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Abstract 

This paper focuses on the on-line error detection in circuits implemented in FPGAs. We have used 
error detection codes to ensure the self-checking property. A fault in a given combinational circuit has to be 
detected and signalized at the time of its appearance and before the further distribution of  
errors. Hence a safe operation of the designed system is guaranteed. The check bits generator and the checker 
were added to the original combinational circuit to detect an error during normal circuit operation called 
concurrent error detection and to ensure the Totally Self-Checking property. Only combinational circuits are 
considered. The benchmarks used in this work in order to compute a quality of the used code, are described 
by equations instead of tables, mainly used. All of our experiments assume their XILINX FPGA 
implementation. 

 
1. Introduction 
 
Nowadays when the circuit integration 
increases, the importance of radiation impact 
on integrated circuits grows even at the sea 
level. The mobile nets are becoming more 
important because of their radiation. They can 
affect any circuit used every day. Some 
machines like the control units in cars can 
play an important role in places such as 
tunnels, where a car fault can endanger 
human lives. Other important areas are 
aviation, medicine or space missions. All of 
these applications and many others depend on 
a correct function of circuits and one wrong 
result can lead to the huge losses. 

The FPGA circuits are more and more 
often used to realize any function because of 
their prices and capabilities to upgrade the 
function when a bug is discovered. Another 
advantage is their possible dynamic 
reconfiguration when a fault in the circuit is 
detected and localized [4]. 

This paper is organized as follows. 
Section 2 describes related works in this field, 
Section 3 introduces the used fault model and 
proposes general methodology for comparing 
the quality of used error detection codes. 
Section 4 presents the experimental issues and 
solutions of the parity bits generation for all 

used benchmark tests. Our future work and 
conclusions are presented in the Section 5. 
 
2. Related works 
 
There are many papers focused on concurrent 
error detection in a random logic circuit. The 
combinational circuits are used as a basic 
element for testing of the proposed method 
that ensures totally self-checking (TSC) 
properties. There are two basic properties that 
must be taken into account and which are 
contradictory: 
• Fault coverage must be achieved as high 

as possible - up to one hundred percent. 
The error detecting codes are used to 
ensure TSC properties. The maximal fault 
coverage must be ensured for the whole 
design – for the redundant parts too. All 
these on-line design methods increase the 
area overhead of the designed circuit. 

• Area overhead is a second property 
forcing designers to reach its minimum 
while saving the maximal fault coverage. 
There is a relation between the area 
overhead and the fault coverage. It can be 
shown that higher fault coverage does not 
mean higher area overhead, in some cases 
[2]. 

The concurrent error detection (CED) 
design methodology used to satisfy TSC 



property has a deep impact to the fault 
coverage of circuits implemented in FPGAs. 
Some results of the fault coverage 
implemented in FPGAs are presented in [1]. 

Basic methods used for the fault 
detection in logic circuits are based on a 
simple duplication. This methodology allows 
to determine the final area overhead before 
the duplication generator is executed. The 
duplicated part can be modified to remove 
common-mode failures (CMFs). Another 
approach can be used in cases when 
duplicated circuit is modified to decrease the 
number of outputs of duplicated part (output 
parity bits are used instead original outputs). 
The error codes can be used in this case. Both 
of these techniques are compared in [3, 6]. 

The area overhead plays an important 
role in popularity of the method used for 
ensuring the TSC property. Therefore special 
schemes were designed for circuits with 
regular structures, for example adders, 
multipliers or memories. 

There are two main reasons why the 
CED techniques were not so popular: a very 
high area overhead and a low disposition to 
temporary faults due to their large feature 
sizes. Nowadays when the deep submicron 
technology is widely used, CED techniques 
for circuit with an unknown structure are 
more and more important. 

Some of the new design methods try to 
reach smaller area overhead but achieve low 
fault detection. For example, only some 
inputs may be used to ensure the partial self-
checking property of a multilevel logic, by 
using low-cost parity error detecting codes 
[7]. 

Next different design methodology 
ensuring smaller area overhead uses 
duplication of only some part of the original 
circuit. This method is based on reduction of 
the number of selected input combinations 
[8]. 

Some techniques describe methods 
how to detect the faulty part of an FPGA 
without stopping its function [5]. These 
methods test unused part of the FPGA. When 
the test is performed the tested part is 
exchanged with the used part and the testing 
process is started again for currently unused 

area. Here the BIST techniques can be 
successfully exploited [11]. 
 
