

SINGLE-LEVEL PARTITIONING SUPPORT IN BOOM-II

Petr Fišer, Hana Kubátová

Department of Computer Science and Engineering

Czech Technical University

Karlovo nám. 13, 121 35 Prague 2

e-mail: fiserp@fel.cvut.cz, kubatova@fel.cvut.cz

Abstract: We propose a modification of our Boolean minimizer BOOM-II enabling
a single-level partitioning. The disadvantage of all the present logic synthesis systems is
that the minimization and decomposition phases are strictly separated; the minimization
process is independent on the subsequent decomposition. We propose a method where the
two-level minimization is driven by some decomposition or other constraints. Here a
two-level nature of a solution is retained, however, the circuit is divided into several
stand-alone blocks, each block having several outputs. Our aim is to minimize the number
of inputs for each block, as well as the blocks’ logic. Copyright © 2004 DESDes'04

Keywords: Boolean functions, minimization, decomposition, logic design

1. INTRODUCTION

The Boolean minimization is an essential process in
many phases in logic synthesis [Hassoun and Sasao,
2002]. Many two-level Boolean minimizers were
developed so far, originating from the Quine-
McCluskey’s algorithm. Latter heuristic algorithms,
like ESPRESSO [Brayton, et al., 1984] with its
improved versions [McGeer, et al., 1993] were
developed. They are capable handling relatively large
Boolean functions in a reasonable time, for a price of
a non-minimal solution.

Lately we have developed a two-level heuristic
Boolean minimizer BOOM [Hlavi�ka and Fišer,
2001], [Fišer and Hlavi�ka, 2003a]. This minimizer
is capable to deal with functions with a large number
of input variables (up to thousands) in a very short
time. One disadvantage of BOOM is its relatively
long runtime for functions with many outputs. Hence,
we have developed FC-Min in succession [Fišer,
Hlavi�ka and Kubátová, 2003b]. It is suitable for
problems with a large number of output variables,
however, for low-output functions it often fails to
produce good results. To make a universal
minimizer, efficient for problems of all dimensions,
we have combined these two methods into BOOM-II.
Here the two algorithms can be used simultaneously,
their ratio being adjusted according the nature of the
source problem.

As a result of the standard minimization using
BOOM-II we obtain a two-level implementation of
the minimized circuit, particularly a set of sum-of-
product (SOP) forms, one for each output. To
implement such a circuit in hardware, doing further
decomposition into a multi-level network is
necessary, since many-input gates, occurring is the
SOP forms, often cannot be realized. Moreover, the
decomposition often significantly reduces the
resulting logic.

In a logic design flow process the Boolean
minimization is often being conducted independently
on decomposition and technology mapping phases;
the aim of the two-level minimization algorithm is to
reduce the number of literals or products in the
resulting SOP (sum-of-product) form to minimum.
However, this measure often does not represent the
real complexity of the circuit, since it can be
approximated not before the decomposition is done.
Hence, the minimization and decomposition phases
should be linked somehow, preferably the
minimization should be driven by the decomposition
and technology mapping constraints.

In this paper we propose an extension of BOOM-II
allowing the minimization to be driven by some
constraints. For decomposition purposes, the
resulting circuit is divided into several stand-alone
blocks. Particularly, we try to decompose the solution
into a given number of blocks, while keeping the

number of the inputs entering each block minimal,
and, if possible, maximally disjoint.

Any other constraints can be applied to the
minimization process. Namely, in the DFT (design
for testability), the size of the output cones (i.e., the
number of inputs influencing one output) can be
reduced by applying the specific constraints. The
minimization process can be influenced to produce
circuits with a balanced input load, and similarly.

The paper is structured as follows: after the
Introduction the principles of the single-level
partitioning are given. The structure of BOOM-II is
briefly described in Section 3. Section 4 describes the
necessary modifications of BOOM-II algorithms
needed to support the constraint-driven minimization.
The experimental results are presented in Section 5,
Section 6 concludes the paper.

