Two-Level Boolean Minimizer BOOM-I|

Petr FiSer, Hana Kubéatova
Department of Computer Science and Engineering
Czech Technical University
Karlovo nam. 13, 121 35 Prague 2
e-mail: fiserp@fel.cvut.cz, kubatova@fel.cvut.cz

Abstract

We propose a novel two-level Boolean minimizer comingsuigcession to our previously
developed minimizer BOOM, so we have named it BOOM-ik b combination of two minimizers,
namely BOOM and FC-Min. Each of these two methods has itsapea where it is most efficiently
applicable. We have combined these two methods together eb® @olve all kinds of problems
efficiently, independently on their size or nature. The t®wery scalable in terms of the required
runtime and/or the quality of the solution. It is applleato functions with an extremely large
number of both input and output variables.

1. Introduction

The problem of two-level Boolean minimization is quitd, but surely not dead. It occurs in almost
every area of the logic design, as is the design of@osystems, design of build-in self-test (BIST)
for VLSI circuits [1] and in the VLSI synthesis in geakf2]. It has been studied for many decades
and plenty of minimization methods and algorithmic minenézwere developed. In 50’s the classical
Quine-McCluskey method [3, 4] was proposed, and laid thsisbfr subsequent Boolean
minimization algorithms. MINI [5], ESPRESSO [6] and itodifications [7] were proposed, later
Scherzo [8] with its improved CP solution algorithm vimgoduced. Lately we have developed a
Boolean minimizer BOOM [9, 10], which is able to hanfiiections with an extremely large number
of input variables.

The major drawback of these algorithms is the limite# sif the problems they can solve in a
reasonable time. When the number of input variablesgytoiaundreds (such problems occur, e.g., in
the BIST design), the minimization times are extremehg. This problem was partially solved by
BOOM. However, the same problem can be encounterddrfotions with many outputs — the group
minimization is quite a demanding process and the rustgnaw with the number of output variables
rapidly as well. Lately we have developed an algoritatted FC-Min [11] solving this problem
efficiently. The solution is being constructed from treeessary group implicants only, which makes
the algorithm extremely fast and with low memory dema®s.the other hand, FC-Min does not
produce good results for function with a low humber of ougatables.

In this paper we propose a method where the FC-Min andrigamal BOOM algorithms are
combined together to achieve better results. Implicangs being produced both by BOOM and
FC-Min and then they are put together into a common implipool. The final solution is then
constructed by solving a covering problem using all thelicants. The ratio of runs of both
algorithms can be freely adjusted, which makes the systgood minimizer for all kinds of problems.
Since the system is a successor of BOOM to sometexternave named ROOM-II.

The paper has the following structure: Section 2 defineprblslem statement, the structure and
major principles of BOOM-II will be described in Sexti3. Section 4 describes the experiments with
BOOM-II. Section 5 concludes the paper.

2. Problem Statement

Let us have a set af Boolean functions afi input variables. The input variables will be denoted as
X, 0<i <n, the output variables a5 0<j <m. The functions will be referenced Bg(x1, %, ... %),
Fo(X1, % -+ %), - Fm(X1, %, ... %%). The output values of the care terms are defined by la tabte.
Thus, each function is specified by its on-set and ¢ffBethe minterms that are not present in the
truth table are implicitly assigned don't care valudse part of a truth table representing the terms will

be denoted as d@nput matrixl, the rows of the input matrix will be denotedigsut vectors The part
defining the output values of the terms will be calledbatput matrixQO; similarly, the rows of this
matrix output vectorsEach row of the output matrix defines values of the outptibbles for the
values of input variables specified by the corresponding irowhe input matrix. The number of
I matrix columns correspond to the number of input vaegatl the number o© matrix columns is
equal to the number of output variablesthe number of andO matrix rows will be denoted gs
(which means the number of care terms).

Specifying a Boolean function by its on-set and off-sahyer by its on-set and don't care set, is
advantageous especially for highly unspecified functioas,functions that have the defined values of
only few terms, the rest are don't cares. The typ@a@mple of the use of such a function can be
found, e.g., in the build-in self-test (BIST) design [12, 14.