3. TSC circuit design 
 
We have used the structure on Figure 1 as a 
basic model of the totally self-checking 
circuit. The final scheme consists of four 
basic blocks: the original combinational 
circuit, its duplication, the check bits 
generator and the checker. 

The checking bits are generated from 
the primary inputs of the original circuit. The 
primary outputs and the checking bits are 
used as an encoded output. The checker 
compares the check bits with the check bits 
generated directly from the primary outputs. 

To satisfy the self-checking property 
the checker must have at least two outputs 
[10]. The first output is used for the regular 
operation and the second for the error 
indication. 

This basic structure ensures that a 
circuit can be totally self-checking (TSC). 
Another condition that has to be satisfied is 
that the basic structure has to be self-testing 
and fault secure. 
 The blocks “Duplicated circuit” and 
“Code generator” can be minimized and the 
resulted design of both of them can be less 
then the original tested circuit. 
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Figure 1. Approach of TSC circuit 
 
3.1 Adopted fault model 
 
All of our experiments use FPGA circuits. 
The circuit implemented in an FPGA consists 
of individual memory elements (LUTs - look 
up tables). In Figure 2 we can see 3 gates 
mapped into a LUT. 
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Figure 2. Fault model 

 
The original circuit has two inner nets. 

The original set of the test vectors covers all 
faults in these inner nets. For the LUT these 
test vectors are redundant. For circuits 
realized by LUTs the change (a defect) in the 
memory leads to a single event upset (SEU) at 
the primary output of the LUT. Therefore we 
can use the stuck-at fault model in our 
experiments to detect SEU – only some from 
the detected faults will be redundant.   

The used fault model is described by a 
simple example in Figure 3. We have used 
only one LUT, for the simplicity. The LUT 
realizes a circuit containing 3 gates. Primary 
inputs from I0 to I1 are the same as the 
address inputs for the LUT. When this 
address is selected its content is propagated to 
the output. 

We assume the following situation: 
The content of this LUT can be changed, e.g., 
an electromagnetic interference, cross-talk or 
alpha particles. The appropriated memory cell 
is set to one and the wrong value is 
propagated to the output. It means that the 
realized function is changed and output 
behaves as a single event upset. By this 
example we can say that a change of any LUT 
cell leads to a stuck-at fault on the output. 
This fault is observed only if the bad cell is 
selected. This is the same for circuits based on 
gates. Some fault can be masked and does not 
necessarily lead to an erroneous output. 

Due to the fact that some faults are 
masked, the possibility of their appearance 
may be situated in time when unused logic is 
used. For example if one bit of a LUT is 
changed, the erroneous output will appear, 
while the appropriate bit in a LUT is selected 
by the address decoder.    
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Figure 3. Fault Model - Example 
 
3.2 Software for experimental evaluation 
 
Figure 4 describes how the test is performed 
for every detecting code. We have used the 
ISCAS85 benchmarks [9] in our experiments. 
Every benchmark is duplicated by renaming 
the original circuit and loading the same 
original circuit again. Next we add the code 
generator behind the duplicated part. Then we 
generate the modified benchmark. 

The Atalanta ATPG tool was used to 
generate the minimal tests for benchmarks. 
The obtained test set with the modified 
benchmark is put into the last part. In this part 
we inject a fault and we compute the fault 
coverage by our simulator. The bold 
rectangles represent our original software. 
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Figure 4. Design scheduling of self-checking 
circuit. 

 
3.3 Software solution description 
 
The first task is the modification of the 
original circuits – in Figure 4 “CUT 
duplication”. It means that this part ensures 
loading, saving and renaming a circuit. To 
duplicate circuit we have to read the original 



circuit, rename this circuit and load the 
original circuit again.  

The second task (“Code generator 
addition”) is adding the check nets. This 
could be done by one of these methods: by 
adding a net or by adding a gate.  

The third task is the simulation of the 
modified circuit and the fault injection (“Fault 
injection & Simulation”). The last task is the 
computation of the fault coverage for the 
whole circuit (the original circuit and the 
check bits generator). 

All the software was written in 
Microsoft Visual C++. The Atalanta ATPG 
tool was used to generate minimal test set. 
 
3.4 Compound design 
 
The implemented design has to satisfy the 
condition of modularity. Due to this fact we 
have proposed a special design procedure 
suitable for TSC and reconfiguration 
properties. The TSC property must be 
fulfilled for every module and of course for 
the whole design too. We have proposed such 
structure that satisfies self-checking 
properties and enable dynamical 
reconfiguration, see Figure 5. 