2. SINGLE-LEVEL PARTITIONING

As a result of a two-level Boolean minimization we
obtain a circuit consisting of an AND-plane
generating the product terms and an OR-plane
summing the products to obtain the output values.
When using a group minimization, we try to share
the products among the outputs.

Unfortunately, such a two-level netlist often is very
difficult to implement in hardware. If the target
technology is, e.g., a PLA, or FPGA, the number of
both its inputs and outputs is limited. Thus, some
kind of decomposition has to be performed.

The single-level partitioning concept is based on
dividing the resulting circuit into a given number of
blocks, so that their two-level nature is retained. The
blocks share the primary inputs, each block generates
several outputs. The products cannot be shared
among the blocks. This is illustrated by Figure 1.
Here a logic function of 7 inputs x1-x7 and 6 outputs
y1-y6 is decomposed into two 5-input and 3-output
blocks while each block is a two-level (AND-OR)
circuit.

Fig. 1. A single-level partitioning

In our partitioning-based minimization method we
try to reduce the number of inputs entering the blocks
as well. The method is based on a fact that a function,
can be implemented in many ways. Each two-level
SOP form of a given function consists of a set of
essential products, which have to be present in every
representation of the function [Hassoun and Sasao,

2002], and a set of implicants that could vary, as long
as they together cover the whole on-set. Most of
Boolean functions we encounter in praxis have only a
few essentials, often none. Thus, we are able to select
its implicants (products) with a big freedom.
Moreover (and most importantly), in many cases not
all the function’s inputs are needed to produce a
particular output.

Definition. A support of a single-output function is a
set of its input variables needed to represent the
function. The minimum support of a function is its
support with the minimal cardinality. The definition
can be easily extended to multi-output functions.

Example. Let us consider a 5-input single-output
Boolean function described by a truth table, where
the on-set (1) and off-set (0) of the function is
defined. The minterms not listed in the table are
assigned as don’t cares. Let be the input variables
named x0 - x4.

Table 1. The example of the support
x0 x1 x2 x3 x4 y

1 1 1 0 0 1

1 0 1 0 0 1

1 0 0 0 0 1

0 1 0 1 0 0

1 0 1 0 1 0

The minimum support of the function is the set {x0,
x4}, since only these two input variables are needed
to distinguish between the 0 and 1 output values. The
inputs x1 – x3 are not necessary to use to implement
the function. When performing the single-level
partitioning, our goal is to construct a support S of an
n-input function, while |S| < n, generally, |S| should
be as small as possible, or at least should not exceed
a given limit. In most cases, reducing the support of a
function yields worse minimization results (in terms
of the complexity of the resulting circuit), since we
decrease the amount of information on the function.
Thus, some kind of trade-off has to be found here.

The single-level partitioning minimization process
consists of two major issues: deciding how to assign
the outputs of the multi-output function to the given
blocks (i.e., how to group the outputs) and how to
find the supports of the blocks. These issues will be
addressed in Section 4.

3. BOOM-II

BOOM-II had come in succession to BOOM, as a
combination of an original BOOM and the FC-Min
minimizer. It combines two antipodal approaches to
the Boolean minimization. The major part of BOOM
is a CD-Search algorithm, where the implicants of

each single function are being generated. The basis of
FC-Min is a Find-Coverage procedure, where the
group implicants are being produced directly. Both
these algorithms can be executed in an iterative way;
the implicant generation process is run several times,
while all the implicants are being gathered together.
After that, a covering problem is solved using all the
implicants and the irredundant cover of the source
function is computed using them.

In BOOM-II the runs of the two algorithms are being
alternated. At the beginning of each iteration it is
decided which algorithm should be run to generate a
new set of implicants. A probability of running each
particular algorithm can be freely adjusted, according
to the nature of the source function. The implicants
obtained from the two methods are being put
together, after several iterations the minimization is
stopped and the CP is solved. The flowchart of
BOOM-II is shown in Fig. 2.

