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Abstract 
The paper focuses on error detection in circuits  

implemented in FPGAs using error detection codes (ED 
codes). The incorrect function of a given combinational 
circuit has to be detected and signalized at the time of its 
appearance and before its further distribution. It means 
that a safe operation is guaranteed. The ability to detect 
an error without stopping circuit function is called 
concurrent error detection (CED). We have used 
combinational circuits only to simplify testing process. 
A previous research was based on benchmarks described 
by tables. In some cases benchmarks with many inputs 
cannot be described by tables easily. The benchmarks 
used in our experiments to compute a quality of the code 
are described by equations. All of them will be 
implemented in XILINX FPGA circuits. Therefore the 
fault model considers the way of configuration data 
storage in memory. This work is a part of a more complex 
methodology of fault tolerant design based on FPGAs 
with a possibility to reconfigure the faulty part of the 
circuit. 

1 Introduction 
Nowadays when the circuit integration increases, the 

importance of radiation impact on integrated circuits 
grows even at the sea level. The mobile nets are becoming 
more important because of their radiation. They can affect 
any circuit used every day. Some machines such as the 
control units in cars can play an important role in places 
such as tunnels, where a car fault can endanger human 
lives. Other important areas are aviation, medicine or 
space missions. All of these applications and many others 
depend on a correct function of circuits and one wrong 
result can mean huge losses. The FPGA circuits are more 
and more often used to realize any function because of 
their prices and capabilities to upgrade the function when 
a bug is discovered. Another advantage is the possibility 
of dynamic reconfiguration when fault in the circuit is 
detected and localized [4]. 

Some techniques in [5] describe methods how to detect 
the faulty part of FPGA without stopping its function. The 
method tests unused part of the FPGA. When the test is 

done the tested part is exchanged with the used part and 
the test is started again for currently unused area. 

This paper is organized as follows. Section 2 
introduces the fault model and proposes general 
methodology for comparing quality of used error 
detection codes. Section 3 presents the experimental issue 
and solution of parity bits generation for every used test. 
Future work and conclusion are presented in the section 4. 

2 Solution 
With consideration of using FPGA circuits we have to 

take into account the property and representation of 
combinational part realized as memory (look up table - 
LUT) with several inputs and one output. After the 
synthesis the mapping is started and a set of gates is 
mapped on individual LUTs and connected by inner nets. 
The FPGA is based on the memory that contains 
configuration data realizing required function.  

When the radiation impacts the chip the function of 
circuit may change due to toggling some bits in the 
configuration memory. The incorrect function is 
subsequently detected by an additional combinational 
circuit. It consists of gates generating parity bits (parity 
generators) and gates checking code words (checkers). 

The parity generator is based on the duplicated 
combinational circuit. The part that generates parity bits is 
added according to the used detection code. Some of used 
codes have error-correction capabilities but we cannot 
correct outputs because a fault is propagated to outputs 
through a complex circuit. The error-correcting codes are 
often used for data paths. In the case of using error-
correcting codes in the combinational circuits a single 
fault can influence multiple outputs and correction leads 
to a wrong data output. 

The aim of this work is not to optimize the checking 
part but to find out appropriate safety codes. The 
synthesis process can only change the size of final circuit 
in this application, because the parity generator is not 
optimized in our work. To obtain only quality parameters 
of tested codes such optimization of the parity generator is 
not necessary. 

The stuck-at fault model is used. The FPGA function is 
determined by the content of the configuration memory. 



The fault is considered as a change of any bit in 
configuration memory. All combinational parts in FPGA 
are realized as many LUTs [4] connected to each other. 
Every LUT represents a part of the configuration memory. 
The connection net is realized by wires, multiplexers and 
switches and their settings depend on bits in configuration 
memory. 

The proposed fault model is sufficient to compare 
quality of tested codes and to select the suitable one. The 
quality w is the ratio of the detected incorrect outputs x in 
the combinational circuit and all incorrect outputs y, 
w = x/y. 

The creation of combinational circuits solving parity 
computation using CED techniques is based on the 
original circuit. The original circuit is duplicated and the 
parity generator is added. The synthesis process must be 
applied on each part separately due to the fact that the 
parity generator contains the same logic as the original 
circuit. Otherwise, the synthesis would optimize the 
circuit and remove redundancy. 

Error-detecting circuits based on the duplication of 
original circuit can be predisposed to the genesis of 
Common-Mode Failures (CMF). Some solutions of this 
problem are presented in [1]. 

