
Design of Self Checking Circuits Based on FPGA

Pavel Kubalík, Hana Kubátová
Department of Computer Science and Engineering

Czech Technical University
Karlovo nam. 13, 121 35 Prague 2

e-mail: xkubalik@fel.cvut.cz, kubatova@fel.cvut.cz

Abstract
The paper focuses on error detection in circuits

implemented in FPGAs using error detection codes (ED
codes). The incorrect function of a given combinational
circuit has to be detected and signalized at the time of its
appearance and before its further distribution. It means
that a safe operation is guaranteed. The ability to detect
an error without stopping circuit function is called
concurrent error detection (CED). We have used
combinational circuits only to simplify testing process.
A previous research was based on benchmarks described
by tables. In some cases benchmarks with many inputs
cannot be described by tables easily. The benchmarks
used in our experiments to compute a quality of the code
are described by equations. All of them will be
implemented in XILINX FPGA circuits. Therefore the
fault model considers the way of configuration data
storage in memory. This work is a part of a more complex
methodology of fault tolerant design based on FPGAs
with a possibility to reconfigure the faulty part of the
circuit.

1 Introduction
Nowadays when the circuit integration increases, the

importance of radiation impact on integrated circuits
grows even at the sea level. The mobile nets are becoming
more important because of their radiation. They can affect
any circuit used every day. Some machines such as the
control units in cars can play an important role in places
such as tunnels, where a car fault can endanger human
lives. Other important areas are aviation, medicine or
space missions. All of these applications and many others
depend on a correct function of circuits and one wrong
result can mean huge losses. The FPGA circuits are more
and more often used to realize any function because of
their prices and capabilities to upgrade the function when
a bug is discovered. Another advantage is the possibility
of dynamic reconfiguration when fault in the circuit is
detected and localized [4].

Some techniques in [5] describe methods how to detect
the faulty part of FPGA without stopping its function. The
method tests unused part of the FPGA. When the test is

done the tested part is exchanged with the used part and
the test is started again for currently unused area.

This paper is organized as follows. Section 2
introduces the fault model and proposes general
methodology for comparing quality of used error
detection codes. Section 3 presents the experimental issue
and solution of parity bits generation for every used test.
Future work and conclusion are presented in the section 4.

2 Solution
With consideration of using FPGA circuits we have to

take into account the property and representation of
combinational part realized as memory (look up table -
LUT) with several inputs and one output. After the
synthesis the mapping is started and a set of gates is
mapped on individual LUTs and connected by inner nets.
The FPGA is based on the memory that contains
configuration data realizing required function.

When the radiation impacts the chip the function of
circuit may change due to toggling some bits in the
configuration memory. The incorrect function is
subsequently detected by an additional combinational
circuit. It consists of gates generating parity bits (parity
generators) and gates checking code words (checkers).

The parity generator is based on the duplicated
combinational circuit. The part that generates parity bits is
added according to the used detection code. Some of used
codes have error-correction capabilities but we cannot
correct outputs because a fault is propagated to outputs
through a complex circuit. The error-correcting codes are
often used for data paths. In the case of using error-
correcting codes in the combinational circuits a single
fault can influence multiple outputs and correction leads
to a wrong data output.

The aim of this work is not to optimize the checking
part but to find out appropriate safety codes. The
synthesis process can only change the size of final circuit
in this application, because the parity generator is not
optimized in our work. To obtain only quality parameters
of tested codes such optimization of the parity generator is
not necessary.

The stuck-at fault model is used. The FPGA function is
determined by the content of the configuration memory.

The fault is considered as a change of any bit in
configuration memory. All combinational parts in FPGA
are realized as many LUTs [4] connected to each other.
Every LUT represents a part of the configuration memory.
The connection net is realized by wires, multiplexers and
switches and their settings depend on bits in configuration
memory.

The proposed fault model is sufficient to compare
quality of tested codes and to select the suitable one. The
quality w is the ratio of the detected incorrect outputs x in
the combinational circuit and all incorrect outputs y,
w = x/y.

The creation of combinational circuits solving parity
computation using CED techniques is based on the
original circuit. The original circuit is duplicated and the
parity generator is added. The synthesis process must be
applied on each part separately due to the fact that the
parity generator contains the same logic as the original
circuit. Otherwise, the synthesis would optimize the
circuit and remove redundancy.

Error-detecting circuits based on the duplication of
original circuit can be predisposed to the genesis of
Common-Mode Failures (CMF). Some solutions of this
problem are presented in [1].

The methodology to design the combinational part for
the parity generation does not depend on the original
circuit and on the number of its inputs. Our experiments
assume circuits with many inputs. Due to this fact the
exhaustive test cannot be applied and so the minimal test
must be generated. The test is inserted to the fault
simulator and for every fault the output value is
generated. After performing the simulation process, the
checking part is computed by our software and compared
with outputs generated by simulator.

3 Experiments
The Atalanta software was used to generate minimal

test [6]. This tool allows to process ISCAS benchmarks
based on equations. A tool for circuits optimization
described by tables cannot be used in this case because
the table creation is difficult due to many inputs.

