
AN EFFICIENT MIXED-MODE BIST TECHNIQUE

Petr Fišer, Hana Kubátová
Department of Computer Science and Engineering

Czech Technical University
Karlovo nam. 13, 121 35 Prague 2

e-mail: fiserp@fel.cvut.cz, kubatova@fel.cvut.cz

Abstract. We propose a new built-in self-test (BIST) method based on a
combination of a pseudo-random test method with a deterministic test. This
enables us to reach a high fault coverage in a short test time and with a low
area overhead. The main feature of the method is that there are no memory
elements to store the deterministic test patterns; the test patterns are being
produced by a transformation of the non-testing pseudo-random patterns. This
transformation is being done by a purely combinational block, while we try to
keep this block as small as possible. Our method can be apprehended as a
generalization of a bit-fixing method. We synthesize the transformation logic by
a slightly modified column-matching algorithm proposed before.

1. Introduction

The complexity of VLSI circuits rapidly grows, therefore their testing using only external
test equipment (ATE) is becoming impossible. Huge amount of necessary test vectors
prolongs the testing time and demands complicated and expensive testers. Built-in Self-Test
(BIST) requires no external tester, since all the circuitry needed to conduct a test is included
in the very circuit. This is paid by an area overhead, a long test time and often a low fault
coverage. Many recent BIST methods have been trying to find some trade-off between
these three aspects that are mutually antipodal. A high fault coverage means either a long
test time (exhaustive test), or a high area overhead (ROM-based BIST). A pseudo-random
testing established the simplest trade-off between all the three criteria. With an extremely
low area overhead the circuit can be tested usually up to more than 90% in a relatively
small number of clock cycles (thousands). To improve the fault coverage and to reduce the
test time, many enhancements of this pseudo-random principle were developed. Some
methods incorporate a memory into BIST to store deterministic test vectors. Since the chip
area needed for a memory is often large, these patterns are being compressed somehow, and
then they are being decompressed by a LFSR [1-2]. Other methods try to modify the
pseudo-random pattern generator (PRPG) somehow to improve a fault coverage [3, 5] or
modify some of the PRPG patterns by some combinational logic into deterministic tests
[4, 5]. These methods are often referred to as a mixed-mode BIST.

Synthesis of the combinational logic transforming the pseudo-random patterns into
deterministic tests is based on our column-matching algorithm [6]. In this paper we

describe an enhancement of this method to support a mixed-mode BIST, which
significantly reduces the output decoder logic.

The paper is structured as follows: Section 2 describes the major principles, the
experimental results are presented in Section 3, Section 4 concludes the paper.

2. Principles of the Mixed-Mode BIST Method

In order to improve the fault coverage we modify some pseudorandom vectors generated
by a LFSR to obtain deterministic tests detecting the hard-to-detect faults. In a bit-fixing
approach [4] the LFSR patterns are being modified by AND and OR gates driven by an
additional logic. Here the transformation logic needs to keep track of the LFSR vectors and
modify the appropriate bits in some vectors only. Vectors that do not detect any faults were
being modified in previous approaches, while these vectors were picked up from any of the
source vectors. However, praxis shows that some limited set of the initial pseudorandom
vectors does detect faults and, after this initial sequence, the fault detection capability of the
vectors quicky drops to zero. Thus, effectively dividing the test execution into two phases
becomes a good solution. First the unmodified pseudorandom LFSR patterns are applied to
the CUT to test the easy-to-detect faults, and then the succeeding vectors are transformed
into deterministic tests precomputed by some ATPG tool.

Like in the bit-fixing and bit-flipping approaches, the additional combinational logic
consists of two blocks: the pattern transformation logic itself (Decoder) and the logic
switching between the two test phases. We propose a more generalized approach where the
switching logic is not implemented as AND and/or OR gates, but by multiplexers. This
principle has two advantages in general: firstly, the chip area needed to implement a
multiplexer is comparable to a standard gate in the CMOS logic [7]. Moreover, these
multiplexers can be driven together, preferably by an external signal, or by an additional
pattern counter. Thus, the transformation logic needs not reflect the initial set of the LFSR
patterns (these are taken as external don’t cares), only the patterns that have to be
transformed are considered. This fact significantly reduces the decoder logic.

