
Minimization and Partitioning Method Reducing Input Sets

Jan Hlavicka, Petr Fiser
Czech Technical University, Karlovo nám. 13, 121 35 Prague 2

e-mail : hlavicka@fel.cvut.cz, fiserp@fel.cvut.cz

Abstract
The article describes a new Boolean minimization and

single-level partitioning method based on the BOOM
minimization system [6] . The minimization is performed
with respect to the restrictions stated for the number of
inputs and outputs of individual components and/or with
the goal to reach load balancing for the inputs. The
method can handle extremely large functions (up to
thousands of input variables) in a very short time and its
use is advantageous above all for highly unspecified
functions, where the number of don't cares is large.

1. Introduction

When designing logic circuits we often encounter
constraints following from the properties of the available
physical elements. Whether we compose a circuit of
simple logic gates, PGAs or LUTs in FPGAs, the number
of inputs and outputs of one element is limited. The
number of logical levels may be limited too, above all
due to the propagation delay constraints. These
requirements can be met by circuit decomposition. The
common two-level minimization algorithms based on the
Quine-McCluskey approach, like e.g. ESPRESSO [7, 9],
do not support any decomposition features and the
decomposition is done independently, as a sort of post-
processing [10, 11]. The decomposition is then more
diff icult to do and the results are usually less satisfactory.
Our algorithm combines these two phases to produce
better results.

The problem to be solved here is a single-level
decomposition of a combinational Boolean function. The
resulting circuit has thus the two-level structure. The idea
is il lustrated by Figure 1, where the logic function of 7
inputs x1-x7 and 6 outputs y1-y6 is decomposed into two
5-input and 3-output blocks while each block is a two-
level (AND-OR) circuit.

The input of our algorithm is a Boolean PLA matrix
[7] defining the on-sets and off-sets (optionally don't care
sets) of the output functions. The algorithm assigns these
outputs to individual functional blocks (see Figure 1) and
minimizes each set as a sum-of-product (SOP) expression
according the decomposition.

Figure 1. A single-level decomposition

In some cases not all input variables used in the input
form are needed to produce the required output values.
Similarly, some input variables can be substituted by
others while preserving the required function. For
example, in Figure 1 only five of seven input variables
are needed to produce each bundle of three outputs.
In this case the circuit can be decomposed into stand-
alone two-level blocks. The partitioning is based on
finding the minimum of input variables needed to
produce a group of output functions. First the outputs are
assigned to the blocks and then the minimization is
performed while trying to match the maximum allowed
number of inputs into the blocks.

Principles of the BOOM Approach

The suggested partitioning algorithm is based on the
BOOM minimization tool presented earlier [1-5]. It
consists of two major phases: generation of implicants
(prime implicants for single-output functions, group
implicants for multi-output functions) and the subsequent
solution of the covering problem (CP). The generation of
implicants for single-output functions is performed in
two steps: first the Coverage-Directed Search (CD-
Search) generates a sufficient set of implicants needed
for covering the source function and then the implicants
are expanded into prime implicants. In addition to it, for
multi-output functions the primes are reduced into group
implicants and then the group CP is solved. More details
concerning these procedures can be found in [2,4].



Combining Minimization with
Decomposition

In order to perform the partitioning together with the
minimization, the two major phases – CD-search and CP
solution - have to be slightly modified. The CD-search
consists in a search for the most suitable literals that
should be added to some previously constructed term.
For a two-level minimization of a Boolean function, the
search for suitable literals that should be added to a term
is directed towards finding an implicant that covers as
many 1-terms as possible. To do this, we start implicant
generation by selecting the most frequent input literal
from the given on-set. The selected literal describes
an n-1 dimensional hypercube, which may be an
implicant, if it does not intersect with any 0-term. If there
are some 0-minterms covered, we add another literal and
verify whether the new term already corresponds to
an implicant by comparing it with 0-terms. After every
literal removal we temporarily remove the on-terms that
cannot be covered by any term containing the selected
literal. These are the terms containing that literal with the
opposite polarity. We continue adding literals until an
implicant is generated, then we record it, remove the
covered 1-terms, and start searching for other implicants.
In this way we generate new implicants, until the whole
on-set is covered. The output of this algorithm is a set of
product terms covering all 1-terms and not intersecting
any 0-term.