Our task is to synthesize a two-level circuit implerimgntthe multi-output Boolean function
described by a truth table, whereas the implementafidhe circuit should be as small as possible.
Thus, we perform a group two-level Boolean minimizatidgrere a set of functions is given by their
on-sets and off-sets.

3. Principles of the M ethod

As it was stated in the Introduction, BOOM-Il is a composi of two previously published
minimization algorithms - BOOM [9, 10] and FC-Min [11]. tBahe algorithms have their advantages
and drawbacks. BOOM is suitable for problems with gdanumber of input variables, but it is
somewhat limited regarding the number of output variabtesa farge number of outputs the runtime
grows rapidly, and the algorithm begins to be less efiicas well. This is due to the demanding
implicant reduction phase above all. BOOM is based onnargton of prime implicants (Pls), and
thus it is strong for problems whose solution is cdadignostly of Pls. Thus, BOOM is very
efficiently applicable to problems with many input vaies and a low number of outputs.

The second minimizer FC-Min was developed to handlelgmubwith many output variables. It is
extremely fast - the runtime grows almost linearlyhwgtowing number of both the input and output
variables. The solution is being constructed of group wapts only (particularly it does not
distinguish between Pls and group implicants). Hence, FCidviimod for problems whose solution is
constructed of many group implicants, thus problems withyrmatput variables. On the other hand, it
is not suitable for functions with only few outputs, girtbe cover of the on-set is being generated
purely at random in this case.

Both the algorithms were developed in their iteratigesions. Théterative minimizatioris based
on the fact that some minimization phases are dribgerandom events. Hence, two runs of the same
algorithm on the same problem need not produce equal seddttreover, a better solution can
sometimes be achieved bgmbiningimplicants from two or more different solutions. In gifee, the
algorithm is run several times, while all the differémiplicants obtained are put together into a
common implicant buffer. Then the covering problem)(tSBolved using all of them.

A typical growth of the size of implicant set as a fimt of the number of iterations is shown in
Fig. 1 (thin line). This curve plots the values obtainednduthe solution of a single-output problem
with 20 input variables and 200 minterms, using BOOM only kfig-and BOOM-II differs only in
the amount of implicants produced; the shape of the curveeisdme). Theoretically, the more
implicants we have, the better the solution that lmarfound after solving the covering problem. In
reality, the quality of the final solution, measured by ttumber of literals in the resulting SOP form,
improves rapidly during first few iterations and themains unchanged, even though the number of
Pls grows further. This fact can be observed in Fithitk line).

16000
Pls 120

14000 -

12000

10000 [

8000 [

s[eiey]

6000 [

Prime Implicants

4000 |/

2000 | Literals .
470

0

L ' L
o T 10000 20000 30000

Iterations

Figure 1. Growth of PI number and decrease of SOP lehgthg iterative minimization

BOOM FC-Min
FC:BOOM

BOOM FC-Min
(CD-S, IE, IR) (FC, F1, IE)

NO

CP Solution

Figure 2: Flowchart BOOM-II

The idea of combining implicants from different minimiea runs gave rise to BOOM-Il. Same
problem is solved both by BOOM and FC-Min (repeatedly)thal implicants are put together and the
covering problem is solved at the end. The solutiorl bél some combination of the implicants
obtained from the two algorithms. Intuitively, prime ingglnts are more likely being picked up from
the implicants obtained by BOOM, while the group impiisaare produced by FC-Min. The ratio of
the two algorithms can be adjusted manually byCGaMin:BOOM factor. For example, when this
factor is set to 1:1, half of the iterations will tenducted by BOOM and half by FC-Min in average.
The problem of the distribution of implicants produced by(BO and FC-Min is studied more
thoroughly in Subsection 4.3. The flowchart of the BOQIdyktem is shown in Fig. 2.

In order to enlighten the principles of BOOM-II and esaly the differences of the two
algorithms, we will briefly describe the major notiasfghe algorithms used.

