Minimization and Partitioning M ethod Reducing I nput Sets

Jan Hlavicka, Petr Fiser
Czedh Tedhnical University, Karlovo nam. 13, 121 3%°rague 2
e-mail : hlavicka@fel.cwit.cz, fiserp@fel.cvut.cz

Abstract

The article describes a new Boolean minimization and
single-levd partitioning method based on the BOOM
minimization system [6]. The minimization is performed
with resped to the restrictions gated for the number of
inpus and outputs of individual components and/or with
the god to reach load balancing for the inputs. The
method can hande exremely large functions (up to
thousands of input variables) in avery short time andits
use is advantageous above all for highly unspedfied
functions, where the number of don't caresislarge.

1. Introduction

When designing logic drcuits we often encounter
congtraints foll owing from the properties of the available
physicd elements. Whether we @mpose a drcuit of
simple logic gates, PGAs or LUTs in FPGAs, the number
of inputs and outputs of one dement is limited. The
number of logicd levels may be limited too, above &l
due to the propagation delay constraints. These
requirements can be met by circuit decomposition. The
common two-level minimization algorithms based on the
Quine-McCluskey approad, like eg. ESPRESSO [7, 9],
do not suppat any decmmposition feaures and the
decomposition is done independently, as a sort of post-
processng [10, 11]. The decompasition is then more
difficult to doand the results are usually less stisfadory.
Our algorithm combines these two phases to produce
better results.

The problem to be solved here is a single-level
decomposition of a combinational Boolean function. The
resulting circuit has thus the two-level structure. The idea
is illustrated by Figure 1, where the logic function of 7
inputs x1-X7 and 6 autputs y;-ye is decompased into two
5-input and 3-output blocks while eabt block is a two-
level (AND-OR) circuit.

The input of our algorithm is a Boolean PLA matrix
[7] defining the on-sets and off-sets (optionally donit care
sets) of the output functions. The dgorithm assgns these
outputs to individual functional blocks (seeFigure 1) and
minimizes each set as a sum-of-product (SOP) expresson
acording the decomposition.

X4
X2 Y1
X3 BLOCK 1 | ¥
X4 YS
T Ly,
X5 BLOCK 2 | Y5
Xg ¥5
X7

Figure 1. A single-level decomposition

In some caes not all input variables used in the input
form are needed to produce the required output values.
Similarly, some input variables can be substituted by
others while preserving the required function. For
example, in Figure 1 only five of seven input variables
are neaded to produce eab bundle of three outputs.
Inthis case the drcuit can be decompaosed into stand-
alone two-level blocks. The partitioning is based on
finding the minimum of input variables nealed to
produce agroup of output functions. First the outputs are
asdgned to the blocks and then the minimization is
performed while trying to match the maximum all owed
number of inputsinto the blocks.

Principles of the BOOM Approach

The suggested pertitioning algorithm is based on the
BOOM minimizaion too presented ealier [1-5]. It
consists of two major phases. generation of implicants
(prime implicants for single-output functions, group
impli cants for multi-output functions) and the subsequent
solution of the @vering problem (CP). The generation of
implicants for single-output functions is performed in
two steps. first the Coverage-Direded Seach (CD-
Seach) generates a sufficient set of implicants needed
for covering the source function and then the implicants
are expanded into prime implicants. In addition to it, for
multi-output functions the primes are reduced into group
impli cants and then the group CP is lved. More detail s
concerning these procedures can be found in [2,4].

Combining Minimization with
Decomposition

In order to perform the partitioning together with the
minimization, the two major phases — CD-seach and CP
solution - have to be dightly modified. The CD-seach
consists in a seach for the most suitable literals that
should be alded to some previously constructed term.
For a two-level minimizaion of a Bodlean function, the
seach for suitable literals that should be added to a term
is direded towards finding an implicant that covers as
many 1-terms as posshle. To dothis, we start impli cant
generation by seleding the most frequent input literal
from the given onset. The seleded litera describes
ann-1 dimensiona hypercube, which may be a
implicant, if it does not intersect with any O-term. If there
are some 0-minterms covered, we ald ancther literal and
verify whether the new term already corresponds to
animplicant by comparing it with O-terms. After every
literal remova we temporarily remove the on-terms that
cannot be cvered by any term containing the seleded
literal. These ae the terms containing that literal with the
oppdasite polarity. We ontinue alding literals until an
implicant is generated, then we record it, remove the
covered 1-terms, and start searching for other implicants.
In this way we generate new implicants, until the whole
on-set is covered. The output of this algorithm is a set of
product terms covering al 1-terms and not interseding
any O-term.

