
On-line Testing for FPGA

Pavel Kubalík, Hana Kubátová
Department of Computer Science and Engineering,

Czech Technical University in Prague, Karlovo nam. 13, 121 35 Prague 2
E-mail: xkubalik@fel.cvut.cz, kubatova@fel.cvut.cz

Abstract

This paper focuses on the on-line error detection in circuits implemented in FPGAs. We have used
error detection codes to ensure the self-checking property. A fault in a given combinational circuit has to be
detected and signalized at the time of its appearance and before the further distribution of
errors. Hence a safe operation of the designed system is guaranteed. The check bits generator and the checker
were added to the original combinational circuit to detect an error during normal circuit operation called
concurrent error detection and to ensure the Totally Self-Checking property. Only combinational circuits are
considered. The benchmarks used in this work in order to compute a quality of the used code, are described
by equations instead of tables, mainly used. All of our experiments assume their XILINX FPGA
implementation.

1. Introduction

Nowadays when the circuit integration
increases, the importance of radiation impact
on integrated circuits grows even at the sea
level. The mobile nets are becoming more
important because of their radiation. They can
affect any circuit used every day. Some
machines like the control units in cars can
play an important role in places such as
tunnels, where a car fault can endanger
human lives. Other important areas are
aviation, medicine or space missions. All of
these applications and many others depend on
a correct function of circuits and one wrong
result can lead to the huge losses.

The FPGA circuits are more and more
often used to realize any function because of
their prices and capabilities to upgrade the
function when a bug is discovered. Another
advantage is their possible dynamic
reconfiguration when a fault in the circuit is
detected and localized [4].

This paper is organized as follows.
Section 2 describes related works in this field,
Section 3 introduces the used fault model and
proposes general methodology for comparing
the quality of used error detection codes.
Section 4 presents the experimental issues and
solutions of the parity bits generation for all

used benchmark tests. Our future work and
conclusions are presented in the Section 5.

2. Related works

There are many papers focused on concurrent
error detection in a random logic circuit. The
combinational circuits are used as a basic
element for testing of the proposed method
that ensures totally self-checking (TSC)
properties. There are two basic properties that
must be taken into account and which are
contradictory:
• Fault coverage must be achieved as high

as possible - up to one hundred percent.
The error detecting codes are used to
ensure TSC properties. The maximal fault
coverage must be ensured for the whole
design – for the redundant parts too. All
these on-line design methods increase the
area overhead of the designed circuit.

• Area overhead is a second property
forcing designers to reach its minimum
while saving the maximal fault coverage.
There is a relation between the area
overhead and the fault coverage. It can be
shown that higher fault coverage does not
mean higher area overhead, in some cases
[2].

The concurrent error detection (CED)
design methodology used to satisfy TSC

property has a deep impact to the fault
coverage of circuits implemented in FPGAs.
Some results of the fault coverage
implemented in FPGAs are presented in [1].

Basic methods used for the fault
detection in logic circuits are based on a
simple duplication. This methodology allows
to determine the final area overhead before
the duplication generator is executed. The
duplicated part can be modified to remove
common-mode failures (CMFs). Another
approach can be used in cases when
duplicated circuit is modified to decrease the
number of outputs of duplicated part (output
parity bits are used instead original outputs).
The error codes can be used in this case. Both
of these techniques are compared in [3, 6].

The area overhead plays an important
role in popularity of the method used for
ensuring the TSC property. Therefore special
schemes were designed for circuits with
regular structures, for example adders,
multipliers or memories.

There are two main reasons why the
CED techniques were not so popular: a very
high area overhead and a low disposition to
temporary faults due to their large feature
sizes. Nowadays when the deep submicron
technology is widely used, CED techniques
for circuit with an unknown structure are
more and more important.

Some of the new design methods try to
reach smaller area overhead but achieve low
fault detection. For example, only some
inputs may be used to ensure the partial self-
checking property of a multilevel logic, by
using low-cost parity error detecting codes
[7].

Next different design methodology
ensuring smaller area overhead uses
duplication of only some part of the original
circuit. This method is based on reduction of
the number of selected input combinations
[8].