3.1. Brief Summary of BOOM

Like most other Boolean minimization algorithms, BOOMMsists of two major phasegeneration
of implicantsand the subsequesblution of the covering problerit the beginning them-output
function is split intom single-output functions and a set of Pls is computed fdn.e8lce most
important part of the algorithm, tl&overage-Directed Search (CD-Seara@nerates a sufficient set
of implicants needed for covering the on-set. The implicamés then passed to tHenplicant
Expansion (IE)phase, which converts them into PIs. The Pls axe being reduced in tHeplicant
Reduction(IR) phase to obtain group implicants. Then the covering enobt solved to obtain the
final solution.

The principle of the Coverage-Directed Search consigslécting most suitable literals that should
be added to some previously constructed term. Thus, insteattrefasing the dimension of an
implicant starting from a minterm, we reduce mdimensional hypercube by adding literals to the
term, until it becomes an implicant Bf. This happens at the moment when the resulting hypercube
does not intersect any O-term. The search for suitidtels that should be added to a term is directed
towards finding an implicant that covers as many 1-temmpossible. To do thigye start implicant
generation by selecting the most frequent input literal ftbe given on-set, because thelj
dimensional hypercube covering the most 1-minterms is dedcily the most frequent literal
appearing in the on-set. The-{) dimensional hypercube found in this way is an implicdrit,does
not intersect any O-term. If there are some O-mintewnered, we add another literal (the second most
frequent one) and verify whether the new term alreamlyesponds to an implicant by comparing it
with O-terms that might intersect with this term. Wentinue adding literals until an implicant is
generated, then we record it, remove 1-terms that a&ezexb by this term, and start searching for other
implicants. This algorithm is greedy and thus the obtaimgdicants need not be prime, so they have
to be further expanded.

More thorough description of CD-Search and the remgiphases of BOOM can be found, e.g., in
[9, 10].

3.2. Principlesof FC-Min

The FC-Min minimizer generates a solution in a completdferent way. As it was said before,
classical minimization methods consist of two majoag#s: the generation of implicants and the
subsequent covering problem solution, where the negegsadundant set of implicants is found in
order to cover the on-sets of all the functions. Sucapgmoach might be very demanding (in time and
space) for functions with a large number of input and outptiables, since the number of both the
prime and group implicants is often extremely large.

In FC-Min, the process of generating implicants is coratliot a reverse way. Firstly the cover of
the on-sets that is independent on the source terms id, fand then the implicants corresponding to
this cover are looked for. This reverse approach altbws to make a fast Boolean minimizer with
extremely low memory demands. FC-Min does not produce Rimy since the necessary group
implicants are directly generated. As the group implicadahly important especially for problems
with many outputs, this makes FC-Min superior to the otfeersuch problems.

On the other hand, FC-Min is not suitable for problevith a smallnumber of output variables. It
is because the cover of the on-set is being generatgallpad-hoc and thus proper implicants often
cannot be found. For such functions our algorithm mostiymagoutperform the others (ESPRESSO,
BOOM).

The FC-Min algorithm consists of two major phases: Fired Coveragephase, in which the
rectangle cover [2] of the on-set is found, and Ithplicant Generatiornphase producing the very
implicants from this cover.

An example problem is shown in Fig. 3. Both the input amgpud matrices are shown here. The
5-input and 5-output function is defined by 10 care terms. Ampbeaof a rectangle cover of the
O matrix is shown in Figure 4. Here all the “1”s are cedeby six implicants, - ts.

yoy4
i
0 11010 10000 0000
1 10000 11100 mI
2 01001 01100
3 01111 01010]
4 00110 00111 y, Ls
5 01110 00000 4L ot
6 10110 00011 1£
7 00001 01101 qﬂj.o
8 10101 10111
9 11100 10100 t,
Figure 3: The input and output matrices Figure 4. Rectangle cover of the output matrix

The potentialt; — ts terms cover all the “1” values in the output matrix aoger no zero. For
example thegroup term (implicant)t; covers the ones of the fourth and fifth output vadahl the
vectors4, 6and8. Let us note that the structure of the terms is notk yet; only the set of covered
“1"s is known. However, now it is apparent, that if we caed in finding implicants having the
properties oft; — ts (i.e., the terms cover the appropriate “1"s), the smhutwill consist of six
implicants.