When literals with the maximum frequency of
occurrence in the on-set are selected, the algorithm
produces the best results in terms of minimali ty of the
solution. However, this rule can be modified in order to
produce a set of terms containing the possible minimum
of input variables by penalizing the selection of
a variable that was not yet selected into the currently
processed block. That implies that the input variables that
were selected for a given block - i.e. wires entering the
block - must always be recorded.

Covering Problem Solution

The second most important phase of BOOM - the CP
solution, described e.g. in [8], must be modified in
a similar way. Firstly, the CP is solved for each block
individually. Further, when solving the CP, weights are
assigned to implicants according to the number of input
variables they would add to the given block if they were
selected. The weights represent the penalization factor.
The more input variables are newly added into the given
block by a term, the less likely this term will be selected.

Experimental Results

Combining these two techniques allows us to generate
a good solution in the terms of complexity of the blocks

(the number of terms in blocks) and simultaneously to
keep the number of input variables entering the blocks
minimal when respecting the defined physical
constraints. However, these two criteria of minimali ty are
antipodal - the more we try to reduce the number of
inputs into blocks, the more complex are the resulting
SOP forms and vice versa. The type of the solution can
be selected by adjusting the "partitioning forces" - i.e.,
coeff icients penalizing the not-included variables. We
have found that both the CD-search and the CP solution
algorithm must be modified in this way to produce good
results of the partitioning.

The influence of the algorithm modification is shown
in Table 1. There we solved a problem of partitioning
a function of 50 input variables with 20 outputs and 200
terms defined. This function was to be decomposed into
four 5-output blocks. The table shows the minimization
time, the complexity of the result (the number of literals
in the SOP form, output cost and the number of terms)
and the quality of the partitioning (sum of the number of
inputs entering the four blocks) for various CD-search
and CP solution partitioning forces. The CD-search
partitioning forces are increasing in the horizontal
direction and the partitioning forces influencing the CP
solution are changing in the vertical direction.

The program was run on a PC with Athlon 900 MHz
processor and 256 MB RAM.

Table 1. Results of the partitioning test run

COV/CD 0.0 0.5 1.0 1.5

0.0
6.04
2714/506/455
198/50

6.81
3016/592/501
174/50

10.18
3405/804/560
176/50

10.14
3444/826/563
170/48

0.5
6.27
2731/515/456
197/50

6.95
2989/575/501
157/50

10.26
3546/746/590
112/47

9.95
3539/740/587
113/46

1.0
6.30
2730/514/457
197/50

6.95
3016/566/505
154/50

10.25
3630/750/604
103/47

10.09
3638/736/606
98/44

1.5
6.36
2820/522/472
196/50

7.00
3051/573/511
154/50

10.31
3616/747/603
103/47

10.09
3654/735/609
98/44

2.0
6.36
2876/548/478
196/50

6.98
3061/572/513
154/50

10.26
3669/740/612
103/47

10.26
3677/740/611
98/44

2.5
6.43
2993/547/498
196/50

7.04
3114/573/520
154/50

10.59
3686/739/615
103/47

10.20
3715/735/618
98/44

3.0
6.42
3128/573/518
196/50

6.99
3118/572/521
154/50

10.30
3747/743/626
103/47

10.11
3761/739/626
98/44

3.5
6.43
3139/571/520
197/50

6.99
3134/578/523
154/50

10.35
3777/741/631
103/47

10.16
3784/736/630
98/44

Entry format: solution time in seconds
literals / output cost / terms
sum of inputs into blocks / inputs used



We can see that using the simple CD-search and
simple CP solution (upper left corner), we obtain
a solution in which almost every input wire enters all
blocks. By increasing the partitioning forces we reduce
the number of inputs into blocks down to 98 (lower right
corner) where every input enters in the average two
blocks. Thus we can conclude that both partitioning
forces are important, whereas modifying only the
CD-search or CP solution algorithm does not produce
sufficient results. Higher penalization values than those
shown in the table proved to be ineff icient. The solution
time depends above all on the penalization of the
CD-search, whereas the penalization of the CP solution
algorithm does not affect the runtime.