The decoder is a purely combinational block transforming the LFSR patterns following
after the pseudorandom test sequence into a deterministic test set. It is based on our column
matching method [6]. Here we try to implement most of the outputs of the decoder logic by
assigning them to the inputs, thus without any circuitry. If we succeed in matching two
columns at the same position, we call it a direct match. Here no logic is needed, even for
the switch. Any other matches involve a multiplexer, the unmatched columns have to be
synthesized by the decoder. An artificial illustrative example is shown in Fig. 1. The 5-bit
LFSR runs for 5 cycles first and the easily testable faults are detected. Then we run the fault
simulation to find the undetected faults, for which the test vectors are generated by an
ATPG. At the end the decoder logic is synthesized for these test vectors and the succeeding
LFSR patterns. The resulting circuitry is shown in Fig. 2.

�����
�����

�����
�����

�����

�����

�����

�����

�����
�����

������	
����

�������� � ��
����� ���	����
��
������

���� ����

�����
�

�����
�����

�����

�����

�����
�����

������

�����

�����

����	����
 ���

�� �����
��������

� �

! 	!
� "

# 	#
� "

����

�����

�����

�����

�����

�����
�����

�����

�����

�����

�����

�����	
��
	��
�����

Fig. 1: Test sequence generation

����

���

1

!� !� !$!% !"

#� #� #$ #% #"

 ���

�������

���

�&�!� �

�&�!

�&�!

�&�!

�&�! '!

� �

$ $

% �

" � �

(

('

Fig. 2: BIST circuitry

3. Experimental Results

The method was extensively tested on standard ISCAS benchmarks, both on the
combinational ones [8] and the full-scan versions of the sequential benchmarks [9].
To show the tradeoff between the test time and area overhead, the BIST for all of the
benchmarks was synthesized using two different test lengths. We have used the FSIM
program as a fault simulator and ATALANTA ATPG tool [10].

For all the benchmarks 100% coverage of detectable single stuck-at faults is assumed.
The results of the experiments are shown in Table 1. After the benchmark circuit name the
number of its inputs is indicated (“inps”). The number of pseudorandom LFSR patterns
needed to reach 100% fault coverage (without using any additional logic) is shown in the
“PR” column, just to illustrate the pseudorandom testability of the circuit. The “rand / det.”
column describes the number of cycles used to test the circuit using our mixed-mode BIST;
the first number indicates the length of the pseudorandom phase, the second indicates the
length of the deterministic one. Thus, the total number of LFSR cycles needed to complete
the BIST is equal to the sum of these two numbers. The “ud.” column shows the number of
undetected faults after the fault simulation using the “rand” vectors. To cover these faults
“ATPG” test vectors were generated by ATALANTA.

The “mtch.” column gives the total number of column matches found after applying the
modified column-matching algorithm. From these matches “d. mtch.” were direct matches.
After that, the decoder logic was synthesized using BOOM [11, 12, 13], the number of gate
equivalents [7] obtained is indicated in the “GEs” column. In the cases where all the
columns were matched, there is no output decoder needed, thus the number of GEs is equal
to 0 (fields in bold). The total area overhead of the BIST combinational logic, thus of both
the output decoder and the switching logic is shown in the “tot. GEs” column. This number
can be computed as follows: tot. GEs = GEs + 1.5(inps - d. matches), since MUXes have to
be present at the outputs, that are not directly matched. The GEs for a MUX is equal to 1.5.

The last column shows the total computational time in seconds needed to obtain the
result on a 900 MHz Athlon CPU. In all the cases the algorithm was run iteratively 10
times, to improve the result.

It is obvious that the BIST area overhead rapidly decreases with increasing test time.
Two aspect play role here: the longer the pseudorandom phase runs, the more faults are
detected here, thus fewer deterministic vectors are needed to test the rest of the faults.
Secondly, the number of column matches reached (both the direct and non-direct) increases
with increasing the number of the LFSR patterns to be transformed and with a decrease of
the number of the deterministic tests they are to be transformed to.

Table 1. Experimental results
bench inps PR rand / det. ud. ATPG mtch. d. mtch. GEs tot.GEs time
c880 60 7 K 500 / 500 9 4 60 53 0 10.5 0.3
 1000 / 1000 5 4 60 59 0 1.5 0.2
c1355 41 2 K 500 / 500 31 12 24 7 19 70 11.5
 1000 / 1000 2 1 41 31 0 15 0.2
c1908 33 4 K 1000 / 1000 46 30 29 12 15 46.5 15
 2000 / 1000 19 10 33 28 0 7.5 0.2
c3540 50 15 K 1000 / 1000 33 22 50 40 0 15 5.6
 2000 / 1000 8 8 50 45 0 7.5 1.4
s641 54 2 M 1000 / 500 12 9 54 40 0 21 2.7
 4000 / 1000 8 7 54 44 0 15 1.1

We have compared our method with the bit-fixing [4] and row-matching [5] methods.
The results of this comparison are listed in Table 2. The TL column indicates the number of
test clock cycles. The empty cells indicate that the data for the respective circuit was not
available to us.

