COVERAGE-DIRECTED ASSIGNMENT APPROACH TO BIST

Petr Fiser, Jan Hlavicka', Hana Kubatova
Department of Computer Science and Engineering
Czech Technical University
Karlovo nam. 13, 121 35 Prague 2
e-mail: fiserp@fel.cvut.cz, kubatova@fel.cvut.cz

Abstract. We present a novel test-per-clock BIST method for combinational or
full-scan circuits. Our task is to design a combinational circuit, namely the
output decoder, transforming the pseudorandom LFSR code words into the
required test patterns pre-generated by some ATPG tool. The process is based
on finding the coverage of the ones in the test vectors and the subsequent
generation of implicants that correspond to this coverage. The implicants are
derived from the LFSR code words. The design of the output decoder is taken as
a general combinatorial problem and it can be exploited in other areas of logic
design too.

1 Introduction

With the growing complexity of VLSI circuits the use of BIST (built-in self-test) is
becoming inevitable. The external testers often cannot reach the internal logic of the chip or
the test sequence is unacceptably long. This boosts the memory demands for the tester, as
well as the test time. In these cases using the BIST is a good solution especially when the
area overhead caused by BIST is not too big. The problem of BIST has been studied for
more than twenty years and no satisfactory solution was found yet. The results reached can
be found in several survey papers[1, 2].

We propose a test-per-clock BIST method where the test patterns are applied to the
primary inputs of the CUT in parallel, thus in each clock cycle one test is being processed.
The response is then drawn from the primary outputs and analyzed in the response
evaluator, which is mostly a multi-input shift register (MISR).

The basic problem of constructing a BIST is finding a way in which the test patterns are
generated. In the simplest approach some pseudo-random pattern generator (PRPG), which
Is mostly a LFSR (linear feedback shift register) or some kind of a cellular automaton is
used to produce test patterns. However, the pseudo-random code words often do not ensure
satisfactory fault coverage, and thus they must be modified somehow. Many methods were
proposed in this area, see e.qg. [3-7]. Most of the methods use some combinational block to
transform the PRPG code words into the required test patterns. We propose a BIST method
based on this approach too. The test pattern generator (TPG) consists of the PRPG and the
combinational Output Decoder. It transforms the pseudorandom patterns into deterministic
tests pre-generated by some ATPG tool. The structure of such aBBIST isshown in Fig. 1.

Test Pattern Generator

PRPG ‘

‘ Qutput Decoder ‘
1 T

‘ Circuit under Test ‘

Figure 1: TPG structure

We propose a Coverage-Directed Assignment (CD-A) method to construct the output
decoder. It is based on finding a rectangle cover of all the ones in the test patterns and the
subsequent generation of implicants derived from the PRPG patterns with a help of this
cover. The coverage-directed assignment method can be apprehended as a major
generalization of the Boolean minimization process where the order of the input vectors is
insignificant. Also the column-matching based BIST method presented in [8] can be treated
a special case of the CD-A.

The rest of this paper is organized as follows. the Section 2 contains the problem
statement, the principles of the method are described in Section 3 and experimental results
are discussed in Section 4. Section 5 concludes the paper.

2 Problem Statement

Let us have an n-stage (n-bit) PRPG running for p cycles. Then the code words
produced by this PRPG can be described by a C matrix (code matrix) with the dimensions
(n, p). The pardlel outputs of the PRPG are entering the output decoder as input variables
Xo - Xn-1. Thus, the columns of a C matrix will be sometimes denoted as values of the input
variables of the output decoder, while the rows of the matrix can be taken as input vectors
or input minterms. The test set pre-computed by an ATPG tool is described by a T matrix
(test matrix). For an r-input CUT the output decoder has r outputs denoted as yo-y;-1. For a
test st with svectors the T matrix will have dimensions (r, s). The columns of the
T-matrix will be denoted also as output variables of the decoder, the rows as the output
vectors.

There are some obvious relationships valid for the values mentioned above, like
p <2"- 1 (the maximum number of distinct patterns that can be generated by a PRPG) and
p = s, because there must be enough patterns to implement all the test vectors generated by
the ATPG. On the other hand, there are no strict requirements regarding the relationship of
n and r, since the number of LFSR stages can be even smaller than the number of CUT
inputs. For a larger number of C matrix columns the transformations are often easier and
the resulting combinational logic is less complex.