When literals with the maximum frequency of
occaurrence in the onset are seleded, the dgorithm
produces the best results in terms of minimality of the
solution. However, this rule can be modified in order to
produce aset of terms containing the possble minimum
of input variables by penalizing the selection of
avariable that was not yet seleded into the airrently
processed block. That implies that the input variables that
were seleded for a given block - i.e. wires entering the
block - must always be recorded.

Covering Problem Solution

The second most important phase of BOOM - the CP
solution, described e.g. in [8], must be modified in
asimilar way. Firstly, the CP is lved for ead block
individually. Further, when solving the CP, weights are
assgnred to implicants acrding to the number of input
variables they would add to the given block if they were
seleded. The weights represent the penalizaion fador.
The more input variables are newly added into the given
block by aterm, the lesslikely thisterm will be seleded.

Experimental Results

Combining these two techniques all ows us to generate
a good solution in the terms of complexity of the blocks

(the number of terms in blocks) and simultaneously to
keep the number of input variables entering the blocks
minimal when respeding the defined plysicd
constraints. However, these two criteria of minimality are
antipodal - the more we try to reduce the number of
inputs into blocks, the more complex are the resulting
SOP forms and vice versa. The type of the solution can
be seleded hy adjusting the "partitioning forces' - i.e,,
coefficients penaizing the not-included variables. We
have found that both the CD-seach and the CP solution
algorithm must be modified in this way to produce good
results of the partiti oning.

The influence of the dgorithm modificaion is siown
in Table 1. There we solved a problem of partitioning
afunction of 50 input variables with 20 autputs and 200
terms defined. This function was to be decompaosed into
four 5-output blocks. The table shows the minimization
time, the complexity of the result (the number of literals
in the SOP form, output cost and the number of terms)
and the quality of the partitioning (sum of the number of
inputs entering the four blocks) for various CD-seach
and CP solution partitioning forces. The CD-seach
partitioning forces are increasing in the horizontal
diredion and the partitioning forces influencing the CP
solution are changingin the verticd diredion.

The program was run on a PC with Athlon 900 MHz
procesor and 256 MB RAM.

Table 1. Results of the partitioning test run

COV/CD 0.0 0.5 1.0 15

6.04 6.81 10.18 10.14

00 [2714/506/455 [3016/592/501 [3405/804/560 [3444/826/563
198/50 174/50 176/50 170/48
6.27 6.95 10.26 9.95

05 [2731/51545 [2989/575/501 [3546/746/590 [3539/740/587
197/50 157/50 112/47 113/46
6.30 6.95 10.25 10.09

1.0 [2730/514/457 [3016/566/505 [3630/750/604 [3638/736/606
197/50 154/50 103/47 98/44
6.36 7.00 10.31 10.09

15 [2820/522/472 [3051/573/511 (3616/747/603 [3654/735/609
196/50 154/50 103/47 98/44
6.36 6.98 10.26 10.26

20 |2876/548478 [3061/572/513 [3669/740/612 [3677/740/611
196/50 154/50 103/47 98/44
6.43 7.04 10.59 10.20

25 [2993/547/498 [3114/573/520 (3686/739615 [3715/735618
196/50 154/50 103/47 98/44
6.42 6.99 10.30 10.11

30 [3128/573518 [3118/572/521 [3747/743626 3761/739626
196/50 154/50 103/47 98/44
6.43 6.99 10.35 10.16

35 [3139/571/520 [3134/578/523 [3777/741/63L [3784/736/630
197/50 154/50 103/47 98/44

Entry format: solution time in seconds

literals/ output cost / terms
sum of inputsinto blocks/ inputs used

We can see that using the simple CD-seach and
simple CP solution (upper left corner), we obtain
asolution in which amost every input wire enters all
blocks. By increasing the partitioning forces we reduce
the number of inputs into biocks down to 98 (lower right
corner) where every input enters in the average two
blocks. Thus we can conclude that both partitioning
forces are important, whereas modifying only the
CD-seach or CP solution algorithm does not produce
sufficient results. Higher penalizaion values than those
shown in the table proved to be inefficient. The solution
time depends above dl on the pendizaion of the
CD-seach, whereas the penalization of the CP solution
agorithm does not affed the runtime.

