
Two-Level Boolean Minimizer BOOM-II

Petr Fišer, Hana Kubátová
Department of Computer Science and Engineering

Czech Technical University
Karlovo nam. 13, 121 35 Prague 2

e-mail: fiserp@fel.cvut.cz, kubatova@fel.cvut.cz

Abstract
We propose a novel two-level Boolean minimizer coming in succession to our previously

developed minimizer BOOM, so we have named it BOOM-II. It is a combination of two minimizers,
namely BOOM and FC-Min. Each of these two methods has its own area where it is most efficiently
applicable. We have combined these two methods together to be able to solve all kinds of problems
efficiently, independently on their size or nature. The tool is very scalable in terms of the required
runtime and/or the quality of the solution. It is applicable to functions with an extremely large
number of both input and output variables.

1. Introduction
The problem of two-level Boolean minimization is quite old, but surely not dead. It occurs in almost

every area of the logic design, as is the design of control systems, design of build-in self-test (BIST)
for VLSI circuits [1] and in the VLSI synthesis in general [2]. It has been studied for many decades
and plenty of minimization methods and algorithmic minimizers were developed. In 50’s the classical
Quine-McCluskey method [3, 4] was proposed, and laid the basis for subsequent Boolean
minimization algorithms. MINI [5], ESPRESSO [6] and its modifications [7] were proposed, later
Scherzo [8] with its improved CP solution algorithm was introduced. Lately we have developed a
Boolean minimizer BOOM [9, 10], which is able to handle functions with an extremely large number
of input variables.

The major drawback of these algorithms is the limited size of the problems they can solve in a
reasonable time. When the number of input variables grows to hundreds (such problems occur, e.g., in
the BIST design), the minimization times are extremely long. This problem was partially solved by
BOOM. However, the same problem can be encountered for functions with many outputs – the group
minimization is quite a demanding process and the runtimes grow with the number of output variables
rapidly as well. Lately we have developed an algorithm called FC-Min [11] solving this problem
efficiently. The solution is being constructed from the necessary group implicants only, which makes
the algorithm extremely fast and with low memory demands. On the other hand, FC-Min does not
produce good results for function with a low number of output variables.

In this paper we propose a method where the FC-Min and the original BOOM algorithms are
combined together to achieve better results. Implicants are being produced both by BOOM and
FC-Min and then they are put together into a common implicant pool. The final solution is then
constructed by solving a covering problem using all the implicants. The ratio of runs of both
algorithms can be freely adjusted, which makes the system a good minimizer for all kinds of problems.
Since the system is a successor of BOOM to some extent, we have named it BOOM-II.

The paper has the following structure: Section 2 defines the problem statement, the structure and
major principles of BOOM-II will be described in Section 3. Section 4 describes the experiments with
BOOM-II. Section 5 concludes the paper.

2. Problem Statement
Let us have a set of m Boolean functions of n input variables. The input variables will be denoted as

xi, 0 ≤ i < n, the output variables as yj, 0 ≤ j < m. The functions will be referenced as F1(x1, x2, … xn),
F2(x1, x2, … xn), … Fm(x1, x2, … xn). The output values of the care terms are defined by a truth table.
Thus, each function is specified by its on-set and off-set. To the minterms that are not present in the
truth table are implicitly assigned don’t care values. The part of a truth table representing the terms will

be denoted as an input matrix I, the rows of the input matrix will be denoted as input vectors. The part
defining the output values of the terms will be called an output matrix O; similarly, the rows of this
matrix output vectors. Each row of the output matrix defines values of the output variables for the
values of input variables specified by the corresponding row in the input matrix. The number of
I matrix columns correspond to the number of input variables n, the number of O matrix columns is
equal to the number of output variables m, the number of I and O matrix rows will be denoted as p
(which means the number of care terms).

Specifying a Boolean function by its on-set and off-set, rather by its on-set and don’t care set, is
advantageous especially for highly unspecified functions, i.e., functions that have the defined values of
only few terms, the rest are don’t cares. The typical example of the use of such a function can be
found, e.g., in the build-in self-test (BIST) design [12, 13, 14].