The main idea of the method it is based on the following important fact: during the
testing process for combinational circuits, the order of test patterns generated by an ATPG
tool isinsignificant and thus the patterns can be reordered in any way. In other words, any
vector (row) from a T matrix can be assigned to any vector of a C matrix. Moreover, the
rows in the C matrix need not form a compact block. The excessive patterns that are not
transformed into test vectors just represent idle cycles of the PRPG. They do not disturb the
testing, but only extend its length. If a low-power testing is required, we may use some
pattern inhibition techniques - see [9]. Finding a transformation from C matrix to T matrix
means finding a matching of all srowsof T matrix with any distinct s rows of C matrix.

3 Principles of the M ethod

The principles of a Coverage-Directed Assignment method are based on a simple
notion: after assigning all the rows of the C matrix to the T matrix rows some kind Boolean
minimization has to be performed. During this process implicants that cover all the ones in
the output matrix (T matrix) are looked for. For each implicant the set of T matrix ones it
coversisevaluated. Let us denote this set as a coverage of an implicant, the coverage of the
output matrix will be a set of the coverages of all the implicants in the solution.

In the Coverage-Directed Assignment method we proceed backwards — first, we find
arectangle cover [10] of the output matrix and then we find the implicants that meet this
coverage. Then the Boolean minimization process can be completely omitted and even
performing the row assignment is not necessary — the implicants of a final function are
being produced by this method. The final set of SOP forms (PLA matrix) is produced by
joining the implicants with their coverage.

3.1 Find Coverage Phase

The coverage of the T matrix is produced in this phase. The problem fully corresponds
to solving the rectangle covering problem that appear in many areas of logic design [10],
however our agorithm slightly differs from the others. Let us state several Definitions:

Definition 1

Let t; be an implicant. The coverage set C(t;) of the implicant t; is a set of vectors (rows)
of the T matrix, in which at least one “1” value is covered by this implicant. In other words,
the coverage set is a set of vectors of the output matrix for which t; is an implicant for a
least one output variable.

|
Definition 2
The coverage mask M(tj) of the implicant t; is the set of columns of the T matrix, in
which all vectorsincluded in C(t;) have one or more“1” value.
The coverage mask M(t) can also be expressed as a vector in the output matrix
corresponding to the term t;. In the following text we will use both representations of the
coverage mask.

|
Definition 3
The coverage of an implicant t; is a pair of the sets C(tj) and M(t}) for which the
following equation holds:

Da0OC(t),ObOM(t): T[a,b] 2 0"

The“1” values covered by t; are identified by the Cartesian product C(t;) x M(t;).

Definition 4
The coverage of the matrix T isa set of coverages { C(t;), M(t;))} so that

Da<s,Ob<r,T[a,b| ="1":{a,b}|]UC(ti)x Mt)

|

The principles of the Find Coverage phase are illustrated by Fig. 2. Here the coverage of

an example T matrix consisting of 6 implicants ti-tg is shown. All the ones are covered,
while no zero is covered, thus this coverage is complete and valid. The coverage sets and

coverage masks are shown in Table 1. Note, that the rows of the matrix are labeled a-j
instead of numbering, as later the numbers could be confusing.

ty SO Table 1: The coverage sets and masks

g&@%ﬂh | mplicant C(ti) M(t)
- ggooo te t1 {e,0,i} {0,001, 1}
D06 ty to {_b,_C, h} 1{0,1,1 0,0}
1_100 ts {i, j} {1,0,1,0, 0}
3 %oo b |{d {0,1,0,1,0}
3 ts {a, b} {1,1,0,0, 0}
Figure 2: The coverage of the T matrix ts {e, h} {0,0,1,0, 1}

Obvioudly, there exist many possible covers of a particular function. Finding the
minimum cover, i.e. the minimum number of implicants is a NP hard problem, thus some
heuristic must be used to generate the coverage sets. We use a heuristic that sequentially
triesto find the coverage sets that cover the maximum yet uncovered onesinthe T matrix.

3.2 Find Implicant Phase

When the coverage of the T matrix is found, the implicants that have the required
coverage sets should be generated from the C matrix. Such implicants will be denoted as
implicants that fulfil this coverage. Their properties are studied in this section.