Fig. 2. Flowchart of BOOM-II

3.1. Principles of BOOM

The BOOM minimizer consists of several successive
phases. At the beginning the multi-output function is
split into single-output functions. For each function a
set of implicants covering the whole on-set is
produced in the CD-Search phase. These implicants
are then expanded into prime implicants and then
reduced to obtain group implicants, i.e., implicants of
more than one function. After that the covering
problem is solved and an output reduction is
performed. The important phases will be described
here briefly, for more detailed description see [Fišer
and Hlavi�ka 2003a].

The Coverage-Directed Search (CD-Search). This is
the main and most contributive part of the BOOM
algorithm. It generates an irredundant set of
implicants covering the on-set of a single-output
function. Unlike the other Boolean minimization
methods (ESPRESSO) the implicants are being
constructed top-down, i.e., by reducing a universal
hypercube until it becomes an implicant. It does not
start with the source implicants – the algorithm uses
them just as guidance.

At the beginning the literal occurring in the on-set
most frequently is found. Such a literal forms an n-1
dimensional cube (for an n-input function) describing
the half of the Boolean space containing the majority
of the on-set (maximum of 1s). We compare this
cube with the off-set to find out whether it is an
implicant of the function, i.e., whether it does not
intersect the off-set. If it is not an implicant, we
search for the second most frequent literal and add it
to the previous one. Again, we check if it is an
implicant and repeat the process. When an implicant
is generated, we remove the on-set terms that are
covered by it and repeat the whole process until the
whole on-set is covered.

The Implicant Expansion (IE) Phase. The CD-Search
algorithm is a greedy heuristic and the implicants
need not be prime (PI). Thus, they should be
expanded to reduce the number of literals in these
terms. Several IE methods were proposed, all of them
are based on a simple removal of literals from all the
terms.

The Implicant Reduction (IR) Phase. Here the PIs are
being reduced into group implicants. This phase is
similar to the CD-Search. Literals are being added to
the present terms, so that the term becomes an
implicant of the maximum number of output
functions.

3.2. FC-Min Principles

The FC-Min minimizer has been developed to
efficiently handle functions with a large number of
output variables. Here the minimization is being
conducted in a reverse way than the standard
minimizers do. First, the cover of the on-set is found,
independently on the source implicants. After that the
minimized implicants are produced by joining the
source implicants. This process is directed towards
satisfying the cover. After that the implicants are
expanded to reduce the number of literals.

We will briefly describe these two phases, for more
information, see [Fišer, Hlavi�ka and Kubátová,
2003b].

The Find Coverage Phase. It is an essential phase of
the FC-Min algorithm. Here the whole cover of the
on-set of the multi-output function is found, using the
output part of the source function only. An example
of such a cover is shown in Fig. 3. There is a 5-input
and 5-output function defined by 10 terms. The rest
are assigned as don’t cares. The result of the Find
Coverage algorithm is a cover consisting of six
terms, t1 – t6. Each element in this cover describes
properties of an implicant. For example, t1 must be an
implicant of y3 and y4, and cover the ones in the 4th,
6th and 8th row. To solve the coverage finding
problem we use a greedy heuristic as well, since it is
NP.

11010 10000
10000 11100
01001 01100
01111 01010
00110 00111
01110 00000
10110 00011
00001 01101
10101 10111
11100 10100

�y -y0 4

Fig. 3. Cover of the output matrix

Implicant Generation Phase. In this phase we
generate the implicants from the cover. Considering
the conditions described above, particularly the
definition of the rows (vectors) each cover element
should cover, a simple rule for the implicants can be
derived: the minimum implicant satisfying the
particular cover can be constructed as a minimum
supercube of all the input vectors corresponding to
the rows of the cover of ti. Moreover, this supercube
must not intersect any term that is not included in the
particular cover, since it would cover some zeros
then. In our example, a minimum implicant t1 would
be (-01--), since

00110
10110
10101
-01--

Implicant Expansion Phase. The Implicant
generation phase produces the minimal implicants,
thus the satisfactory implicants having the maximum
of literals. They can be further expanded to reduce
the number of literals.