The number of outer nets and the 
complexity of every block affect the fault 
coverage and the final area overhead. 
 
 
4 Experimental results 
 
All our experiments use the ISCAS85 
benchmarks [9] where all the circuits are 
combinational only. These benchmarks are 
based on real circuits from large designs. 
 
Description of tested benchmarks: 
 
• c432 27-channel interrupt controller 
• c499/c1355 32-bit SEC circuit 
• c880 8-bit ALU 
• c1908 16-bit SEC/DED circuit 
• c2670 12-bit ALU and controller 
 

The performed experiments were 
focused to obtain the hundred percent of 
a fault coverage. 

Table 1 - Fault coverage 
 

Fault coverage [%] Benchmark 
1 bit 2 bits 6 bits 7 bits 

c432 83,5 92 99,5 98 
C499 96,5 98 100 100 
c880 97,5 99 99,9 100 
c1355 97 98,5 100 100 
c1908 89 96 99,8 99,5 
c2670 80 95,7 - 99,98 

 
 

In a case, when only one parity bit is 
used, the high fault coverage is reached (more 
then 80 percent), see Table 1. Last two 
columns show that more parity bits can mean 
a less fault coverage. The fault coverage 
strongly depends on the used system of 
parities, [2]. 

The fault coverage depends also on the 
circuit structure, where the less outputs 
implicates the worst fault coverage, see 
Table 2. But it follows from the 
controllability and observability properties, 
[11]. 

 
Table 2 - Number of inputs and outputs 

 
Benchmark Inputs Outputs 

c432 36 7 
C499 41 32 
c880 60 26 

c1355 41 32 
c1908 33 25 
c2670 233 140 

 
 

These experiments were performed 
before their implementation into the FPGA. It 
means that we cannot say that after 
implementation we obtain more or less fault 
coverage. In some cases we obtain more but 
in some cases less one [1].  

The final fault coverage depends on 
the synthesis process. Uncontrolled 
optimizations and duplications may decrease 
the fault coverage. It is caused by a 
modification of the original circuit 
(duplication and minimization processes). All 
of these steps must be done before the 
addition of the parity bits generator. To 
prevent the TSC circuit against the fault 



coverage decreasing, all synthesizes 
modifications must be disabled. 

The fact that the fault coverage 
increases after mapping, is caused by 
removing of some inner nets of the original 
circuit (Figure 2). 

 
 

5. Conclusion and future work 
  
This work is a part of the methodology of the 
automatic design process for the concurrent 
error detection (CED) circuits based on 
FPGAs with the possible dynamical 
reconfiguration of the faulty part. The 
reliability characteristics can increase by 
reconfiguration after the error detection. The 
most important criterion is the speed of the 
fault detection and the safety of the whole 
circuit with respect to the surrounding 
environment. 

We can summarize, that all of our 
experiments say that 100% fault coverage can 
be reached for the whole design including 
checking parts. It is achieved by using more 
redundancy outputs generated by the special 
codes. 

The Hamming-like code can be used 
as a suitable code to generate check bits. Its 
type depends on the number of outputs and on 
the complexity of the original circuit [2]. 
More complex circuits need more check bits. 
We would like to reduce the duplicated circuit 
and compute the fault coverage again. 

We have proposed a new solution of 
the check bits generator design. Because we 
want to increase the reliability characteristics 
of the circuit implemented in FPGAs we have 
to modify the circuits at the netlist level. 

All of our experiments apply the 
combinational circuits only. But many circuits 
in real designs are composed from sequential 
parts, too. However such circuits can be 
disjoint to the simple combinational parts 
separated by flip-flops. As an example, the 
finite state machine can be divided into two 
parts, where the first part covers 
combinational logic from inputs to flip-flops 
(with feedback) and the second one covers the 
combinational logic from flip-flops to outputs 
(with the nets that are connected directly from 

the input to the output). Therefore the 
restriction to the combinational circuits only 
does not reduce the quality of our methods 
and experimental results.  

Our future improvement has to 
discover more closed relations between real 
FPGA defects and the used fault models. The 
minimization of the whole TSC design to 
obtain the less area overhead has been 
experimented now. Also the appropriate 
decomposition of the designed circuit is under 
our intensive research. 
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Figure 5. Proposed structure of TSC circuits implemented in FPGA 
 

 