Some techniques describe methods
how to detect the faulty part of an FPGA
without stopping its function [5]. These
methods test unused part of the FPGA. When
the test is performed the tested part is
exchanged with the used part and the testing
process is started again for currently unused

area. Here the BIST techniques can be
successfully exploited [11].

3. TSC circuit design

We have used the structure on Figure 1 as a
basic model of the totally self-checking
circuit. The final scheme consists of four
basic blocks: the original combinational
circuit, its duplication, the check bits
generator and the checker.

The checking bits are generated from
the primary inputs of the original circuit. The
primary outputs and the checking bits are
used as an encoded output. The checker
compares the check bits with the check bits
generated directly from the primary outputs.

To satisfy the self-checking property
the checker must have at least two outputs
[10]. The first output is used for the regular
operation and the second for the error
indication.

This basic structure ensures that a
circuit can be totally self-checking (TSC).
Another condition that has to be satisfied is
that the basic structure has to be self-testing
and fault secure.
 The blocks “Duplicated circuit” and
“Code generator” can be minimized and the
resulted design of both of them can be less
then the original tested circuit.

Combinational
circuit

Inputs Output

} code
word

Duplicate
circuit

Code
generator

check
bits

Checker

N

M

Combinational
circuit

Output

} code
word} code
word

Duplicated
circuit

Code
generator

check
bits

Checker

N

M

Figure 1. Approach of TSC circuit

3.1 Adopted fault model

All of our experiments use FPGA circuits.
The circuit implemented in an FPGA consists
of individual memory elements (LUTs - look
up tables). In Figure 2 we can see 3 gates
mapped into a LUT.

Gates mapped into LUT
0
1
•
•

15

faultI0..3
O

LUT

0
1
•
•

15

faultI0..3
O

0
1
•
•

15

faultI0..3
O

LUT

Redundant fault

Figure 2. Fault model

The original circuit has two inner nets.

The original set of the test vectors covers all
faults in these inner nets. For the LUT these
test vectors are redundant. For circuits
realized by LUTs the change (a defect) in the
memory leads to a single event upset (SEU) at
the primary output of the LUT. Therefore we
can use the stuck-at fault model in our
experiments to detect SEU – only some from
the detected faults will be redundant.

The used fault model is described by a
simple example in Figure 3. We have used
only one LUT, for the simplicity. The LUT
realizes a circuit containing 3 gates. Primary
inputs from I0 to I1 are the same as the
address inputs for the LUT. When this
address is selected its content is propagated to
the output.

We assume the following situation:
The content of this LUT can be changed, e.g.,
an electromagnetic interference, cross-talk or
alpha particles. The appropriated memory cell
is set to one and the wrong value is
propagated to the output. It means that the
realized function is changed and output
behaves as a single event upset. By this
example we can say that a change of any LUT
cell leads to a stuck-at fault on the output.
This fault is observed only if the bad cell is
selected. This is the same for circuits based on
gates. Some fault can be masked and does not
necessarily lead to an erroneous output.

Due to the fact that some faults are
masked, the possibility of their appearance
may be situated in time when unused logic is
used. For example if one bit of a LUT is
changed, the erroneous output will appear,
while the appropriate bit in a LUT is selected
by the address decoder.

0
1
1
0
•
•
1

LUT
inputs

0
1
1
0
•
•
1

LUT
inputs

Single event upset

0
0

0

0
0

0 1

1 1

faultfault

Figure 3. Fault Model - Example

3.2 Software for experimental evaluation

Figure 4 describes how the test is performed
for every detecting code. We have used the
ISCAS85 benchmarks [9] in our experiments.
Every benchmark is duplicated by renaming
the original circuit and loading the same
original circuit again. Next we add the code
generator behind the duplicated part. Then we
generate the modified benchmark.

The Atalanta ATPG tool was used to
generate the minimal tests for benchmarks.
The obtained test set with the modified
benchmark is put into the last part. In this part
we inject a fault and we compute the fault
coverage by our simulator. The bold
rectangles represent our original software.

CUT duplication

Code generator
addition

Fault injection
& Simulation

ISCAS benchmark

Fault coverageAtalanta
ATPG

Modified
ISCAS benchmark

Test
set

Figure 4. Design scheduling of self-checking
circuit.