The methodology to design the combinational part for 
the parity generation does not depend on the original 
circuit and on the number of its inputs. Our experiments 
assume circuits with many inputs. Due to this fact the 
exhaustive test cannot be applied and so the minimal test 
must be generated. The test is inserted to the fault 
simulator and for every fault the output value is 
generated. After performing the simulation process, the 
checking part is computed by our software and compared 
with outputs generated by simulator.  

3 Experiments 
The Atalanta software was used to generate minimal 

test [6]. This tool allows to process ISCAS benchmarks 
based on equations. A tool for circuits optimization 
described by tables cannot be used in this case because 
the table creation is difficult due to many inputs. 

The special software has been written in C language 
for automatic modification of the original circuit and 
adding the parity bits generator. The ISCAS benchmarks 
are loaded into inner form by this software. The form is 
composed of list of nets and gates. Some functions are 
written to modify this inner form and can add new gates, 
nets or can change name of all nets. The nets renaming 
allows to duplicate an original circuit. After the original 
circuit is loaded into the memory all nets are renamed and 
the original circuit is loaded again.  

To add parity bits the original circuit is loaded and 
modified by corresponding function. Next all nets are 
renamed and original circuit is loaded again. By this 

procedure the original circuit with predicted parity bits 
has been obtained. 

For every tested checking code the new functions 
modifying a circuit have been written. The even parity, 
double parity and multiple parity generated by a 
Hamming code are used in experiments described in this 
article. When the original circuit is modified, two 
methods of output form can be generated. The first form 
presents ISCAS benchmark used for simulation. The 
second form is VHDL source code allowing to synthesize 
modified circuit. 

The variety of circuits can be created by this tool. 
Every part of the final circuit is created separately and 
combined together with the same tool. If the area 
occupied by circuit in FPGA has to be computed, then the 
VHDL output is selected and a synthesize tool is used. 
After that the original circuit and modified circuit can be 
compared. In our case the VHDL code is used to obtain 
the area overhead by every checking code. Two VHDL 
codes are generated: first for original circuit and second 
for circuit generating parity bits. For simulation the design 
contains both original circuit and parity bits generator 
(Figure 1). 
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Figure 1. The circuit duplication and code word 

generation 

The Atalanta software processes the modified circuit 
and generates the minimal fault test. Both files, minimal 
test and modified circuit, are put into the simulator which 
allows to compute efficiency of used checking code. The 
same tool that allows to modify original circuit is used for 
simulation. The same form of circuit stored in memory is 
used. The new functions of simulation are added to the 
source code of our tool (Figure 2). 

By this modified tool we can simulate faults. Firstly, 
our tool simulates stuck-at-zero faults by consecutive fault 
insertion in every net. When fault is inserted the whole set 
of patterns from minimal test is applied to every net. The 
same steps are used for simulation of stuck-at-one. The 
simulator does not simulate faults on primary inputs and 
outputs. For every step of the test, the outputs of circuits 



with and without inserted faults are processed. In a case 
when the outputs are incorrect the check of code word is 
performed. 
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Figure 2. Automatic fault insertion and checking code 

word 

We have chosen such codes, e.g. Hamming codes, 
even parity and double parity, for which the checking 
combinational part can be generated easily. Berger code is 
not used because it is difficult to generate checking 
combinational part.  

3.1 Even parity 
The even parity, that is the simplest checking code, 

was used for the first experiment. Results, presented in 
Table 1, show that one parity bit cannot cover all faults 
inserted into the tested circuit. The circuit c17 is not used 
for our experiments because of its simplicity. 

3.2 Double parity 
The double parity was used to generate checking bits 

as a second experiment. Even and odd bits of outputs are 
coded separately by even parity. The results of this 
experiment are presented in Table 2. 

Both previous experiments did not reach 100% fault 
coverage of tested circuits. 

Next possibility how to generate checking bits is using 
the Hamming code, which enables adding more checking 
bits with keeping quality of the Hamming code.  

The Hamming code is defined by its generating matrix. 
For simplicity we use the matrix containing the unity 
submatrix at the right side. The generating matrix of 
Hamming code (15,11) is shown in Figure 3. The values 
aij have to be defined. 
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Figure 3. Generating matrix for Hamming code (15,11) 

When a more complex Hamming code is used, more 
values have to be defined. The number of outputs oi used 
for checking bits determines the appropriate code. For 
example the circuit c432 that has 7 outputs requires at 
least Hamming code (15,11). In this case we use 7 data 

bits and 4 checking bits. The definition of values aik is 
also important. 