Our task is to synthesize a two-level circuit implementing the multi-output Boolean function
described by a truth table, whereas the implementation of the circuit should be as small as possible.
Thus, we perform a group two-level Boolean minimization where a set of functions is given by their
on-sets and off-sets.

3. Principles of the Method
As it was stated in the Introduction, BOOM-II is a composition of two previously published

minimization algorithms - BOOM [9, 10] and FC-Min [11]. Both the algorithms have their advantages
and drawbacks. BOOM is suitable for problems with a large number of input variables, but it is
somewhat limited regarding the number of output variables; for a large number of outputs the runtime
grows rapidly, and the algorithm begins to be less efficient as well. This is due to the demanding
implicant reduction phase above all. BOOM is based on a generation of prime implicants (PIs), and
thus it is strong for problems whose solution is consisted mostly of PIs. Thus, BOOM is very
efficiently applicable to problems with many input variables and a low number of outputs.

The second minimizer FC-Min was developed to handle problems with many output variables. It is
extremely fast - the runtime grows almost linearly with growing number of both the input and output
variables. The solution is being constructed of group implicants only (particularly it does not
distinguish between PIs and group implicants). Hence, FC-Min is good for problems whose solution is
constructed of many group implicants, thus problems with many output variables. On the other hand, it
is not suitable for functions with only few outputs, since the cover of the on-set is being generated
purely at random in this case.

Both the algorithms were developed in their iterative versions. The iterative minimization is based
on the fact that some minimization phases are driven by random events. Hence, two runs of the same
algorithm on the same problem need not produce equal results. Moreover, a better solution can
sometimes be achieved by combining implicants from two or more different solutions. In practice, the
algorithm is run several times, while all the different implicants obtained are put together into a
common implicant buffer. Then the covering problem (CP) is solved using all of them.

A typical growth of the size of implicant set as a function of the number of iterations is shown in
Fig. 1 (thin line). This curve plots the values obtained during the solution of a single-output problem
with 20 input variables and 200 minterms, using BOOM only (FC-Min and BOOM-II differs only in
the amount of implicants produced; the shape of the curve is the same). Theoretically, the more
implicants we have, the better the solution that can be found after solving the covering problem. In
reality, the quality of the final solution, measured by the number of literals in the resulting SOP form,
improves rapidly during first few iterations and then remains unchanged, even though the number of
PIs grows further. This fact can be observed in Fig. 1 (thick line).

Figure 1: Growth of PI number and decrease of SOP length during iterative minimization

Figure 2: Flowchart BOOM-II

The idea of combining implicants from different minimization runs gave rise to BOOM-II. Same
problem is solved both by BOOM and FC-Min (repeatedly), all the implicants are put together and the
covering problem is solved at the end. The solution will be some combination of the implicants
obtained from the two algorithms. Intuitively, prime implicants are more likely being picked up from
the implicants obtained by BOOM, while the group implicants are produced by FC-Min. The ratio of
the two algorithms can be adjusted manually by a FC-Min:BOOM factor. For example, when this
factor is set to 1:1, half of the iterations will be conducted by BOOM and half by FC-Min in average.
The problem of the distribution of implicants produced by BOOM and FC-Min is studied more
thoroughly in Subsection 4.3. The flowchart of the BOOM-II system is shown in Fig. 2.

In order to enlighten the principles of BOOM-II and especially the differences of the two
algorithms, we will briefly describe the major notions of the algorithms used.

3.1. Brief Summary of BOOM

Like most other Boolean minimization algorithms, BOOM consists of two major phases: generation
of implicants and the subsequent solution of the covering problem. At the beginning the m-output
function is split into m single-output functions and a set of PIs is computed for each. The most
important part of the algorithm, the Coverage-Directed Search (CD-Search), generates a sufficient set
of implicants needed for covering the on-set. The implicants are then passed to the Implicant
Expansion (IE) phase, which converts them into PIs. The PIs are then being reduced in the Implicant
Reduction (IR) phase to obtain group implicants. Then the covering problem is solved to obtain the
final solution.