A simple modification of this algorithm enables us to
control the load distribution of the outputs of the
preceding blocks, because inputs entering more than one
block (branching inputs) are more loaded than those
entering only one block. When input variables contained
in other blocks are even more penalized, the occurrence
of branching inputs is reduced and the output load of
previous blocks is more balanced.

The decomposition algorithm was tested on several
problems. Thus, e.g., a function with 100 inputs, 20
outputs and 100 minterms with defined output values was
decomposed into 5 blocks, each having 4 outputs. The
algorithm gave the following solutions. For a simple
minimization all inputs were used and the average
number of inputs into one block was 75. When the
decomposition was performed, the number of inputs used
was 58 and the average number of block inputs was 17.
When the load balancing was used, the total number of
inputs used was 80 and only 4 inputs were branching in
contrast to 20 branching inputs in case of
a decomposition without load balancing.

Conclusions

It was shown that combining the partitioning of
a function with its minimization leads to better results
than performing each of these design tasks
independently. The modification consists in introducing
partitioning forces into two phases of the minimization
algorithm denoted as CD-search and CP solution. The
effect of these forces on the quali ty of solution of
a typical example was investigated and documented by
a table of results.

Further research will be directed towards multi-level
decomposition and the applications in the area of low-
power devices.

Acknowledgment

This research was in part supported by the grant of the
Czech Grant Agency GACR 102/99/1017.

References
[1] P. Fiser, and J. Hlavicka, Efficient Minimization Method for

Incompletely Defined Boolean Functions, Proc. 4th Int.
Workshop on Boolean Problems, Freiberg (Germany), Sept.
21-22, 2000, pp. 91-98

[2] P. Fiser, and J. Hlavicka, Implicant Expansion Method used
in the BOOM Minimizer. Proc. IEEE Design and
Diagnostics of Electronic Circuits and Systems Workshop
(DDECS’01), Gyor (Hungary), 18-20.4.2001, pp. 291-298

[3] J. Hlavicka, and P. Fiser, A Heuristic method of two-level
logic synthesis. Proc. The 5th World Multiconference on
Systemics, Cybernetics and Informatics SCI'2001, Orlando,
Florida (USA) 22-25.7.2001, vol. XII , pp. 283-288

[4] P. Fiser, and J. Hlavicka, On the Use of Mutations in
Boolean Minimization. Proc. Euromicro Symposium on
Digital Systems Design, Warsaw (Poland) 4-6.9.2001, pp.
300-307

[5] J. Hlavicka, and P. Fiser, BOOM - a Heuristic Boolean
Minimizer. Proc. ICCAD-2001, San Jose, Cal. (USA), 4.-
8.11.2001 (accepted for publication)

[6] http://cs.felk.cvut.cz/~fiserp/boom/
[7] R.K. Brayton et al., Logic minimization algorithms for

VLSI synthesis. Boston, MA, Kluwer Academic Publishers,
1984

[8] O. Coudert, Two-level logic minimization: an overview.
Integration, the VLSI journal, 17-2, pp. 97-140, Oct. 1994

[9] G.D.Hachtel and F. Somenzi, Logic synthesis and
verification algorithms. Boston, MA, Kluwer Academic
Publishers, 1996, 564 pp.

[10] L. Jozwiak and A. Chojnacki, Effective and Eff icient
FPGA Synthesis through Functional Decomposition Based
on Informational Relationship Measures, Proc. Euromicro
Symposium on Digital Systems Design, Warsaw (Poland)
4-6.9.2001 pp.30-37

[11] C. Scholl: Multi-output functional decomposition with
exploitation of don't cares. Proc. DATE 98, pp743-748