3.3. Covering Problem Solution

After the implicants are generated, the covering
problem has to be solved to obtain an irredundant
cover of the on-set. Solving it exactly is mostly
impossible, since the number of implicants is often
large. Thus, we use a scoring function based greedy
incremental heuristic [Coudert, 1994].

We construct a covering matrix A, its dimensions will
be (r, s). Its columns correspond to the implicants,
rows to the individual on-set terms that have to be
covered. We set A[i, j] = 1 if the implicant j covers
the on-set term i, A[i, j] = 0 otherwise. For each row
its strength of coverage is computed as

[]�
=

=
s

j

i

jiA

x

1

,

1
)SC((1)

Then the column contribution is computed for each
column:

�
=

⋅=
r

i
ij xSCjiAy

1

)(],[)CC((2)

After that the implicant (column) with the maximum
contribution value is selected into the solution, the

contribution values are recomputed and the process is
repeated until the whole on-set is covered.

The Output Reduction consists in solving m separate
covering problems for an m-output function. In this
phase the number of terms cannot be reduced,
however it determines the irredundant set of
implicants for each function, and thus removes
redundant connections between the AND and OR
planes in the resulting two-level network.

4. THE CONSTRAINT-DRIVEN
MINIMIZATION

In this section we will describe modifications of the
previously described algorithms, allowing us to
influence the minimization result in a desired way.

First, the multi-output function has to be divided into
stand-alone blocks, or at least the set of its outputs
has to be partitioned somehow. Then, the modified
algorithm is run for each block.

4.1. The Types of Constraints

The minimization constraints need not be only the
partitioning demands. We will briefly describe some
of them:

Partitioning Constraints. In order to combine the
minimization process with a partitioning, we split the
source circuit by its outputs. Further, we try to keep
the support of each block (i.e., the number of input
variables in the minimized function) minimal.

DFT Constraints. To synthesize an easily testable
circuit, we try to reduce the sizes of the cones in the
minimized circuit. Thus, we try to minimize the
support of each output variable separately.

Load Balancing. The low-power design is becoming
more and more important nowadays. In some cases it
is desirable to design circuits with a balanced load of
its inputs. This means that the number of branchings
of the circuit’s inputs should be kept balanced.
Moreover, for the low-power design, the number of
branchings should be kept minimal. This condition
may be contrary to the partitioning constraints, thus
some trade-off has to be found.

4.2. Modification of BOOM Algorithm

CD-Search. This is the essential phase that has to be
modified. The algorithm is based on a gradual
addition of literals into the terms. The candidate
literals are being selected using a scoring function;
originally it was the frequency of occurrence. Thus, it
is easy to modify this scoring function to manifest the
constraints.

For the partitioning purposes we modify the scoring
function, so that the frequency of the literal that is
already included in the processed block is multiplied
by the CD-Search partitioning force PFCD, and is thus

preferred to other literals. The higher this force is, the
smaller is the number of input variables entering the
blocks. For DFT, further modification is very similar
to the previous one: we prefer input variables that are
already included in the current partial SOP form of
the currently processed variable. When applying the
load balancing, we penalize variables entering the
other blocks.

Implicant Expansion. In this phase the literals are
being removed from the terms. It could be modified
to adopt some constraints as well, e.g., by preferring
a removal of the literal that would yield a reduction
of the number of inputs entering the block (for
partitioning). In praxis we do not do it, since the
expansion phase produces several PIs from one
non-PI, and the “advantageous” implicants are being
produced anyway.

Implicant Reduction. Here, as well, many group
implicants are being produced from one PI.
Modifying the scoring function defining the
candidate literals for inclusion is possible, however
we have found that the effect of this modification is
negligible.