The principle of the Coverage-Directed Search consists in selecting most suitable literals that should
be added to some previously constructed term. Thus, instead of increasing the dimension of an
implicant starting from a minterm, we reduce an n-dimensional hypercube by adding literals to the
term, until it becomes an implicant of Fi. This happens at the moment when the resulting hypercube
does not intersect any 0-term. The search for suitable literals that should be added to a term is directed
towards finding an implicant that covers as many 1-terms as possible. To do this, we start implicant
generation by selecting the most frequent input literal from the given on-set, because the (n-1)
dimensional hypercube covering the most 1-minterms is described by the most frequent literal
appearing in the on-set. The (n-1) dimensional hypercube found in this way is an implicant, if it does
not intersect any 0-term. If there are some 0-minterms covered, we add another literal (the second most
frequent one) and verify whether the new term already corresponds to an implicant by comparing it
with 0-terms that might intersect with this term. We continue adding literals until an implicant is
generated, then we record it, remove 1-terms that are covered by this term, and start searching for other
implicants. This algorithm is greedy and thus the obtained implicants need not be prime, so they have
to be further expanded.

More thorough description of CD-Search and the remaining phases of BOOM can be found, e.g., in
[9, 10].

3.2. Principles of FC-Min

The FC-Min minimizer generates a solution in a completely different way. As it was said before,
classical minimization methods consist of two major phases: the generation of implicants and the
subsequent covering problem solution, where the necessary irredundant set of implicants is found in
order to cover the on-sets of all the functions. Such an approach might be very demanding (in time and
space) for functions with a large number of input and output variables, since the number of both the
prime and group implicants is often extremely large.

In FC-Min, the process of generating implicants is conducted in a reverse way. Firstly the cover of
the on-sets that is independent on the source terms is found, and then the implicants corresponding to
this cover are looked for. This reverse approach allowed us to make a fast Boolean minimizer with
extremely low memory demands. FC-Min does not produce any PIs, since the necessary group
implicants are directly generated. As the group implicants are highly important especially for problems
with many outputs, this makes FC-Min superior to the others for such problems.

On the other hand, FC-Min is not suitable for problems with a small number of output variables. It
is because the cover of the on-set is being generated partially ad-hoc and thus proper implicants often
cannot be found. For such functions our algorithm mostly cannot outperform the others (ESPRESSO,
BOOM).

The FC-Min algorithm consists of two major phases: the Find Coverage phase, in which the
rectangle cover [2] of the on-set is found, and the Implicant Generation phase producing the very
implicants from this cover.

An example problem is shown in Fig. 3. Both the input and output matrices are shown here. The
5-input and 5-output function is defined by 10 care terms. An example of a rectangle cover of the
O matrix is shown in Figure 4. Here all the “1”s are covered by six implicants t1 - t6.

0 11010 10000
1 10000 11100
2 01001 01100
3 01111 01010
4 00110 00111
5 01110 00000
6 10110 00011
7 00001 01101
8 10101 10111
9 11100 10100

Figure 3: The input and output matrices

�y -y0 4

Figure 4: Rectangle cover of the output matrix

The potential t1 – t6 terms cover all the “1” values in the output matrix and cover no zero. For
example the group term (implicant) t1 covers the ones of the fourth and fifth output variable in the
vectors 4, 6 and 8. Let us note that the structure of the terms is not known yet; only the set of covered
“1”s is known. However, now it is apparent, that if we succeed in finding implicants having the
properties of t1 – t6 (i.e., the terms cover the appropriate “1”s), the solution will consist of six
implicants.