3.3 Software solution description

The first task is the modification of the
original circuits – in Figure 4 “CUT
duplication”. It means that this part ensures
loading, saving and renaming a circuit. To
duplicate circuit we have to read the original

circuit, rename this circuit and load the
original circuit again.

The second task (“Code generator
addition”) is adding the check nets. This
could be done by one of these methods: by
adding a net or by adding a gate.

The third task is the simulation of the
modified circuit and the fault injection (“Fault
injection & Simulation”). The last task is the
computation of the fault coverage for the
whole circuit (the original circuit and the
check bits generator).

All the software was written in
Microsoft Visual C++. The Atalanta ATPG
tool was used to generate minimal test set.

3.4 Compound design

The implemented design has to satisfy the
condition of modularity. Due to this fact we
have proposed a special design procedure
suitable for TSC and reconfiguration
properties. The TSC property must be
fulfilled for every module and of course for
the whole design too. We have proposed such
structure that satisfies self-checking
properties and enable dynamical
reconfiguration, see Figure 5.

The number of outer nets and the
complexity of every block affect the fault
coverage and the final area overhead.

4 Experimental results

All our experiments use the ISCAS85
benchmarks [9] where all the circuits are
combinational only. These benchmarks are
based on real circuits from large designs.

Description of tested benchmarks:

• c432 27-channel interrupt controller
• c499/c1355 32-bit SEC circuit
• c880 8-bit ALU
• c1908 16-bit SEC/DED circuit
• c2670 12-bit ALU and controller

The performed experiments were
focused to obtain the hundred percent of
a fault coverage.

Table 1 - Fault coverage

Fault coverage [%] Benchmark
1 bit 2 bits 6 bits 7 bits

c432 83,5 92 99,5 98
C499 96,5 98 100 100
c880 97,5 99 99,9 100
c1355 97 98,5 100 100
c1908 89 96 99,8 99,5
c2670 80 95,7 - 99,98

In a case, when only one parity bit is
used, the high fault coverage is reached (more
then 80 percent), see Table 1. Last two
columns show that more parity bits can mean
a less fault coverage. The fault coverage
strongly depends on the used system of
parities, [2].

The fault coverage depends also on the
circuit structure, where the less outputs
implicates the worst fault coverage, see
Table 2. But it follows from the
controllability and observability properties,
[11].

Table 2 - Number of inputs and outputs

Benchmark Inputs Outputs

c432 36 7
C499 41 32
c880 60 26

c1355 41 32
c1908 33 25
c2670 233 140

These experiments were performed
before their implementation into the FPGA. It
means that we cannot say that after
implementation we obtain more or less fault
coverage. In some cases we obtain more but
in some cases less one [1].

The final fault coverage depends on
the synthesis process. Uncontrolled
optimizations and duplications may decrease
the fault coverage. It is caused by a
modification of the original circuit
(duplication and minimization processes). All
of these steps must be done before the
addition of the parity bits generator. To
prevent the TSC circuit against the fault

coverage decreasing, all synthesizes
modifications must be disabled.

The fact that the fault coverage
increases after mapping, is caused by
removing of some inner nets of the original
circuit (Figure 2).

5. Conclusion and future work

This work is a part of the methodology of the
automatic design process for the concurrent
error detection (CED) circuits based on
FPGAs with the possible dynamical
reconfiguration of the faulty part. The
reliability characteristics can increase by
reconfiguration after the error detection. The
most important criterion is the speed of the
fault detection and the safety of the whole
circuit with respect to the surrounding
environment.

We can summarize, that all of our
experiments say that 100% fault coverage can
be reached for the whole design including
checking parts. It is achieved by using more
redundancy outputs generated by the special
codes.

The Hamming-like code can be used
as a suitable code to generate check bits. Its
type depends on the number of outputs and on
the complexity of the original circuit [2].
More complex circuits need more check bits.
We would like to reduce the duplicated circuit
and compute the fault coverage again.

We have proposed a new solution of
the check bits generator design. Because we
want to increase the reliability characteristics
of the circuit implemented in FPGAs we have
to modify the circuits at the netlist level.