The implicant generation is based on the following Definition and Theorem.

Definition 5

Let us introduce an inclusion function ¢(ti, ty) for two terms t; and t, of the same
dimension:

¢(t1, tz) =1if to U g, thus 12 isincluded in 1.

@(t1, t2) = 0 otherwise.

|
Theorem 1
The implicant t; fulfils the coverage C(t;) if the number of minterms in the C matrix that
areincluded int; is equal to the size of the C(t;) set, i.e.:

p
> ¢(t.clil)=lct)
j=0 .
Proof
If a minterm of the C matrix is included in aterm t;, the term will have a value 1 for the
values of the input variables corresponding to this minterm. If exactly j minterms of the
C matrix are included in t;, the term will have avalue 1 for j rows of the C matrix. The size
of the C(t;) set determines the number of rows of the T matrix, for which the term t; has at
least one value 1. Thus, if all the rows of the C matrix need to be assigned to the rows of
the T matrix, the relation stated above must be valid.

|
This condition for selecting the implicants is still not sufficient. The terms that fulfil the
coverages intersecting in one or more T matrix vectors must have a non-empty intersection;
the number of the C matrix minterms included in this intersection must be equal to the size
of the intersection of the respective coverages. Thus, all the intersections of the coverages
must be computed and the previously stated condition must be applied to them too.
The implicant generation phase will be shown in our continuing example. First, we
compute the intersections of the coverage sets.

C(t) n Clts) ={i}, C(t1) n Clte) ={€}, C(t2) n C(ts) ={b}, C(t2) n C(te) ={h}

Other set intersections than those listed above are empty.

We start, e.g. with the term t;. We try to find a term that includes exactly 3 minterms
from the C matrix (because |C(t1)| = 3). The possibletermist, = (-01--).

Now the minterms that are contained in this term are assigned to it:

A 10000

B 11100

C 00001

D 10101 -> t,
C = E 01111

F 01001

G 01110

H 10110 -> t,

| 00110 -> t,

J 11010

Figure5b.

The term t, has to contain 3 minterms, while no vector assigned to t; must be assigned
toit, as C(t1) n C(tz) = . The possibility ist, = (--00-). The size of C(t3) is equal to 2
and |C(t;) n C(t3)| = 1, thus exactly one minterm assigned to t; has to be assigned to t; as
well, while the second one need not be assigned yet. We will select t; = (--10-). We
continue this way, until all implicants are found. Finally, the output vectors are assigned to
the implicants (see Table 1) to generate the final PLA matrix. The final result will be as
follows:

A 10000 -> t2 ts PLA Matrix: ~ SOP Forms;
ty = (-01--) B 11100 -> tg
tz = (--00-) C 00001 -> t, tg -01-- 00011 _ ,
ts = (--10-) D 10101 -> tq ts --00- 01100 Yo = XoX3
ts = ("'11) C = E 01111 -> t4 --10- 10100 yl: X27X3,+ XaXat XOX27
L2 (oo) & o110 S--11 01010 Y, = X'Xg'+ XXe'+ XX’
te = (00--- 1-0-- 01010 — ,
H 10110 -> t, 00--- 00101 Y3 = X17X2+ X33<4+, XoXz
I 00110 -> t4 te Ya = X1 Xt Xo Xq

J 11010 -> ts

Figure 6: Theresulting terms

3.4 Generalized Coverage-Directed Assignment

The CD-A approach can be easily modified for a longer PRPG run, where there are
more C matrix rows than the T matrix rows (p > s). Only the suitable C matrix rows are
assigned to all the T matrix rows, while the remaining rows in C are ignored.

Let us remark, that this CD-A modification consists in modifying the Implicant
Generation phase only, as the Find Coverage phase is completely independent on the
C matrix. We must modify Theorem 1, above all. As not all the C matrix minterms will be
included in the solution, the condition of equality of the size of the coverage set and the
number of minterms covered by the searched term is not required. The term may cover
more minterms, while the excessive ones are omitted in the final solution. Thus, the
eguation from Theorem 1 is modified to:

jz:)¢(ti,c[j])z|c(tix

Similarly, this modification applies also to the intersections of the coverage sets.