Obviously, when a term (cube) should cover a particular owgctor, the corresponding input
vector must be contained in this cube, since the inptibvéoplies the output. From this results that
theminimumterm satisfying the particular cover can be constructedramianum supercubeof all the
input vectors corresponding to the rows of the covey. dMoreover, this supercube must not intersect
anyl matrix term that is not included in the particular cogance it would cover some zeros then. Let
us assume our example. The tdfnaovers vectord, 6and8. Thus, the minimum term that can be a
candidate fort; must be constructed as a minimum supercube of the terand 8 in the input

matrix, thus:
t.: -01-- 00011
t,: --00- 01100

00110 ts: 1-10- 10100
10110 t,. 01111 01010
10101 ts: 1-0-0 10000
-01-- ts: 00--- 00101

Figure 5: The implicant t Figure 6: The final solution

The term(-01--) has been found as a candidate for an impligar8imilarly, we will obtain the
minimum implicantst; - te. Figure 6 shows all the minimum implicants obtained bylifig the
corresponding supercubes of the source terms, togetherthgitbutput part of the resulting PLA
matrix.

3.3. Covering Problem Solution

We saw in Fig. 1 that even a small subset of Pls maytg&eninimum solution. However, the
quality of the final solution strongly depends on the SORition algorithm. With a large number of
implicants it is impossible to obtain an exact solutisimce it is an NP-hard problem, thus some
heuristic must be used. Here a large number of impBaaaly misguide the CP solution algorithm and
thereby lead to a hon-minimal solution.

After an extensive testing we have decided for a greedytiesldieuristic method based
on computing the contributions (scoring functions) ofnteras a criterion for their inclusion into the
solution [15]. We construct a covering matéixits dimension will be denoted as §). The columns
correspond to the implicants, rows to the individuakehterms that have to be coverafi, j] = 1 if
the implicant covers the on-set termA|i, j] = 0 otherwise. For each row gfrength of coverages
computed as

1
> Al i
j=1
Then thecolumn contributioris computed for each column:
r
CC(yj) =2 Ali, 1t5Q0%) @)

i=1
After that the implicant (column) with the maximunnégbution value is selected into the solution,
the contribution values are recomputed and the procespdated until the whole on-set is covered.

4. BOOM-II Experimental Results

4.1. Standard MCNC Benchmarks

We have conducted a vast number of experiments to evéhegperformance and scalability of the
BOOM-II system. In this subsection we will preserdamparison of BOOM and FC-Min on several
“harder” MCNC benchmarks [16]. Both the algorithms wenie pne iteration only. Here FC-Min
always found a minimal solution, often in a shorter tithan BOOM. Thus, presented results of
BOOM-II would be meaningless, since it has to be run rttaea one iteration to take effect (BOOM
and FC-Min is being alternated according tof@&Min:BOOMratio).

The results are presented in Table 1. The © / p” column indicates the numbers of the
benchmark’s input and output variables and the number efteans, thelit / out / terms” shows the
quality of the respective solution, in terms of the nundfditerals in the SOP form, the output cost
and the number of product terms. The minimum solutionssamadler times are shadowed. It can be
seen that running BOOM on these benchmarks would bédatige (only a speedup is reached in
some cases), however further experiments prove the ppnffar more details on the MCNC
benchmarks see [10, 11], where the comparison with ESBREesults was presented.

All the experiments were conducted on an Athlon XP2500+ P@¢domis XP.