Table 2. Comparison result

 Col.-match. Bit-fixing Row-match.
Bench TL GEs TL GEs TL GEs
c880 1 K 10.5 1 K 27 1 K 21
c1355 2 K 15 3 K 11 2 K 0
c1908 3 K 7.5 4 K 12 4.5 K 8
c2670 5 K 172 5 K 121 5 K 119
c3540 3 K 7.5 4.5 K 13 4.5 K 4
c7552 8 K 586 10 K 186 8 K 297

 Col.-match. Bit-fixing Row-match.
Bench TL GEs TL GEs TL GEs
s420 1 K 24.5 1 K 28 - -
s641 4 K 15 10 K 12 10 K 6
s713 5 K 16.5 - - 5 K 4
s838 6 K 130 10 K 37 - -
s1196 10 K 6 - - 10 K 36

4. Conclusions
In this paper we have proposed an extension of the column-matching method

to a mixed-mode BIST. First the circuit is pseudorandomly tested by LFSR patterns and
then the deterministic test patterns detecting yet uncovered faults are being produced. This
implies some additional logic that switches between these two modes. We try to minimize
this logic as well, particularly by introducing the direct column matches.

The method was tested on the standard ISCAS benchmarks. We have shown the tradeoff
between the test time and the area overhead. Longer test time means smaller area overhead
and vice versa. For these benchmarks we have compared our method to the other state-of-
the art methods. The BIST synthesis tool based on this method is available at [14].

Acknowledgement
This research was supported by a grant GA 102/04/2137 and MSM 212300014.

References
[1] Hellebrand, S. et al.: Built-In Test for Circuits with Scan Based on Reseeding of Multiple-Polynomial

Linear Feedback Shift Registers. IEEE Trans. on Comp., vol. 44, No. 2, February 1995, pp. 223-233
[2] Hellebrand, S., Liang, H., Wunderlich, H: A Mixed Mode BIST Scheme Based on reseeding of Folding

Counters, Proc. IEEE ITC, 2000, pp.778-784
[3] Hartmann, J., Kemnitz, G.: How to Do Weighted Random Testing for BIST, Proc. of International

Conference on Computer-Aided Design (ICCAD), pp. 568-571, 1993
[4] Touba, N.A.: Synthesis of mapping logic for generating transformed pseudo-random patterns for BIST,

Proc. of International Test Conference, pp. 674-682, 1995
[5] Chatterjee, M., Pradhan, D.K.: A BIST Pattern Generator Design for Near-Perfect Fault Coverage, IEEE

Transactions on Computers, vol. 52, no. 12, December 2003, pp. 1543-1558
[6] Fišer, P., Hlavi�ka, J., Kubátová, H.: Column-Matching BIST Exploiting Test Don't-Cares. Proc. 8th IEEE

Europian Test Workshop (ETW'03), Maastricht (The Netherlands), 25.-28.5.2003, pp. 215-216
[7] De Micheli, G.: Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.
[8] Brglez, F., Fujiwara, H.: A Neutral Netlist of 10 Combinational Benchmark Circuits and a Target

Translator in Fortan, Proc. of International Symposium on Circuits and Systems, pp. 663-698, 1985
[9] Brglez, F., Bryan, D., Kozminski, K.: Combinational Profiles of Sequential Benchmark Circuits, Proc. of

International Symposium of Circuits and Systems, pp. 1929-1934, 1989
[10] Lee, H.K., Ha, D.S.: Atalanta: an Efficient ATPG for Combinational Circuits, Technical Report, 93-12,

Dep't of Electrical Eng., Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1993
[11] Hlavi�ka, J., Fišer, P.: BOOM - a Heuristic Boolean Minimizer. Proc. International Conference on

Computer-Aided Design ICCAD 2001, San Jose, California (USA), 4.-8.11.2001, pp. 439-442
[12] Fišer, P., Hlavi�ka, J.: BOOM - A Heuristic Boolean Minimizer, Computers and Informatics, Vol. 22,

2003, No. 1, pp. 19-51
[13] http://service.felk.cvut.cz/vlsi/prj/BOOM
[14] http://service.felk.cvut.cz/vlsi/prj/ColMatch