All of our experiments apply the
combinational circuits only. But many circuits
in real designs are composed from sequential
parts, too. However such circuits can be
disjoint to the simple combinational parts
separated by flip-flops. As an example, the
finite state machine can be divided into two
parts, where the first part covers
combinational logic from inputs to flip-flops
(with feedback) and the second one covers the
combinational logic from flip-flops to outputs
(with the nets that are connected directly from

the input to the output). Therefore the
restriction to the combinational circuits only
does not reduce the quality of our methods
and experimental results.

Our future improvement has to
discover more closed relations between real
FPGA defects and the used fault models. The
minimization of the whole TSC design to
obtain the less area overhead has been
experimented now. Also the appropriate
decomposition of the designed circuit is under
our intensive research.

Acknowledgement

This research has been in part supported by
the GA102/04/2137 grant, CTU0408913 grant
and MSM 212300014 research program.

References

[1] C. Bolchini, F. Salice and D. Sciuto.
“Designing Self-Checking FPGAs through
Error Detection Codes.” 17th IEEE
International Symposium on Defect and Fault
Tolerance in VLSI Systems (DFT’02),
November 06 - 08, 2002 , Canada, pp. 60.
[2] P. Kubalík and H. Kubátová. “Design of
Self Checking Circuits Based on FPGA.” In:
Proceedings of the 15th International
Conference on Microelectronics. Cairo: Cairo
University, 2003, pp. 378-381.
[3] S. Mitra and E. J. McCluskey. “Which
Concurrent Error Detection Scheme To
Choose?” Proc. International Test Conf., pp.
985-994, 2000.
[4] XAPP 151 (v1.5), “Virtex Series
Configuration Architecture User Guide”
[5] M. Abramovici, C. Stroud, S. Wijesuriya,
C. Hamilton, and V. Verma, "Using Roving
STARs for On-Line Testing and Diagnosis of
FPGAs in Fault-Tolerant Applications," Proc.
IEEE Intn'l. Test Conf., pp. 973-982, 1999.
[6] S. Mitra and E. J. McCluskey. “Diversity
Techniques for Concurrent Error Detection”
Center for Reliable Computing, Dept. of
Electrical Engineering and Computer Science
Stanford University, Technical Report 00-7,
June 2000.

[7] K. Mohanram, E. S. Sogomonyan, M.
Gössel, N. A. Touba. “Synthesis of Low-Cost
Parity-Based Partially Self-Cheking Circuits”,
Proceeding of the 9th IEEE International On-
Line Testing Symposium (IOLTS'03), pp. 35.
[8] P. Drineas, Y. Makris, "Concurrent Fault
Detection in Random Combinational Logic,"
in Proceedings of the IEEE International
Symposium on Quality Electronic Design
(ISQED), pp. 425-430, 2003
[9] F. Brglez, H. Fujiwara. „A Neutral Netlist
of 10 Combinational Benchmark Circuits and
a Target Translator in Fortan.” Proc. of

International Symposium on Circuits and
Systems, pp. 663-698, 1985.
[10] M. Nicolaidis and Y. Zorian. “On-Line
Testing for VLSI - A Compendium of
Approaches.” On-Line Testing for VLSI,
Kluwer Academic Publisher, London 1998,
[11] Ch. E. Stroud. “A Designer’s Guide to
Built-In Self-Test.” Kluwer Academic
Publisher, London 2002.
[12] M. L. Bushnell and V. D. Agrawal.
“Essentials of Electronic Testing.” Kluwer
Academic Publisher, London 2000.

Original
combinational

circuit

Check bits
generator

Checker

Primary
output

Primary
input

Totally Self-Checking circuit N-1

Output
Check bits
(circuit N-1)

OK
(circuit N-2)

FAIL
(circuit N-2)

Input
Check bits
(circuit N-2)

Original
combinational

circuit

Check bits
generator

Checker

Primary
output

Primary
input

Totally Self-Checking circuit N

Output
Check bits
(circuit N)

OK
(circuit N-1)

FAIL
(circuit N-1)

Input
Check bits
(circuit N-1)

Figure 5. Proposed structure of TSC circuits implemented in FPGA