For a more thorough description of the partitioning-
based BOOM method see [Fišer and Hlavi�ka, 2002]

4.3. Modification of FC-Min

Find-Coverage. Since this phase does not directly
influence the selection of what literals would be
included in the solution, its modification would be
meaningless. However, it strictly defines what terms
would be shared among what output variables – it
defines the group implicants. Therefore, it determines
what outputs would be grouped together in the final
solution.

Until now we haven’t described the way how we
group the outputs into the blocks. This decision could
be made at random (as it was being done in BOOM),
or we can exploit the Find Coverage phase to make
the partitioning.

Before the whole modified minimization is run, we
run the FC-Min for the original circuit and determine
from the result, which outputs share the maximum of
implicants. These outputs are then grouped together
into one block. Then we remove these outputs from
the source function and repeat the whole process,
until all the outputs belong to some block. The
number of outputs to be grouped is determined by the
size of each block (which is customizable).

Implicant Generation. This phase is fully
deterministic and cannot be influenced in any way.

Implicant Expansion. In this phase the number of
literals in the final set of SOP forms is being
significantly reduced, by up to 70%. Thus, here we
can decide what literals will be included in the
solution. For the partitioning based minimization,
literals of input variables that are not included in the
currently processed block are tried for removal at

first, and only when no such a removal is possible,
literals of variables that are entering the processed
block are tried for removal.

For the load-balancing and minimization, literals of
variables included in other blocks are removed first,
then the rest. In a DFT design, we remove literals
that are not included in current SOP forms of output
variables, for which the currently processed term is
an implicant.

4.4. Covering Problem Solution

Modifying the CP solution algorithm is of a key
importance to reach good results. Consider that the
CP solver selects only a small number of implicants
from a huge implicant pool and constructs the final
solution. Thus, if the algorithm was not modified, it
could spoil all the effort of the previous phases.

In fact, any CP solver can be used, where only one
condition has to be fulfilled: it has to be a greedy
additive heuristic, i.e., the implicants have to be
added to the solution one by one. Modifying an exact
solver could also be possible, however it would
extremely complicate the construction of a cost
function here.

The CP is solved for each block individually, so that
we prevent sharing the implicants among the blocks.

We will consider the CP algorithm described in
Subsection 3.3. To apply the partitioning, additional
weights are assigned to the implicants, thus the
weights modify the contributions. Input variables
used in particular blocks are recorded during the
process. The weights of the implicants are
proportional to the number of new input variables
they would add to the currently processed block if
they were selected into the solution. The more input
variables is newly added into a given block by a
term, the less likely this term will be selected.

In particular, the weight is being multiplied by a
customizable PFCOV factor and the cost of the term
divided by this value.

For the load minimization purposes the weights can
be modified so that implicants containing inputs
entering other blocks will be penalized.

5. EXPERIMENTAL RESULTS

To illustrate the effects of the partitioning and load
minimization supports, we have processed a
randomly generated function having 50 input
variables, 40 output variables and 150 defined terms.
Functions of such dimensions occur, i.e., in a design
of control systems, BIST design (Fišer, Hlavi�ka and
Kubátová, 2003c). Our aim was to minimize the
circuit and implement it using four 10-output blocks.

First, we have run BOOM-II without any
modification; only the original circuit was randomly
divided into 4 10-output blocks. As a result, we have

obtained four two-level circuits; their summary
complexity was equal to 2375 gate equivalents
(De Micheli, 1994). Each of the primary inputs was
used (i.e., the support = 50), and each of them was
entering each of the four blocks.

After that, we have determined a proper
decomposition of the circuit by running FC-Min and
applied the partitioning forces to the CD-Search and
Covering problem solution. The FC-Min Implicant
expansion phase was modified to support the
partitioning as well. The results of the minimization
are shown in Table 2, together with the results of the
unmodified algorithm. The PFCD and PFCOV forces
were both set to 1.

