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Abstract. We propose a new built-in self-test (BIST) method based on a 
combination of a pseudo-random test method with a deterministic test. This 
enables us to reach a high fault coverage in a short test time and with a low 
area overhead. The main feature of the method is that there are no memory 
elements to store the deterministic test patterns; the test patterns are being 
produced by a transformation of the non-testing pseudo-random patterns. This 
transformation is being done by a purely combinational block, while we try to 
keep this block as small as possible. Our method can be apprehended as a 
generalization of a bit-fixing method. We synthesize the transformation logic by 
a slightly modified column-matching algorithm proposed before. 

1. Introduction 

The complexity of VLSI circuits rapidly grows, therefore their testing using only external 
test equipment (ATE) is becoming impossible. Huge amount of necessary test vectors 
prolongs the testing time and demands complicated and expensive testers. Built-in Self-Test 
(BIST) requires no external tester, since all the circuitry needed to conduct a test is included 
in the very circuit. This is paid by an area overhead, a long test time and often a low fault 
coverage. Many recent BIST methods have been trying to find some trade-off between 
these three aspects that are mutually antipodal. A high fault coverage means either a long 
test time (exhaustive test), or a high area overhead (ROM-based BIST). A pseudo-random 
testing established the simplest trade-off between all the three criteria. With an extremely 
low area overhead the circuit can be tested usually up to more than 90% in a relatively 
small number of clock cycles (thousands). To improve the fault coverage and to reduce the 
test time, many enhancements of this pseudo-random principle were developed. Some 
methods incorporate a memory into BIST to store deterministic test vectors. Since the chip 
area needed for a memory is often large, these patterns are being compressed somehow, and 
then they are being decompressed by a LFSR [1-2]. Other methods try to modify the 
pseudo-random pattern generator (PRPG) somehow to improve a fault coverage [3, 5] or 
modify some of the PRPG patterns by some combinational logic into deterministic tests 
[4, 5]. These methods are often referred to as a mixed-mode BIST. 

Synthesis of the combinational logic transforming the pseudo-random patterns into 
deterministic tests is based on our column-matching algorithm [6]. In this paper we 



describe an enhancement of this method to support a mixed-mode BIST, which 
significantly reduces the output decoder logic. 

The paper is structured as follows: Section 2 describes the major principles, the 
experimental results are presented in Section 3, Section 4 concludes the paper. 

2. Principles of the Mixed-Mode BIST Method 

In order to improve the fault coverage we modify some pseudorandom vectors generated 
by a LFSR to obtain deterministic tests detecting the hard-to-detect faults. In a bit-fixing 
approach [4] the LFSR patterns are being modified by AND and OR gates driven by an 
additional logic. Here the transformation logic needs to keep track of the LFSR vectors and 
modify the appropriate bits in some vectors only. Vectors that do not detect any faults were 
being modified in previous approaches, while these vectors were picked up from any of the 
source vectors. However, praxis shows that some limited set of the initial pseudorandom 
vectors does detect faults and, after this initial sequence, the fault detection capability of the 
vectors quicky drops to zero. Thus, effectively dividing the test execution into two phases 
becomes a good solution. First the unmodified pseudorandom LFSR patterns are applied to 
the CUT to test the easy-to-detect faults, and then the succeeding vectors are transformed 
into deterministic tests precomputed by some ATPG tool. 

Like in the bit-fixing and bit-flipping approaches, the additional combinational logic 
consists of two blocks: the pattern transformation logic itself (Decoder) and the logic 
switching between the two test phases. We propose a more generalized approach where the 
switching logic is not implemented as AND and/or OR gates, but by multiplexers. This 
principle has two advantages in general: firstly, the chip area needed to implement a 
multiplexer is comparable to a standard gate in the CMOS logic [7]. Moreover, these 
multiplexers can be driven together, preferably by an external signal, or by an additional 
pattern counter. Thus, the transformation logic needs not reflect the initial set of the LFSR 
patterns (these are taken as external don’t cares), only the patterns that have to be 
transformed are considered. This fact significantly reduces the decoder logic.  

The decoder is a purely combinational block transforming the LFSR patterns following 
after the pseudorandom test sequence into a deterministic test set. It is based on our column 
matching method [6]. Here we try to implement most of the outputs of the decoder logic by 
assigning them to the inputs, thus without any circuitry. If we succeed in matching two 
columns at the same position, we call it a direct match. Here no logic is needed, even for 
the switch. Any other matches involve a multiplexer, the unmatched columns have to be 
synthesized by the decoder. An artificial illustrative example is shown in Fig. 1. The 5-bit 
LFSR runs for 5 cycles first and the easily testable faults are detected. Then we run the fault 
simulation to find the undetected faults, for which the test vectors are generated by an 
ATPG. At the end the decoder logic is synthesized for these test vectors and the succeeding 
LFSR patterns. The resulting circuitry is shown in Fig. 2. 
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Fig. 1: Test sequence generation 
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Fig. 2: BIST circuitry 



3. Experimental Results 

The method was extensively tested on standard ISCAS benchmarks, both on the 
combinational ones [8] and the full-scan versions of the sequential benchmarks [9]. 
To show the tradeoff between the test time and area overhead, the BIST for all of the 
benchmarks was synthesized using two different test lengths. We have used the FSIM 
program as a fault simulator and ATALANTA ATPG tool [10]. 