Obviously, when a term (cube) should cover a particular output vector, the corresponding input
vector must be contained in this cube, since the input vector implies the output. From this results that
the minimum term satisfying the particular cover can be constructed as a minimum supercube of all the
input vectors corresponding to the rows of the cover of ti. Moreover, this supercube must not intersect
any I matrix term that is not included in the particular cover, since it would cover some zeros then. Let
us assume our example. The term t1 covers vectors 4, 6 and 8. Thus, the minimum term that can be a
candidate for t1 must be constructed as a minimum supercube of the terms 4, 6 and 8 in the input
matrix, thus:

00110
10110
10101
-01--

Figure 5: The implicant t1

t1: -01-- 00011
t2: --00- 01100
t3: 1-10- 10100
t4: 01111 01010
t5: 1-0-0 10000
t6: 00--- 00101

Figure 6: The final solution

The term (-01--) has been found as a candidate for an implicant t1. Similarly, we will obtain the
minimum implicants t1 - t6. Figure 6 shows all the minimum implicants obtained by finding the
corresponding supercubes of the source terms, together with the output part of the resulting PLA
matrix.

3.3. Covering Problem Solution

We saw in Fig. 1 that even a small subset of PIs may give the minimum solution. However, the
quality of the final solution strongly depends on the CP solution algorithm. With a large number of
implicants it is impossible to obtain an exact solution, since it is an NP-hard problem, thus some
heuristic must be used. Here a large number of implicants may misguide the CP solution algorithm and
thereby lead to a non-minimal solution.

After an extensive testing we have decided for a greedy additive heuristic method based
on computing the contributions (scoring functions) of terms as a criterion for their inclusion into the
solution [15]. We construct a covering matrix A, its dimension will be denoted as (r, s). The columns
correspond to the implicants, rows to the individual on-set terms that have to be covered. A[i, j] = 1 if
the implicant j covers the on-set term i, A[i, j] = 0 otherwise. For each row its strength of coverage is
computed as

[]�

=

=
s

j

i

jiA

x

1

,

1
)SC((1)

Then the column contribution is computed for each column:

 �
=

⋅=
r

i
ij xSCjiAy

1

)(],[)CC((2)

After that the implicant (column) with the maximum contribution value is selected into the solution,
the contribution values are recomputed and the process is repeated until the whole on-set is covered.

4. BOOM-II Experimental Results

4.1. Standard MCNC Benchmarks

We have conducted a vast number of experiments to evaluate the performance and scalability of the
BOOM-II system. In this subsection we will present a comparison of BOOM and FC-Min on several
“harder” MCNC benchmarks [16]. Both the algorithms were run one iteration only. Here FC-Min
always found a minimal solution, often in a shorter time than BOOM. Thus, presented results of
BOOM-II would be meaningless, since it has to be run more than one iteration to take effect (BOOM
and FC-Min is being alternated according to the FC-Min:BOOM ratio).

The results are presented in Table 1. The “i / o / p” column indicates the numbers of the
benchmark’s input and output variables and the number of care terms, the “lit / out / terms” shows the
quality of the respective solution, in terms of the number of literals in the SOP form, the output cost
and the number of product terms. The minimum solutions and smaller times are shadowed. It can be
seen that running BOOM on these benchmarks would be ineffective (only a speedup is reached in
some cases), however further experiments prove the contrary. For more details on the MCNC
benchmarks see [10, 11], where the comparison with ESPRESSO results was presented.

All the experiments were conducted on an Athlon XP2500+ PC, Windows XP.

Table 1: MCNC Benchmarks

 BOOM FC-Min
bench i / o / p time [s] lit / out / terms time [s] lit / out / terms

alcom 15 / 38 / 90 0.7 177 / 45 / 42 0.1 174 / 49 / 40
apex1 45 / 45 / 1440 38.4 1915 / 1025 / 229 15.1 1739 / 1103 / 206
apex2 39 / 3 / 1576 4.7 14489 / 1065 / 1041 17.3 14453 / 1075 / 1035
apex3 54 / 50 / 1036 13.0 2537 / 821 / 326 17.7 2270 / 1022 / 280
apex4 9 / 19 / 1907 2.9 4268 / 1426 / 530 20.5 3688 / 1731 / 436
apex5 117 / 88 / 2710 161.5 6089 / 1192 / 1088 242.6 6089 / 1192 / 1088
b4 33 / 23 / 680 1.8 472 / 96 / 59 0.4 437 / 109 / 54