Table 1: MCNC Benchmarks

BOOM FC-Min
bench ilolp time [s] lit / out / terms time [s] libut / terms
alcom | 15/38/90 0.7 177145/ 42 0.1 174149/ 40
apexl | 45/45/1440 38.4 1915/1025/229 15.1 1739/ 1103/ 206
apex2 | 39/3/1576 | 4.7 14489/1065/1041 17.3 | 14453/1075/1035
apex3 | 54/50/1036 | 13.0 2537/ 821/ 326 17.7 | 2270/ 1022/ 280
apex4 | 9/19/1907 |29 4268/ 1426 / 530 20.5 | 3688/1731/436
apex5 | 117/88/2710| 161.5 6089 /1192 /1088 242.6 | 6089/1192 /1088
b4 33/23/680 1.8 472196 /59 0.4 437 /109 /54

BOOM FC-Min
bench ilolp time [s] lit / out / terms time [s] libut / terms
chkn 29/71/370 0.4 1598/ 141/ 140 0.6 1598/ 141/ 140
cordic | 23/2/2105 |27 13825/914 /914 15.3 | 13825/914/914
cps 24 /109/855 | 11.1 2139/739/187 13.7 | 1890/946 /163
e64 65 /65 /327 8.8 2145/ 65/ 65 0.2 2145/ 65/ 65
ex4 128/ 28/ 654 8.4 1649/ 279/ 279 6.7 1649/ 279/ 279
exep 30/63/643 2.8 1175/110/ 110 1.65 1175/110/110
ibm 48 /17 / 499 0.8 882/173/173 1.2 882/173/173
signet | 39/8/3627 0.9 500/ 143/ 122 4.6 490/ 146/ 119
soar 83/94/779 37.4 2570/508/379 | 17.7 2455 / 549 / 353

4.2. Randomly Generated Problems

As the second set of experiments randomly generated prolfgmsaryingn andp (number of
inputs and care terms) were solved, the number of outyagdixed to 15. For each problem size ten
different instances were solved and the average of allalies computed. This measurement has been
done in order to compare the quality of the final refdth problem was solved by ESPRESSO first,
and then by BOOM-II with differenEC-Min:BOOM ratios, while the runtime was set equal to the
runtime of ESPRESSO.

The results are shown in Table 2. The number of inpuables i) increases horizontally, the
number of defined termg) vertically. The first line in each cell shows tBEPRESSO result. The
first number indicates the runtime, the number teféils in the SOP form follows, the third number is
the output cost and the number of product terms is them&stThe second row describes the result
reached by running BOOM only (no FC-Min). The runtimensitted here, since all the runtimes are
equal. On the other hand, the number in brackets irdithe number of iterations processed, which is
a good measure of the speed-up. The third row describeguaigos where thé&C-Min:BOOMr atio
was set to 1:1. Finally, the last row shows the resfla pure FC-Min, thus without running BOOM.

The observations can be summarized as follows:

« With increasing=C-Min:BOOM ratio (towards FC-Min) the speedup increases. Even whbn
three extreme ratios were used (FC-Min only, 1:1 and BO®@Iy),owe have observed that the
runtime grows almost linearly with the ratio.

* FC-Min produces solutions with very few terms, espbcifdr functions with many input
variables (> 50), where BOOM-II outperforms ESPRESSO

« The number of literals decreases was well, mostlytddiee decreasing number of terms.

* The output cost depends on th€-Min:BOOM ratio only slightly, but it is always much lower
than the output cost reached by ESPRESSO. In generalyB®@luces a solution with lower
output cost. This is mainly due to the fact, that the swiuts consisted of fewer group

implicants.
Table 2: Randomly generated problems

p/n |25 50 100
2.15/233/346/49 10.80/218/324/48 51.96/204/309/47

5o | 3401246/70(2) 294/189/61(7) 247/139/53(27)
307/257/62(3) 269/190/53(11) 231/151/46(38)
290/264/58(8) 252/185/50(28) 214/150/43(81)
5.62/400/513/74 34.37/370/463/70 154.71/357/438/68

75 525/381/95(3) 466/276/86(12) 423/218/79(35)
502/382/90(5) 433/280/76(18) 373/223/66(48)
465/394/83(13) 404/279/71(47) 357/223/62(99)
11.24/581/673/99 84.48/546/586/92 416.29/520/564/90