Table 2. The experimental results

 no
partitioning

with
partitioning

total support 200 114
used inputs 50 47
branching inputs 50 36
branchings 150 67
maximum load 4 4
average load 4 2.34
GEs 2375.5 2874.5
block 0 inputs 50 30
block 1 inputs 50 30
block 2 inputs 50 26
block 3 inputs 50 28

The “total support” row shows the sum of the
supports of all the four blocks, i.e., the total number
of wires entering the blocks. A great reduction can be
seen here, when the partitioning is applied. Without
the partitioning all the inputs enter all the blocks
(4 x 50 = 200). With partitioning, this value is
reduced to nearly one half.

The number of input variables used is reduced as
well. When the partitioning was applied, 3 inputs
were found to be not needed to interpret the function.

Even when no load minimization was applied here,
the simple partitioning reduces it as well. The
number of branchings was reduced from 150 to 67,
while the average load of the inputs was reduced
from 4 to 2.34.

As the most important fact we can observe that the
number of inputs of each block was significantly
reduced – from the total 50 to at most 30. Thus, after
the partitioning is applied we are able to construct the
whole circuit using four 30-input and 10-output
stand-alone blocks, which was not possible before.

The increase of the area is only 17%, which is
acceptable in most cases (see the GEs row).

6. CONCLUSIONS

We have presented principles of a constraint-based
minimization in BOOM-II, with emphasis on a
partitioning of the circuit. Since BOOM-II is a very
complex system, many changes had to be done.
A good partitioning scheme can be obtained using
the FC-Min algorithm, which is a part of BOOM-II.
Then, using the BOOM-II algorithms modified to
support the partitioning, the circuit can be efficiently
divided into several stand-alone blocks, directly in
the two-level minimization process.

The principles can be extended for a low-power
design, design-for-testability, and many other
constraint-driven designs.

ACKNOWLEDGEMENT

This research has been in part supported by the
GA102/04/2137 grant and MSM 212300014.

REFERENCES

Brayton, R.K., et al. (1984). Logic minimization

algorithms for VLSI synthesis, 192 pp., Boston,
MA, Kluwer Academic Publishers.

Coudert, O. (1994). Two-level logic minimization: an
overview, Integration, the VLSI journal, Vol. 17-
2, pp. 97-140

De Micheli, G. (1994). Synthesis and Optimization of
Digital Circuits. McGraw-Hill

Fišer, P. and Hlavi�ka, J. (2002). A Flexible
Minimization and Partitioning Method. Proc. 5th
Int. Workshop on Boolean Problems, Freiberg
(Germany), pp. 83-90

Fišer, P. and Hlavi�ka, J. (2003a). A Heuristic
Boolean Minimizer, Computers and Informatics,
Vol. 22, No. 1, pp. 19-51

Fišer, P., Hlavi�ka, J. and Kubátová, H. (2003b).
FC-Min: A Fast Multi-Output Boolean
Minimizer, Proc. Euromicro Symposium on
Digital Systems Design (DSD), Antalya (TR),
pp. 451-454

Fišer, P., Hlavi�ka, J. and Kubátová, H. (2003c).
Column-Matching BIST Exploiting Test Don't-
Cares. Proc. 8th IEEE Europian Test Workshop
(ETW), Maastricht (The Netherlands), pp. 215-
216

Hassoun, S. and Sasao, T. (2002). Logic Synthesis
and Verification, Boston, MA, Kluwer Academic
Publishers, 454 pp.

Hlavi�ka, J. and Fišer, P. (2001). BOOM - a
Heuristic Boolean Minimizer. Proc. International
Conference on Computer-Aided Design (ICCAD),
San Jose, California (USA), pp. 439-442

McGeer, P. et al. (1993). ESPRESSO-SIGNATURE:
A new exact minimizer for logic functions, Proc.
DAC’93