 BOOM FC-Min
bench i / o / p time [s] lit / out / terms time [s] lit / out / terms

chkn 29 / 7 / 370 0.4 1598 / 141 / 140 0.6 1598 / 141 / 140
cordic 23 / 2 / 2105 2.7 13825 / 914 / 914 15.3 13825 / 914 / 914
cps 24 / 109 / 855 11.1 2139 / 739 / 187 13.7 1890 / 946 / 163
e64 65 / 65 / 327 8.8 2145 / 65 / 65 0.2 2145 / 65 / 65
ex4 128 / 28 / 654 8.4 1649 / 279 / 279 6.7 1649 / 279 / 279
exep 30 / 63 / 643 2.8 1175 / 110 / 110 1.65 1175 / 110 / 110
ibm 48 / 17 / 499 0.8 882 / 173 / 173 1.2 882 / 173 / 173
signet 39/8/3627 0.9 500 / 143 / 122 4.6 490 / 146 / 119
soar 83/94/779 37.4 2570 / 508 / 379 17.7 2455 / 549 / 353

4.2. Randomly Generated Problems

As the second set of experiments randomly generated problems with varying n and p (number of
inputs and care terms) were solved, the number of outputs was fixed to 15. For each problem size ten
different instances were solved and the average of all the values computed. This measurement has been
done in order to compare the quality of the final result. Each problem was solved by ESPRESSO first,
and then by BOOM-II with different FC-Min:BOOM ratios, while the runtime was set equal to the
runtime of ESPRESSO.

The results are shown in Table 2. The number of input variables (i) increases horizontally, the
number of defined terms (p) vertically. The first line in each cell shows the ESPRESSO result. The
first number indicates the runtime, the number of literals in the SOP form follows, the third number is
the output cost and the number of product terms is the last one. The second row describes the result
reached by running BOOM only (no FC-Min). The runtime is omitted here, since all the runtimes are
equal. On the other hand, the number in brackets indicates the number of iterations processed, which is
a good measure of the speed-up. The third row describes the situation where the FC-Min:BOOM ratio
was set to 1:1. Finally, the last row shows the results of a pure FC-Min, thus without running BOOM.

The observations can be summarized as follows:
• With increasing FC-Min:BOOM ratio (towards FC-Min) the speedup increases. Even when only

three extreme ratios were used (FC-Min only, 1:1 and BOOM only), we have observed that the
runtime grows almost linearly with the ratio.

• FC-Min produces solutions with very few terms, especially for functions with many input
variables (> 50), where BOOM-II outperforms ESPRESSO

• The number of literals decreases was well, mostly due to the decreasing number of terms.
• The output cost depends on the FC-Min:BOOM ratio only slightly, but it is always much lower

than the output cost reached by ESPRESSO. In general, BOOM produces a solution with lower
output cost. This is mainly due to the fact, that the solution is consisted of fewer group
implicants.

Table 2: Randomly generated problems

p / n 25 50 100

50

2.15/233/346/49
340/246/70(2)
307/257/62(3)
290/264/58(8)

10.80/218/324/48
294/189/61(7)
269/190/53(11)
252/185/50(28)

51.96/204/309/47
247/139/53(27)
231/151/46(38)
214/150/43(81)

75

5.62/400/513/74
525/381/95(3)
502/382/90(5)
465/394/83(13)

34.37/370/463/70
466/276/86(12)
433/280/76(18)
404/279/71(47)

154.71/357/438/68
423/218/79(35)
373/223/66(48)
357/223/62(99)

100

11.24/581/673/99
768/528/127(4)
712/529/117(5)
659/543/110(19)

84.48/546/586/92
665/358/111(16)
594/362/96(24)
571/365/92(63)

