
BOOM - a Heuristic Boolean Minimizer

Jan
��� ����� �
	����

Petr Fišer
Department of Computer Science and Engineering, Czech Technical University

Karlovo nám. 13, 121 35 Prague 2
e-mail: hlavicka@fel.cvut.cz, fiserp@fel.cvut.cz

Abstract
We present a two-level Boolean minimization tool (BOOM)

based on a new implicant generation paradigm. In contrast to all
previous minimization methods, where the implicants are
generated bottom-up, the proposed method uses a top-down
approach. Thus instead of increasing the dimensionality of
implicants by omitting literals from their terms, the dimension of
a term is gradually decreased by adding new literals. Unlike
most other minimization tools like ESPRESSO, BOOM doesn't
use the definition of the function to be minimized as a basis for
the solution, thus the original coverage influences the solution
only indirectly through the number of literals used.

Most minimization methods use two basic phases introduced
by Quine-McCluskey, known as prime implicant (PI) generation
and the covering problem solution. Some more modern methods,
like ESPRESSO, combine these two phases, reducing the number
of PIs to be processed. This approach is also used in BOOM, the
search for new literals to be included into a term aims at
maximum coverage of the output function.

The function to be minimized is defined by its on-set and off-
set, listed in a truth table. Thus the don't care set, often
representing the dominant part of the truth table, need not be
specified explicitly. The proposed minimization method is
efficient above all for functions with a large number of input
variables while only few care terms are defined.

The minimization procedure is very fast, hence if the first
solution does not meet the requirements, it can be improved in an
iterative manner. The method has been tested on several different
kinds of problems, like the MCNC standard benchmarks or
larger problems generated randomly.

1. Introduction

The problem of two-level minimization of Boolean functions
is usually solved for functions with less than 100 variables. This
is due to two mutually dependent facts: larger circuits are not so
common, and no minimization method for larger problems has
been available so far. However, Boolean minimization is by no
means limited to the area of switching circuit design, where it
was first identified [8]. The new implementation technologies of
digital circuits, e.g., multi-level custom design, FPGAs, and
above all PLAs, require this minimization in some phase.
Minimization problems with a large number of variables are
encountered in many modern application areas like design of on-
line real-time control systems, design of buil t-in self-test
equipment for VLSI circuits, in the area of artificial intell igence,
in software engineering, etc. These problems are mostly
characterized by a limited number of input states for which the
output value is determined (care states). On the other hand, the

number of don't care states then reaches astronomical values, and
the quali ty of a minimization method is thus determined by its
abili ty to take advantage of their existence without enumerating
them. An efficient minimization method must in addition be able
to cope with the existence of a large number of prime implicants
(PIs) of the given function, most of which are not needed for the
minimum solution.

Many attempts have been made to increase the size of
problems that can be solved by sacrificing absolute minimali ty
and/or modifying the classical two-phase approach (PI
generation, covering problem solution) introduced by Quine and
McCluskey. Modification of the two-phase approach means, e.g.,
combining PI generation with the solution of the covering
problem (CP) in order to reduce the size of the problem and
above all to reduce the number of implicants to be processed.
This combination is a characteristic feature of several modern
methods, including the well-known ESPRESSO [4, 7] with its
later improvements ESPRESSO-EXACT and ESPRESSO-
SIGNATURE [9]. This approach is used also in BOOM, namely
in the primary implicant generation phase - the "coverage-
directed search".

A common feature of all methods proposed so far is obtaining
the final solution from an initial solution (which is contained in
the function definition) by improvements directed by some
objective function. This approach may be of advantage, if the
initial solution is favorable, but in some cases it may lead to a
blind end, or to an unnecessary waste of time. The method
presented here uses an original approach to implicant generation,
which is completely independent of the initial solution. The
1-terms found in the function definition are used only indirectly,
for guiding the search for literals to be included into the solution,
0-terms are used to determine whether a given term is an
implicant. The don't care set, which is usuall y the largest of all
three sets, is thus not consulted at all .

The BOOM (BOOlean Minimizer) approach proposed here
combines PI generation with solving the covering problem,
leading to a reduction in the total number of PIs generated.
However, the principal improvement over the previous methods
consists in speeding up PI generation by applying a top-down
approach instead of the commonly used bottom-up approach.
Several heuristics allowing us to control individual phases of the
solution are used in order to meet the quality requirements and
runtime limitations. BOOM was programmed in Borland C++
Builder and tested under MS Windows NT.

This paper has the following structure. After a formal problem
statement in Section 2, the principles of the proposed method are
presented in Section 3. The iterative procedure is then described
in Section 4. The results of extensive experimental verification

are evaluated and commented in Section 5, and the time
complexity of the proposed algorithm is evaluated in Section 6.

2. The Problem of Boolean Minimization

The problem of two-level minimization will be defined in a
usual way [4, 6, 7]. A Boolean function of n input variables is
defined by a truth table describing the on-set F(x1, x2, … xn) and
off-set R(x1, x2, … xn). Here the on-set (off -set) is the set of terms
to which the output value 1 (0) is assigned. Both minterms and
terms of higher dimension may be used for defining the on-set
and off-set, hence the individual l ines of the truth table may
contain don't care entries in the input portion. The terms not
represented in the input field of the truth table are implicitly
assigned don’ t care values of the output function, i.e., they
represent the don’t care set D(x1, x2, … xn).