For all the benchmarks 100% coverage of detectable single stuck-at faults is assumed. 
The results of the experiments are shown in Table 1. After the benchmark circuit name the 
number of its inputs is indicated (“inps”). The number of pseudorandom LFSR patterns 
needed to reach 100% fault coverage (without using any additional logic) is shown in the 
“PR” column, just to illustrate the pseudorandom testability of the circuit. The “rand / det.” 
column describes the number of cycles used to test the circuit using our mixed-mode BIST; 
the first number indicates the length of the pseudorandom phase, the second indicates the 
length of the deterministic one. Thus, the total number of LFSR cycles needed to complete 
the BIST is equal to the sum of these two numbers. The “ud.”  column shows the number of 
undetected faults after the fault simulation using the “rand”  vectors. To cover these faults 
“ATPG” test vectors were generated by ATALANTA. 

The “mtch.” column gives the total number of column matches found after applying the 
modified column-matching algorithm. From these matches “d. mtch.” were direct matches. 
After that, the decoder logic was synthesized using BOOM [11, 12, 13], the number of gate 
equivalents [7] obtained is indicated in the “GEs” column. In the cases where all the 
columns were matched, there is no output decoder needed, thus the number of GEs is equal 
to 0 (fields in bold). The total area overhead of the BIST combinational logic, thus of both 
the output decoder and the switching logic is shown in the “tot. GEs” column. This number 
can be computed as follows: tot. GEs = GEs + 1.5(inps - d. matches), since MUXes have to 
be present at the outputs, that are not directly matched. The GEs for a MUX is equal to 1.5. 

The last column shows the total computational time in seconds needed to obtain the 
result on a 900 MHz Athlon CPU. In all the cases the algorithm was run iteratively 10 
times, to improve the result. 

It is obvious that the BIST area overhead rapidly decreases with increasing test time. 
Two aspect play role here: the longer the pseudorandom phase runs, the more faults are 
detected here, thus fewer deterministic vectors are needed to test the rest of the faults. 
Secondly, the number of column matches reached (both the direct and non-direct) increases 
with increasing the number of the LFSR patterns to be transformed and with a decrease of 
the number of the deterministic tests they are to be transformed to. 

Table 1. Experimental results 
bench inps PR rand / det. ud. ATPG mtch. d. mtch. GEs tot.GEs time 
c880 60 7 K 500 / 500 9 4 60 53 0 10.5 0.3 
   1000 / 1000 5 4 60 59 0 1.5 0.2 
c1355 41 2 K 500 / 500 31 12 24 7 19 70 11.5 
   1000 / 1000 2 1 41 31 0 15 0.2 
c1908 33 4 K 1000 / 1000 46 30 29 12 15 46.5 15 
   2000 / 1000 19 10 33 28 0 7.5 0.2 
c3540 50 15 K 1000 / 1000 33 22 50 40 0 15 5.6 
   2000 / 1000 8 8 50 45 0 7.5 1.4 
s641 54 2 M 1000 / 500 12 9 54 40 0 21 2.7 
   4000 / 1000 8 7 54 44 0 15 1.1 

 



We have compared our method with the bit-fixing [4] and row-matching [5] methods. 
The results of this comparison are listed in Table 2. The TL column indicates the number of 
test clock cycles. The empty cells indicate that the data for the respective circuit was not 
available to us.  

Table 2. Comparison result

 Col.-match. Bit-fixing Row-match. 
Bench TL GEs TL GEs TL GEs 
c880 1 K 10.5 1 K 27 1 K 21 
c1355 2 K 15 3 K 11 2 K 0 
c1908 3 K 7.5 4 K 12 4.5 K 8 
c2670 5 K 172 5 K 121 5 K 119 
c3540 3 K 7.5 4.5 K 13 4.5 K 4 
c7552 8 K 586 10 K 186 8 K 297 

 Col.-match. Bit-fixing Row-match. 
Bench TL GEs TL GEs TL GEs 
s420 1 K 24.5 1 K 28 - - 
s641 4 K 15 10 K 12 10 K 6 
s713 5 K 16.5 - - 5 K 4 
s838 6 K 130 10 K 37 - - 
s1196 10 K 6 - - 10 K 36 

4. Conclusions 
In this paper we have proposed an extension of the column-matching method 

to a mixed-mode BIST. First the circuit is pseudorandomly tested by LFSR patterns and 
then the deterministic test patterns detecting yet uncovered faults are being produced. This 
implies some additional logic that switches between these two modes. We try to minimize 
this logic as well, particularly by introducing the direct column matches. 

The method was tested on the standard ISCAS benchmarks. We have shown the tradeoff 
between the test time and the area overhead. Longer test time means smaller area overhead 
and vice versa. For these benchmarks we have compared our method to the other state-of-
the art methods. The BIST synthesis tool based on this method is available at [14]. 
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