416.29/520/564/90
600/287/102(44)
524/301/84(62)
498/301/80(118)

125

17.75/773/845/123
1010/616/160(4)
950/632/149(6)
868/674/138(22)

157.19/706/722/113
872/459/137(17)
783/464/120(27)
745/456/115(71)

895.25/657/700/110
765/359/122(52)
674/377/102(69)
650/374/99(137)

Entry format: ESPRESSO (1st line): time [s] / #of literals / output cost / #of implicants
 Next 3 lines: #of literals / output cost / #of implicants (iterations)

It could have been apparent from this example, that a pure FC-Min always produces better results

than BOOM (-II) and ESPRESSO. This is not true in general, especially for functions with a low
number of inputs.

Let us consider an example single-output function with 25 input variables and 500 defined terms.
The results of the same minimization process are shown in Table 3. The data format is retained from
Table 2.

Table 3: Results for single-output function

21.93/881/111/111
793/98/98(33)
852/106/106(19)
981/124/124(15)

Here the results are completely different – FC-Min is much slower than BOOM and the result

quality is much worse as well. Thus, a proper FC-Min:BOOM ratio must always be found (e.g.,
experimentally on the particular circuits). In general, FC-Min is more advantageous for functions with
many outputs, BOOM for low-output functions.

4.3. Study of the Structure of the Solution

One possibility how to estimate the "usefulness" of the incorporation of FC-Min into BOOM is to
analyze the implicants in the solution of some problem. Particularly, we have studied the origin of the
implicants in the final solution, and analyzed which of the two major algorithms contributes to it at
most.

At any time, the set of implicants in the common implicant buffer (and, of course, in the final
solution too) can be divided into six groups:

1. Prime implicants (of at least one output function) that have been found by BOOM only

2. Prime implicants that have been found both by FC-Min and BOOM

3. Prime implicants that have been produced by FC-Min and which were not found by BOOM (these
had to be identified by a subsequent analyzis, since FC-Min does not recognize any PIs)

4. Group implicants that have been found by BOOM only

5. Group implicants that have been found both by FC-Min and BOOM

6. Group implicants that have been found by FC-Min only

These sets make a decomposition of the set of all the implicants; the union of the six subsets gives
all the implicants, the subsets are disjoint. It can be better visualized by a Venn’s diagram:

Figure 7: BOOM-II implicants

We have minimized a randomly generated function of 20 input variables, 20 outputs, 10% of
explicit both input and output don't cares and 500 defined terms. The ratio FC-Min:BOOM was set to
1:1. Figure 8 shows the distribution of all the implicants that were ever produced after 50 iterations.
We can see that 93% of them are prime implicants produced by BOOM, which seemingly puts the rest
(i.e., all the group implicants) into an unimportant minority. However, the distribution of implicants in
the final (and thus also the best) solution is shown in Fig. 9. Here, these make only 58% of the
solution, while the group implicants begin to play an important role. The most important observation is
that FC-Min significantly contributes to the solution both by group implicants and PIs. The majority of
implicants was found by BOOM, however we must consider significantly shorter runtime of FC-Min
comparing to BOOM (especially the IR phase).

Let us note that the total number of implicants generated in 50 iterations was more than 40000
(in Fig. 8), the solution consisted of 516 implicants (in Fig. 9). Thus, we can claim that BOOM often
produces many unnecessary PIs, while FC-Min produces a low number of implicants, which often
could form a significant part of the solution. However, to reach best results, running both the BOOM
and FC-Min is required.