100 |768/528/127(4) 665/358/111(16) 600/287/102(44)
712/529/117(5) 594/362/96(24) 524/301/84(62)
659/543/110(19) 571/365/92(63) 498/301/80(118)
17.75/773/845/123 157.19/706/722/113 895.25/657/700/110

125 |1010/616/160(4) 872/459/137(17) 765/359/122(52)
950/632/149(6) 783/464/120(27) 674/377/102(69)
868/674/138(22) 745/456/115(71) 650/374/99(137)

Entry format: ESPRESSOS-UIne): time [s] / #of literals / output cost / #of implicant

Next 3 lines: #of literals / output cost / #of implicantsrétions)

It could have been apparent from this example, that a pudifF@lways produces better results
than BOOM (-Il) and ESPRESSO. This is not true in génespecially for functions with a low
number of inputs.

Let us consider an example single-output function with 25 imprigbles and 500 defined terms.
The results of the same minimization process are showable 3. The data format is retained from
Table 2.

Table 3: Results for single-output function

21.93/881/111/111
793/98/98(33)

852/106/106(19)
981/124/124(15)

Here the results are completely different — FC-Min isimslower than BOOM and the result
quality is much worse as well. Thus, a prop&-Min:BOOM ratio must always be found (e.g.,
experimentally on the particular circuits). In general; M@ is more advantageous for functions with
many outputs, BOOM for low-output functions.

4.3. Study of the Structure of the Solution

One possibility how to estimate the "usefulness" of tlveriporation of FC-Min into BOOM is to
analyze the implicants in the solution of some problearticularly, we have studied the origin of the
implicants in the final solution, and analyzed which tef two major algorithms contributes to it at
most.

At any time, the set of implicants in the common ingatic buffer (and, of course, in the final
solution too) can be divided into six groups:

1.Prime implicants (of at least one output function} treve been found by BOOM only

2.Prime implicants that have been found both by FC-MinB@®M

3.Prime implicants that have been produced by FC-Min and whiok ma found by BOOM (these
had to be identified by a subsequent analyzis, since FQid&ia not recognize any PIs)

4.Group implicants that have been found by BOOM only
5.Group implicants that have been found both by FC-MinB@®M
6.Group implicants that have been found by FC-Min only

These sets make a decomposition of the set of alirtpkicants; the union of the six subsets gives
all the implicants, the subsets are disjoint. It cabditer visualized by a Venn’s diagram:

Pls

BOOM FC-Min
1 z 3

4 5 6

Figure 7: BOOM-II implicants

We have minimized a randomly generated function of 2@tirvariables, 20 outputs, 10% of
explicit both input and output don't cares and 500 defined térnesratioFC-Min:BOOM was set to
1:1. Figure 8 shows the distribution a&if the implicantsthat were ever produced after 50 iterations.
We can see that 93% of them are prime implicants producB®®M, which seemingly puts the rest
(i.e., all the group implicants) into an unimportant mityo However, the distribution of implicants in
the final (and thus also the best) solution is showrFign 9. Here, these make only 58% of the
solution, while the group implicants begin to play an impdntale. The most important observation is
that FC-Min significantly contributes to the solutibath by group implicants and Pls. The majority of
implicants was found by BOOM, however we must consider figgnily shorter runtime of FC-Min
comparing to BOOM (especially the IR phase).

Let us note that the total number of implicants geedrat 50 iterations was more than 40000
(in Fig. 8), the solution consisted of 516 implicants (in Bjg.Thus, we can claim that BOOM often
produces many unnecessary Pls, while FC-Min producesy andmnber of implicants, which often
could form a significant part of the solution. Howeverfdach best results, running both the BOOM
and FC-Min is required.