4 Experimental Results - | SCAS Benchmarks

In order to test the algorithm on some practical examples we have chosen a subset of the
ISCAS [10] benchmarks. The test patterns for all benchmark files were generated by the
TurboTeger [11, 12]. As a pseudorandom pattern generator a LFSR of the width equal to
the number of primary inputs of the CUT was used, the number of patterns generated was
fixed to 5000. The results are shown in Table 2. For each particular benchmark the number
of its primary inputs (r) is given, together with the test length (s). The CD-A results are
indicated by the number of terms obtained in the Find Coverage phase together with the
total number of literals obtained in the second phase.

Table 2. ISCAS benchmarks

benchmark | inputs(r) | test length () | termg/literds
cA32 36 40 49/141

c499 41 40 47/132

€880 60 36 41/106
c1355 41 84 105/358
€1908 33 107 139/564
€2670 233 84 104/309

5 Conclusions

We have introduced a novel test-per-clock BIST method for combinational circuits. It is
based on a transformation of the PRPG code words into the required test patterns generated
by some ATPG tool. The proposed algorithm firstly finds a rectangle cover of the “1’s in
the test patterns and then the implicants that fulfil this coverage are generated from the
PRPG code matrix.

The method was tested on the ISCAS benchmarks and satisfactory results were reached.

Acknowledgement

This research was in part supported by grant 102/01/1531 of the Czech Grant Agency (GACR) "Forma
Approachesin Digital Circuit Diagnostics - Testable Design Verification"

References

[1] Agarwal, V., K., Kime, C., R., Saluja, K., K.: A tutoria on BIST, part 1: Principles, IEEE Design & Test of
Compuiters, val. 10, No.1 March 1993, pp.73-83, part 2: Applications, No.2 June 1993, pp.69-77

[2] McCluskey, E., J.: BIST techniques, IEEE Design & Test of Computers, vol. 2 No.2 Apr. 1985. pp.21-28, BIST
structures. vol. 2 No.2 Apr. 1985. pp. 29-36

[3] Chatterjee, M., Pradhan, D., J.: A novel pattern generator for near-perfect fault coverage, Proc. of VLS| Test
Symposium 1995, pp. 417-425

[4] Touba, N., A., McCluskey, E., J.: Synthesis Techniques for Pseudo-Random Built-In Self-Test, Technical Report,
(CSL TR # 96-704), Departments of Electrical Engineering and Computer Science Stanford University, August 1996

[5] Barddll, P., H., McAnney, W., H., Savir, J.: Buit-In Test for VLSI: Pseudorandom Techniques, New Y ork: Wiley,
1987.

[6] Hartmann, J., Kemnitz, G.: How to Do Weighted Random Testing for BIST, Proc. of International Conference on
Computer-Aided Design (ICCAD), pp. 568-571, 1993

[7] Ki€fer, G., Vranken, H., Marinissen, E.J., Wunderlich, H.J.: Application of deterministic logic BIST on industrial
circuits, Proc. Int. Test Conf. (ITC'00), Atlantic City, NJ, Oct. 2000, pp. 105-114.

[8] FiSer, P., Hlavicka, J.: Column-Matching Based BIST Design Method. Proc. 7th IEEE Europian Test Workshop
(ETW'02), Corfu (Greece), 26.-29.5.2002, pp. 15-16

[9] Girard, P. et al.: A test vector inhibiting technique for low energy BIST design. IEEE VLS| Test Symposium, May
1999, pp. 407-412.

[10] Hassoun, S. - Sasao, T.: Logic Synthesis and Verification, Boston, MA, Kluwer Academic Publishers, 2002, 454 pp.

[11] Brglez, F., Fujiwara, H.: A Neutral Netlist of 10 Combinational Benchmark Circuits and a Target Translator in
Fortan, Proc. of International Symposium on Circuits and Systems, pp. 663-698, 1985

[12] Jervan, G., Markus, A., Paomets, P., Raik J,, Ubar, R.: A CAD System for Teaching Digital Test, Proc. of the 2nd
European Workshop on Microel ectronics Education, Kluwer Academic Publishers, pp. 287-290, Noordwijkerhout, the
Netherlands, May 14-15, 1998

[13] http://www.pld.ttu.ee/tt/