 1 - BOOM PIs
 2 - Common PIs
 3 - FC-Min PIs
 4 - BOOM non-PIs
 5 - Common non-PIs
 6 - FC-Min non-PIs

0.41%0.21%1.6%1.6%3%

93%

 1 - BOOM PIs
 2 - Common PIs
 3 - FC-Min PIs
 4 - BOOM non-PIs
 5 - Common non-PIs
 6 - FC-Min non-PIs

4.5%
3.3%

9.1%

6.4%

19%

58%

Figure 8, 9: Distribution of all the implicants and the implicants in the solution respectively

5. Conclusions
We have presented a flexible two-level Boolean minimizer constructed as a combination of two

previously proposed methods. Each of the single methods excels in different problem sizes, and the
nature of the solution obtained by the two algorithms differs as well. Joining them together in an
adjustable manner allowed us to make a universal minimizer suitable for all kinds and sizes of
problems. The time demanding implicant reduction phase can be often completely omitted and fully
substituted by FC-Min. Criterion of the quality of the solution can be selected too, which makes
BOOM-II a good minimizer for any hardware implementation of the circuit. The iterative
minimization allows us to find a trade-off between the runtime and the quality of the solution.

The BOOM-II minimizer can be downloaded for free from [17].

Acknowledgement
This research was supported by a grant GA 102/04/2137 and MSM 212300014.

References
[1] Agarwal, Kime, Saluja, A tutorial on BIST, part 1: Principles, IEEE Design & Test of Computers, vol. 10,

No.1 March 1993, pp.73-83, part 2: Applications, No.2 June 1993, pp.69-77
[2] S. Hassoun, T. Sasao: Logic Synthesis and Verification, Boston, MA, Kluwer Academic Publishers, 2002,

454 pp.
[3] W.V. Quine: The problem of simplifying truth functions, Amer. Math. Monthly, 59, No.8, 1952, pp. 521-531
[4] E.J. McCluskey: Minimization of Boolean functions, The Bell System Technical Journal, 35, No. 5, Nov.

1956, pp. 1417-1444
[5] S.J. Hong, R.G. Cain, D.L. Ostapko: MINI: A heuristic approach for logic minimization, IBM Journal of Res.

& Dev., Sept. 1974, pp.443-458
[6] R.K. Brayton et al.: Logic minimization algorithms for VLSI synthesis, Boston, MA, Kluwer Academic

Publishers, 1984, 192 pp.
[7] P. McGeer et al.: ESPRESSO-SIGNATURE: A new exact minimizer for logic functions, Proc. DAC’93
[8] O. Coudert: Doing two-level logic minimization 100 times faster, Proc. of the sixth annual ACM-SIAM

symposium on Discrete algorithms, 1995, pp.112-121
[9] J. Hlavi�ka, P. Fišer: BOOM - a Heuristic Boolean Minimizer, Proc. ICCAD-2001, San Jose, Cal. (USA), 4.-

8.11.2001, 439-442
[10] J. Hlavi�ka, P. Fišer: BOOM - A Heuristic Boolean Minimizer, Computers and Informatics, Vol. 22, 2003,

No. 1, pp. 19-51
[11] P. Fišer, J. Hlavi�ka, H. Kubátová: FC-Min: A Fast Multi-Output Boolean Minimizer, Proc. Euromicro

Symposium on Digital Systems Design (DSD'03), Antalya (TR), 1.-6.9.2003, pp. 451-454
[12] M. Chatterjee, M., D.K. Pradhan: A BIST Pattern Generator Design for Near-Perfect Fault Coverage, IEEE

Transactions on Computers, vol. 52, no. 12, December 2003, pp. 1543-1558
[13] P. Fišer, J. Hlavi�ka, H. Kubátová: Column-Matching BIST Exploiting Test Don't-Cares, Proc. 8th IEEE

Europian Test Workshop (ETW'03), Maastricht (The Netherlands), 25.-28.5.2003, pp. 215-216
[14] P. Fišer, H. Kubátová: An Efficient Mixed-Mode BIST Technique, Proc. 7th IEEE Design and Diagnostics of

Electronic Circuits and Systems Workshop 2004, Tatranská Lomnica, SK, 18.-21.4.2004, pp. 227-230
[15] O. Coudert: Two-level logic minimization: an overview, Integration, the VLSI journal, 17-2, pp. 97-140, Oct.

1994
[16] ftp://ic.eecs.berkeley.edu
[17] http://service.felk.cvut.cz/vlsi/prj/BOOM/