A simple modificaion of this agorithm enables us to
control the load dstribution of the outputs of the
preceading blocks, becaise inputs entering more than one
block (branching inputs) are more loaded than those
entering only one block. When input variables contained
in other blocks are even more penalized, the occurrence
of branching inputs is reduced and the output load of
previous blocks is more balanced.

The demmposition algorithm was tested on several
problems. Thus, e.g., a function with 100 inputs, 20
outputs and 100minterms with defined output values was
decomposed into 5 Hocks, ead having 4 outputs. The
agorithm gave the following solutions. For a simple
minimizaion al inputs were used and the average
number of inputs into one block was 75. When the
decompasition was performed, the number of inputs used
was 58 and the average number of block inputs was 17.
When the load balancing was used, the total number of
inputs used was 80 and only 4 inputs were branching in
contrast to 20 branching inputs in cese of
a decmpaosition without load balancing.

Conclusions

It was down that combining the partitioning of
afunction with its minimization leads to better results
than performing each of these design tasks
independently. The modification consists in introducing
partitioning forces into two phases of the minimizaion
algorithm denoted as CD-seach and CP solution. The
effect of these forces on the quality of solution of
atypicd example was investigated and dacumented by
atable of results.

Further reseach will be direded towards multi-level
decompasition and the gplicdions in the aea of low-
power devices.

Acknowledgment

Thisreseach wasin part supparted by the grant of the
Czed Grant Agency GACR 102/99/1017.

References

[1] P. Fiser, and J. Hlavicka, Efficient Minimization Method for
Incompletely Defined Boolean Functions, Proc. 4™ Int.
Workshopon Boolean Problems, Freiberg (Germany), Sept.
21-22, 2000, pp. 91-98

[2] P. Fiser, and J. Hlavicka, Implicant Expansion Method used
in the BOOM Minimizer. Proc. IEEE Design and
Diagnostics of Eledronic Circuits and Systems Workshop
(DDECS 01), Gyor (Hungary), 18-20.4.2001, pp. 291-298

[3] J. Hlavicka, and P. Fiser, A Heuristic method d two-level
logic synthesis. Proc. The 5th World Multiconferenceon
Systemics, Cybernetics and Informatics SCI'2001, Orlando,
Florida (USA) 22-25.7.2001, vol. XII, pp. 283-283

[4] P. Fiser, and J. Hlavicka, On the Use of Mutationsin
Boolean Minimization. Proc. Euromicro Sympasium on
Digital Systems Design, Warsaw (Poland) 4-6.9.2001, pp.
300-307

[5] J. Hlavicka, and P. Fiser, BOOM - aHeuristic Boolean
Minimizer. Proc. ICCAD-2001, San Jose, Cdl. (USA), 4.-
8.11.2001 (accepted for publication)

[6] http://cs.felk.cvut.cz/~fiserp/boam/

[7] RK. Braytonet a., Logic minimization algorithms for
VLSI synthesis. Boston, MA, Kluwer Academic Publishers,
1984

[8] O. Coudert, Two-level logic minimization: an overview.
Integration, the VLS journal, 17-2, pp. 97-140, Oct. 1994

[9] G.D.Hadtel and F. Somenzi, Logic synthesis and
verificaion algorithms. Boston, MA, Kluwer Academic
Publishers, 1996, 564 pp

[10] L. Jozwiak and A. Chojnadi, Effedive and Efficient
FPGA Synthesis through Functional Deamposition Based
on Informational Relationship Measures, Proc. Euromicro
Sympasium on Digital Systems Design, Warsaw (Poland)
4-6.9.2001 pp30-37

[11] C. Scholl: Multi-output functional decompasiti on with
exploitation of don't cares. Proc. DATE 98, pp743-748

