has three parts: LFSR, counter
and shifter, see Fig. 5. The hardware “pseudo-
random” number generation can be based on Linear
Feedback Shift Register (LFSR) connected according
the polynomial (primitive, irreducible) (Stroud,
2002). We have implemented a 16 bit LFSR that is
initially seeded by all ones. The down-counter is
preset by the random value obtained from LFSR. The
number of bits of this “random number” depends on
the model structure (the number of transitions). The
end of the counting period becomes when the counter
underflows “0”, then the output “stop” is set. The
shifter is realized by a circular shift register with

flexible number of Flip-Flops (according to the
number of enabled transitions). It shifts only one “1”
so many times as the counter underflows “0”.
Therefore after pseudo-random number of cycles one
from enabled transitions is selected. The outputs of
Flip-Flops are connected with all Petri-nets
transitions, see input “Selected transition” in Fig. 4.

The input of the “random selection” block is the
vector representation of all enabled transitions. This
output vector contains only one “1” choosing one
firing transition and the rest values are zeros.

enabled selected
transitions transition
SHIFTER

“random

number”
stop clken

LFSR COUNTER
clken load

L ]

Fig. 5. A “random selection” block

Concrete connections and a concrete structure of
these blocks depend on the real PN architecture. The
integral design has a block structure, the re-design or
some improvements of some blocks are independent
processes. The number of the signals is changed
according the actual PN structure.

The behavior of the whole PN model realization is

controlled by the state graph (Fig. 6):

e  State 0: Initial state (after RESET signal).

e State 1: Initialization of the block SHIFTER

e State 2 : Set the COUNTER by the LFSR output
by the signal “load”

e State 3 : The COUNTER works until “stop”=1
State 4: The selected transition is fired.

é)/ )

st=1
st=0

Fig. 6. The state graph of the controller

The conversion from the PNML description into the
VHDL code is performed by the pnmi2vhdl.exe
program, written in C language. Input parameters are
PNdescription in PNML format, source VHDL files



with predefined blocks and the maximum capacity of
the places (implicit value is 5). The edges in our PN
model must be only simple, but our new tested
version enables multiple edges. The structure of the
PN model is tested during the translation — the
number of transitions, the number of places - to
choose appropriate parameters of the “random
selection” block. The last phase is the construction of
the logical connections of all blocks by gates as an
expression of the edges and transitions. Simple
example of the PN model with 4 places and 3
transitions and connections of the blocks is in Fig. 7.
This model is presented only to show the
interconnection of the net elements.

P2 P4

probability of the transition to be fired choice, see
Table 1. (Kubatova, 2003).

Table 1: Distribution of the philosophers’ activity
for 200 cycles — transition firing.

Ph.1 Ph2 Ph3 Ph4 PhS5 Nobody

13%  20% 16% 16% 19% 16%
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Fig. 7. Simple example of the block connections

4. EXPERIMENTS

We have modeled 5 philosophers, who are dining
together, Fig. 8. The philosophers each have two
forks next to them, both of which they need in order
to eat. As there are only five forks it is not possible
for all 5 philosophers to be eating at the same time.
The Petri-net shown here models a philosopher that
takes both forks simultaneously thus preventing the
situation where some philosophers may only have
one fork but are not able to pick up the second fork
as their neighbors has already done so. The token in
the fork place (places P1, P2, ..., PS) means that this
fork is free. The token in the eat place (places P6, P7,
..., P10) means that this philosopher eats.

Our implementation has used 81 CLB, 57 flip-flops
with maximal working frequency 14 MHz. We have
verified that the hardware “random selection” block
has worked with a random and relatively uniform

Fig. 8. The dining philosophers PN model

We have performed experiments with a “producer-
consumer” system. Our FPGA implementation has
used 59 CLB blocks, 47 flip-flops with maximal
working frequency 24.4 MHz. The maximum input
capacity parameter for places (the size of the counter)
was set to the value 3. The average buffer occupation
during 120 cycles (transition firings) was 1.43,
(Koblizek 2001).
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Fig. 9. Producer — consumer model

Our real application experiment modeled the railway
with one common critical part — rail, see Fig. 10. The
PN model (Fig. 11) has initial marking where tokens
are in places “1T” and “3T” (two trains are on the
rails 1 and 3 respectively), “4F” (a critical rail is free)
and 2F (a rail 2 is free). This model has eight places,
two ones T (train) and F (free) for each rail: a token
in the first one means that the train is in this rail (T-
places) and the second means that this rail is free (F-
places). It was described and simulated in the
Design/CPN system and then it was implemented in



the real FPGA design kit (ProMoX), (Projects, 2003;
Kubatova, 2003). 4
LInE
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Fig. 10. Railway semaphore model
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Fig. 11. The PN model of 4 rails

5. IMPROVEMENTS AND CONCLUSIONS

We have performed many experiments with different
PN models and also with different final VHDL
implementation.
PnmI2vhdl compiler from a PN model to VHDL
hardware description were made, too. The most space
demanding is implementation of the “random
selection” block. The quantitative properties of this
block with respect to the number of maximum
transitions that can be fired at one time (at one PN
marking) are in Table 2. Table 3 contains parameters
from “place” block implementation.

Table 2: Parameters of the “Random selection’ block
implementation.

Number of Number of bitsof CLB  Flip-

transitions  “random number” blocks Flops
5 3 33 31
10 4 47 37
15 4 59 42
20 5 72 48
25 5 67 53

Our main aim is to propose the methodology for the
unified design process from the highest level of
abstraction allowing modeling both hardware and
software parts, their verifications and modifications
according the simulation process. We propose to use
Petri-nets and commonly used Petri-nets tools for this
purposes since the standardized output of these tools
was made public (Petri Nets Markup Language
2002).

We have presented a process of direct transmission
from Petri-nets representation to its hardware
implementation. But not all model expressed and
modeled by a Petri-net are non-deterministic, many
of them are equivalent to a FSM. However, the
hardware implementation of a FSM is a standardized
part of FPGA CAD tools. Therefore the improved
algorithm has been suggested, see Fig. 12. Only such
models which are not equivalent to a FSM are
implemented according methodology based on
VHDL implementation of PN building blocks
(section 3). The rest e.g. safe Petri-nets (Ceska, 1994,
Yakovlev, 2000b) are transformed to VHDL
description of the FSM.

Table 3: Parameters of the “place” block
implementation.

Max. place CLB Flip-
capacity blocks Flops
(size)

1 2 1

3 3 2

5 5 3

10 6 4

15 6 4

25 7 5

Several improvements of our

‘ Petri Net model

2

PN analysis

l PN blocks

‘ PN equivalent to FSM? descriptions

YES / NO ¢

PNML output
compile to FSM

] \

Pnmi2vhdl

FPGA FPGA
implementation implementation
of FSM of Petri Net

Fig. 12. Improved algorithm

Our other “work in progress” is compilation of some
parts of PN model to the assembler program of some
processor on a chip and verification of the all design
both FPGA and processor (software) parts. Since the



high-level representation of the designed system is by
PN model easy applicable, the all parts of designed
system can be verified altogether.

The main conclusion of this paper is that we are able
to directly implement the verified high-level PN
model in the desired hardware, here FPGAs. Our
model can be a Petri-net not equivalent to a FSM.
Our main aim is to create a methodology applicable
to a wide spectrum of systems with respect to their
appropriate trade-off between hardware and software
parts.
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