I 1- BOOM PIs I 1 - BOOM PlIs

I 2 - Common Pls [2 - Common Pls
I 3 - FC-Min PIs Il 3 - FC-Min PIs

1 4-BOOM non-Pls 14 - BOOM non-Pls
I 5 - Common non-Pls I 5 - Common non-Pls
[16-FC-Min non-Pls 19% [16-FC-Minnon-Pls

93% 6.4%

9.1%

(3

3.3%
4.5%

58%

Figure 8, 9: Distribution of all the implicants and theplicants in the solution respectively

5. Conclusions

We have presented a flexible two-level Boolean minimamstructed as a combination of two
previously proposed methods. Each of the single methodssearcédifferent problem sizes, and the
nature of the solution obtained by the two algorithmsedsffas well. Joining them together in an
adjustable manner allowed us to make a universal mininsagable for all kinds and sizes of
problems. The time demanding implicant reduction phasebeanften completely omitted and fully
substituted by FC-Min. Criterion of the quality of thdwimn can be selected too, which makes
BOOM-II a good minimizer for any hardware implementatiof the circuit. The iterative
minimization allows us to find a trade-off between thietime and the quality of the solution.

The BOOM-II minimizer can be downloaded for free from [17]

Acknowledgement
This research was supported by a grant GA 102/04/2137 and MSM 212300014

Refer ences

[1] Agarwal, Kime, Saluja, A tutorial on BIST, part l:ifiples, IEEE Design & Test of Computers, vol. 10,
No.1 March 1993, pp.73-83, part 2: Applications, No.2 June 1993, pp.69-77

[2] S. Hassoun, T. Sasao: Logic Synthesis and Verificatiastdd, MA, Kluwer Academic Publishers, 2002,
454 pp.

[3] W.V. Quine: The problem of simplifying truth functigmsmer. Math. Monthly, 59, No.8, 1952, pp. 521-531

[4] E.J. McCluskey: Minimization of Boolean functions, ThellB&ystem Technical Journal, 35, No. 5, Nov.
1956, pp. 1417-1444

[5] S.J. Hong, R.G. Cain, D.L. Ostapko: MINI: A heuristigproach for logic minimization, IBM Journal of Res.
& Dev., Sept. 1974, pp.443-458

[6] R.K. Brayton et al.: Logic minimization algorithmerfVLSI synthesis, Boston, MA, Kluwer Academic
Publishers, 1984, 192 pp.

[7] P. McGeer et al.: ESPRESSO-SIGNATURE: A new exaicimizer for logic functions, Proc. DAC'93

[8] O. Coudert: Doing two-level logic minimization 100 timfsster, Proc. of the sixth annual ACM-SIAM
symposium on Discrete algorithms, 1995, pp.112-121

[9] J. Hlavitka, P. FiSer: BOOM - a Heuristic Boolean Minimizer, @ricCAD-2001, San Jose, Cal. (USA), 4.-
8.11.2001, 439-442

[10] J. HlavEka, P. FiSer: BOOM - A Heuristic Boolean Minimizer, Qauers and Informatics, Vol. 22, 2003,
No. 1, pp. 19-51

[11] P. FiSer, J. Hlavka, H. Kubatova: FC-Min: A Fast Multi-Output Boolean Mirker, Proc. Euromicro
Symposium on Digital Systems Design (DSD'03), Antalya (TR$.9.2003, pp. 451-454

[12] M. Chatterjee, M., D.K. Pradhan: A BIST Pattern GetoerBesign for Near-Perfect Fault Coverage, IEEE
Transactions on Computers, vol. 52, no. 12, December 200B54®-1558

[13] P. FiSer, J. Hlavka, H. Kubatova: Column-Matching BIST Exploiting Test D&@#res, Proc. 8th IEEE
Europian Test Workshop (ETW'03), Maastricht (The Netherla28s)28.5.2003, pp. 215-216

[14] P. FiSer, H. Kubatova: An Efficient Mixed-Mode BIST Fe@ue, Proc. 7th IEEE Design and Diagnostics of
Electronic Circuits and Systems Workshop 2004, Tatranskdnioa, SK, 18.-21.4.2004, pp. 227-230

[15] O. Coudert: Two-level logic minimization: an overvientegration, the VLSI journal, 17-2, pp. 97-140, Oct.
1994

[16] ftp:/lic.eecs.berkeley.edu

[17] http://service.felk.cvut.cz/visi/pri/BOOM/