The special software has been written in C language
for automatic modification of the original circuit and
adding the parity bits generator. The ISCAS benchmarks
are loaded into inner form by this software. The form is
composed of list of nets and gates. Some functions are
written to modify this inner form and can add new gates,
nets or can change name of all nets. The nets renaming
allows to duplicate an original circuit. After the original
circuit is loaded into the memory all nets are renamed and
the original circuit is loaded again.

To add parity bits the original circuit is loaded and
modified by corresponding function. Next all nets are
renamed and original circuit is loaded again. By this

procedure the original circuit with predicted parity bits
has been obtained.

For every tested checking code the new functions
modifying a circuit have been written. The even parity,
double parity and multiple parity generated by a
Hamming code are used in experiments described in this
article. When the original circuit is modified, two
methods of output form can be generated. The first form
presents ISCAS benchmark used for simulation. The
second form is VHDL source code allowing to synthesize
modified circuit.

The variety of circuits can be created by this tool.
Every part of the final circuit is created separately and
combined together with the same tool. If the area
occupied by circuit in FPGA has to be computed, then the
VHDL output is selected and a synthesize tool is used.
After that the original circuit and modified circuit can be
compared. In our case the VHDL code is used to obtain
the area overhead by every checking code. Two VHDL
codes are generated: first for original circuit and second
for circuit generating parity bits. For simulation the design
contains both original circuit and parity bits generator
(Figure 1).

combinational
circuit

inputs outputs

combinational
circuit

outputs
code

}code
word

combinational
circuit

inputs outputs

original circuit

self - checking circuit

Figure 1. The circuit duplication and code word

generation

The Atalanta software processes the modified circuit
and generates the minimal fault test. Both files, minimal
test and modified circuit, are put into the simulator which
allows to compute efficiency of used checking code. The
same tool that allows to modify original circuit is used for
simulation. The same form of circuit stored in memory is
used. The new functions of simulation are added to the
source code of our tool (Figure 2).

By this modified tool we can simulate faults. Firstly,
our tool simulates stuck-at-zero faults by consecutive fault
insertion in every net. When fault is inserted the whole set
of patterns from minimal test is applied to every net. The
same steps are used for simulation of stuck-at-one. The
simulator does not simulate faults on primary inputs and
outputs. For every step of the test, the outputs of circuits

with and without inserted faults are processed. In a case
when the outputs are incorrect the check of code word is
performed.

combinational
circuit

inputs error outputs

combinational
circuit

error free
outputs

code

}

in
je

ct
ed

fa
ul

ts

check
code
word

ok/fail

Figure 2. Automatic fault insertion and checking code

word

We have chosen such codes, e.g. Hamming codes,
even parity and double parity, for which the checking
combinational part can be generated easily. Berger code is
not used because it is difficult to generate checking
combinational part.

3.1 Even parity
The even parity, that is the simplest checking code,

was used for the first experiment. Results, presented in
Table 1, show that one parity bit cannot cover all faults
inserted into the tested circuit. The circuit c17 is not used
for our experiments because of its simplicity.

3.2 Double parity
The double parity was used to generate checking bits

as a second experiment. Even and odd bits of outputs are
coded separately by even parity. The results of this
experiment are presented in Table 2.

Both previous experiments did not reach 100% fault
coverage of tested circuits.

Next possibility how to generate checking bits is using
the Hamming code, which enables adding more checking
bits with keeping quality of the Hamming code.

The Hamming code is defined by its generating matrix.
For simplicity we use the matrix containing the unity
submatrix at the right side. The generating matrix of
Hamming code (15,11) is shown in Figure 3. The values
aij have to be defined.





















=

100

010
001

4,113,112,111,11

4,23,22,21,2

4,13,12,11,1

L

MOMMMMMM

L

L

aaaa

aaaa
aaaa

G

Figure 3. Generating matrix for Hamming code (15,11)

When a more complex Hamming code is used, more
values have to be defined. The number of outputs oi used
for checking bits determines the appropriate code. For
example the circuit c432 that has 7 outputs requires at
least Hamming code (15,11). In this case we use 7 data

bits and 4 checking bits. The definition of values aik is
also important.

Now we present a method how to generate values aik.
Let us mention the Hamming code (15,11) that has 4
checking bits. We generate a set of all 4bit vectors. From
all these vectors we remove vectors containing less then 2
binary ones. The resulting subset is relatively regular -
there are many zeros at the upper left side and many ones
at the lower left side of the subset (see the left matrix in
Figure 4). This regularity must be removed. If not, some
parity bits would lose a capability to detect a fault. To
eliminate this phenomenon every even row from the
beginning of the set is mutually exchanged with a
corresponding even row from the end (see Figure 4).









































⇒









































1111
1010
1011
1110
1101
0101
1001
0011
0110
0111
1100

1111
0111
1011
0011
1101
0101
1001
1110
0110
1010
1100

Figure 4. Generating left side of matrix

The number of vectors in the set is the same as the
number of rows in the appropriate Hamming matrix. Then
we generate circuits for checking bits xk (Equation 1).
 xk= a1ko1⊕ a2k o2⊕ ... ⊕ amkom, (1)
where o1...om are outputs of the circuit.