Now we present a method how to generate values aik. 
Let us mention the Hamming code (15,11) that has 4 
checking bits. We generate a set of all 4bit vectors. From 
all these vectors we remove vectors containing less then 2 
binary ones. The resulting subset is relatively regular - 
there are many zeros at the upper left side and many ones 
at the lower left side of the subset (see the left matrix in 
Figure 4). This regularity must be removed. If not, some 
parity bits would lose a capability to detect a fault. To 
eliminate this phenomenon every even row from the 
beginning of the set is mutually exchanged with a 
corresponding even row from the end (see Figure 4). 
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Figure 4. Generating left side of matrix 

The number of vectors in the set is the same as the 
number of rows in the appropriate Hamming matrix. Then 
we generate circuits for checking bits xk (Equation 1). 
 xk= a1ko1⊕ a2k o2⊕ ... ⊕ amkom,  (1) 
where o1...om are outputs of the circuit. 

3.3 Hamming code (63,57) 
The third experiment is based on the Hamming code 

(63,57), where the maximum number of data bits is 57 
and the number of checking bits is 6. Experimental results 
are shown in Table 3. 

The fault coverage for c499 and c1355 benchmarks is 
100%. It means that the Hamming code (63,57) is 
appropriate.  We must mention that fault coverage 
depends on generated minimal test. If the minimal test 
created by Atalanta does not cover all faults, we cannot 
say that simulated circuits are 100% fault covered. In 
other words some faults cannot be detected because 
minimal test set does not cover all faults. This Hamming 
code cannot be used for benchmark c2670 because the 
number of its outputs is bigger than the Hamming code 
can cover. 

3.4 Hamming code (255,247) 
The fourth experiment is based on the Hamming code 

(255,247). The maximum number of data bits is 247 and 
the number of checking bits is 8. In our case only 7 
outputs are used. The experimental results are shown in 
Table 4. 



4 Conclusions 
This work is the part of methodology of automatic 

design of concurrent error detection CED circuits based 
on FPGA with possibility of the reconfiguration part that 
generates incorrect outputs. The reliability is increased by 
reconfiguration. The most important part is a speed of the 
fault detection and the safety of all circuit towards the 
surrounding environment. We can summarize, all of our 
experiments say that 100% fault coverage can be reached 
using more redundancy outputs generated by special 
codes. The Hamming code can be used as a suitable code 
to generate parity bits. Its type depends on the number of 
outputs and on the complexity of the original circuit. 
More complex circuits need more parity outputs. 
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Redundancy 

part Data part

c432 36 7 1 5536 4626 83,56 72 69
c499 41 32 1 15150 14628 96,55 87 88
c880 60 26 1 24567 23998 97,68 117 112
c1355 41 32 1 64165 62472 97,36 92 87
c1908 33 25 1 134012 119280 89,01 125 120
c2670 233 140 1 105532 84840 80,39 166 175

Area occupation[LUT]
Circuit Inputs Outputs Redundancy 

parity bits
All tested 

faults Detected faults Detected 
faults[%]

 
Table 1. Application of even parity code 

Redundancy 
part Data part

c432 36 7 2 5433 5012 92,25 73 69
c499 41 32 2 13984 13750 98,33 99 88
c880 60 26 2 27495 27206 98,95 120 112
c1355 41 32 2 62834 62012 98,69 90 87
c1908 33 25 2 130140 124958 96,02 124 120
c2670 233 140 2 116220 111270 95,74 219 175

Area occupation[LUT]
Circuit Inputs Outputs Redundancy 

parity bits
All tested 

faults Detected faults Detected 
faults[%]

 
Table 2. Application of double even parity code 

Redundancy 
part Data part

c432 36 7 6 5569 5544 99,55 77 69
c499 41 32 6 17791 17791 100,00 116 88
c880 60 26 6 27109 27106 99,99 140 112
c1355 41 32 6 68647 68647 100,00 117 87
c1908 33 25 6 123651 123376 99,78 145 120

Area occupation[LUT]
Circuit Inputs Outputs Redundancy 

parity bits
All tested 

faults Detected faults Detected 
faults[%]

 
Table 3. Application of Hamming code (63,57) 

Redundancy 
part Data part

c432 36 7 7 5694 5602 98,38 74 69
c499 41 32 7 18003 18003 100,00 111 88
c880 60 26 7 30277 30277 100,00 134 112
c1355 41 32 7 69634 69634 100,00 104 87
c1908 33 25 7 135402 134600 99,41 138 120
c2670 233 140 7 160092 160061 99,98 314 175

Area occupation[LUT]Detected 
faults[%]Detected faultsAll tested 

faults
Redundancy 

parity bitsOutputsInputsCircuit

 
Table 4. Application of Hamming code (255,247) 