3.3 Hamming code (63,57)
The third experiment is based on the Hamming code

(63,57), where the maximum number of data bits is 57
and the number of checking bits is 6. Experimental results
are shown in Table 3.

The fault coverage for c499 and c1355 benchmarks is
100%. It means that the Hamming code (63,57) is
appropriate. We must mention that fault coverage
depends on generated minimal test. If the minimal test
created by Atalanta does not cover all faults, we cannot
say that simulated circuits are 100% fault covered. In
other words some faults cannot be detected because
minimal test set does not cover all faults. This Hamming
code cannot be used for benchmark c2670 because the
number of its outputs is bigger than the Hamming code
can cover.

3.4 Hamming code (255,247)
The fourth experiment is based on the Hamming code

(255,247). The maximum number of data bits is 247 and
the number of checking bits is 8. In our case only 7
outputs are used. The experimental results are shown in
Table 4.

4 Conclusions
This work is the part of methodology of automatic

design of concurrent error detection CED circuits based
on FPGA with possibility of the reconfiguration part that
generates incorrect outputs. The reliability is increased by
reconfiguration. The most important part is a speed of the
fault detection and the safety of all circuit towards the
surrounding environment. We can summarize, all of our
experiments say that 100% fault coverage can be reached
using more redundancy outputs generated by special
codes. The Hamming code can be used as a suitable code
to generate parity bits. Its type depends on the number of
outputs and on the complexity of the original circuit.
More complex circuits need more parity outputs.

Acknowledgement
This research has been in part supported by the

GA102/03/0672 grant and MSM 212300014, 1999 –
2003.

References
[1] Mitra, S. and E. J. McCluskey, “Which Concurrent Error

Detection Scheme To Choose?” Proc. International Test
Conf., pp. 985-994, 2000.

[2] C. Bolchini, F. Salice,D. Sciuto, “ Designing Self-Checking
FPGAs through Error Detection Codes” 17th IEEE
International Symposium on Defect and Fault Tolerance in
VLSI Systems (DFT'02), November 06 - 08, 2002 , Canada,

[3] K. Elshafey, J. Hlavička, “ On-Line Detection and Location
of Faulty CLBs in FPGA- Based Systems”, IEEE DDECS
Workshop, Brno, Czech republic, April 17-19, 2002, pp.
183-190.

[4] XAPP 151 (v1.5), Virtex Series Configuration Architecture
User Guide

[5] M. Abramovici, C. Stroud, C. Hamiliton, S. Wijesuriya, V.
Verma, “Using Roving STARs for On-Line Testing and
Diagnosis of FPGAs in Fault-Tolerant Applications.
Proceeding IEEE International Test Conference, pp. 973-
982, 1999

[6] H.K. Lee and D.S. Ha, "Atalanta: an Efficient ATPG for
Combinational Circuits,", Technical Report, 93-12, Dep't of
Electrical Eng., Virginia Polytechnic Institute and State
University, Blacksburg, Virginia, 1993

Redundancy

part Data part

c432 36 7 1 5536 4626 83,56 72 69
c499 41 32 1 15150 14628 96,55 87 88
c880 60 26 1 24567 23998 97,68 117 112
c1355 41 32 1 64165 62472 97,36 92 87
c1908 33 25 1 134012 119280 89,01 125 120
c2670 233 140 1 105532 84840 80,39 166 175

Area occupation[LUT]
Circuit Inputs Outputs Redundancy

parity bits
All tested

faults Detected faults Detected
faults[%]

Table 1. Application of even parity code

Redundancy
part Data part

c432 36 7 2 5433 5012 92,25 73 69
c499 41 32 2 13984 13750 98,33 99 88
c880 60 26 2 27495 27206 98,95 120 112
c1355 41 32 2 62834 62012 98,69 90 87
c1908 33 25 2 130140 124958 96,02 124 120
c2670 233 140 2 116220 111270 95,74 219 175

Area occupation[LUT]
Circuit Inputs Outputs Redundancy

parity bits
All tested

faults Detected faults Detected
faults[%]

Table 2. Application of double even parity code

Redundancy
part Data part

c432 36 7 6 5569 5544 99,55 77 69
c499 41 32 6 17791 17791 100,00 116 88
c880 60 26 6 27109 27106 99,99 140 112
c1355 41 32 6 68647 68647 100,00 117 87
c1908 33 25 6 123651 123376 99,78 145 120

Area occupation[LUT]
Circuit Inputs Outputs Redundancy

parity bits
All tested

faults Detected faults Detected
faults[%]

Table 3. Application of Hamming code (63,57)

Redundancy
part Data part

c432 36 7 7 5694 5602 98,38 74 69
c499 41 32 7 18003 18003 100,00 111 88
c880 60 26 7 30277 30277 100,00 134 112
c1355 41 32 7 69634 69634 100,00 104 87
c1908 33 25 7 135402 134600 99,41 138 120
c2670 233 140 7 160092 160061 99,98 314 175

Area occupation[LUT]Detected
faults[%]Detected faultsAll tested

faults
Redundancy

parity bitsOutputsInputsCircuit

Table 4. Application of Hamming code (255,247)