We are going to formulate a synthesis algorithm producing a
sum-of-products expression G = g1+g2+…+gt, where F ⊆ G ⊆
F+D and t is minimal. In the case of a set of m functions we will
minimize the total number of implicants gi of all functions, while
some of them can be used for more output functions. According
to this specification, the number of product terms (implicants) is
used as a universal quality criterion. This is mostly justified, but
it should be kept in mind that the measure of minimali ty must
correspond to the needs of the intended application. ESPRESSO
uses the sum of the number of literals and the number of inputs
into all output OR gates (also denoted as the output cost). For the
BOOM system the minimization criterion may be set as a
parameter.

3. Principle of the Method

3.1. BOOM Structure

When minimizing a single-output function, the BOOM system
uses the following three phases: 1. Coverage-directed search
(generation of implicants). 2. Implicant expansion (generation of
prime implicants). 3. Solution of the covering problem.

For multi-output functions, instead of phase 3, phases 4, 5 and
6 are executed: 4. Prime implicant reduction. 5. Solution of the
group covering problem. 6. Solution of the covering problem for
each output independently.

3.2. Minimization of Single-Output Functions

3.2.1. Coverage-Directed (CD) Search
The idea of confining implicant generation to those really

needed gave rise to the CD-search method, which is the most
innovative feature of the BOOM system. It consists in a directed
search for the most suitable literals that should be added to some
previously constructed term in order to convert it into an
implicant of the given function. Thus instead of increasing the
dimension of an implicant starting from a 1-minterm (or any
other 1-term given in the function definition), we reduce the
n-dimensional hypercube by adding literals to its term, until it
becomes an implicant of the given function. This happens at the
moment when this hypercube no longer intersects with any
0-term.

The implicant generation method aims at finding a hypercube
that covers as many 1-terms as possible. We start by selecting the

most frequent input literal from the given on-set. The selected
literal describes an n-1 dimensional hypercube, which may be an
implicant, if it does not intersect with any 0-term. If there are
some 0-minterms covered, we add one more literal and verify
whether the new term already corresponds to an implicant. After
each literal selection we temporarily remove from the on-set the
terms that cannot be covered by any term containing the selected
literal - the terms containing that literal with the opposite
polarity. In the remaining on-set we repetitively find the most
frequent literal and include it into the previously found product
term until it is an implicant. Then we remove from the original
on-set the terms covered by this implicant. Thus we obtain a
reduced on-set containing only uncovered terms. Now we repeat
the procedure from the beginning and apply it to the uncovered
terms, selecting the next most frequently used literal, until the
next implicant is generated. In this way we generate new
implicants, until the whole on-set is covered. The output of this
algorithm is a set of product terms covering all 1-terms and
intersecting no 0-term.

3.2.2. Implicant Expansion (IE)
The implicants generated during the CD-search need not be

prime. To make them prime, we have to increase their size by IE,
which means by removing literals (variables) from their terms.
When no literal can be removed from the term any more, we get
a PI. The expansion of implicants into PIs can be done by several
methods differing in complexity and quali ty of results obtained.
We tested several approaches, from the simplest sequential
search (which is linear) to the most complex exhaustive
(exponential) search.

A Sequential Search systematically tries to remove from
each term all l iterals one by one, whereas the first literal is
chosen randomly. Every removal is made permanent if no
0-minterm is covered. Only one PI is generated from each
implicant, even if it could yield more PIs. A Sequential Search
obviously does not reduce the number of product terms. On the
other hand, experimental results show that it reduces the number
of literals by approximately 25%.

With a Multiple Sequential Search we try all possible
starting positions within an implicant, which thus expands into
several PIs. This method produces more primes than a Sequential
Search, while the time complexity is acceptable.

Even the Multiple Sequential Search algorithm cannot expand
an implicant into all possible PIs. To do so, an Exhaustive
Implicant Expansion must be used. Using recursion or queue,
all possible literal removals are then tried until all primes are
obtained. Unfortunately, the complexity of this algorithm is
exponential.

All these expansion strategies have been tested and evaluated
from the point of view of runtime and result quali ty. Finally the
Multiple Sequential Search was selected as the best method for
standard problems.

Having found a sufficient set of prime implicants, the
covering problem is solved. The heuristics used basically
correspond to the method suggested, e.g., in [6, 12].

3.3. Minimization of Multi-Output Functions

When minimizing a multi-output function, each of the outputs
is first treated separately. After performing the CD-search and IE
phases we have a set of PIs suff icient for covering all functions.
However, to obtain the minimum solution we may need group
implicants, i.e., implicants of more than one output function that
are not primes of any. Hence, all obtained primes are tried for
reduction by adding some literals. The method of implicant
reduction is similar to a CD-search. Literals are repetitively
added to each term until there is no chance that the implicant will
be used for more functions. We prefer literals that prevent
intersecting with most of the 0-terms of all functions. When no
further reduction yields any possible improvement, the reduction
is stopped, and the implicant is recorded. After assigning
implicants to the output functions the group covering problem is
solved. Finally, the output reduction, corresponding to the
ESPRESSO's MAKE_SPARSE procedure [4, 7], is performed.

4. Iterative Minimization

When selecting the most frequent literal during the CD search,
it may happen that two or more literals have the same frequency
of occurrence. When no other criterion can be applied to select
one literal, the BOOM system chooses at random. Thus there is a
chance that repeated application of the same procedure to the
same problem would yield different solutions.

The iterative minimization concept takes advantage of the fact
that each iteration produces a new set of implicants satisfactory
for covering all minterms. The newly created implicants are
added to the previous ones and the covering problem is solved
using all of them. The set of implicants grows until a maximum
reachable set is obtained. The typical growth of the number of
PIs as a function of the number of iterations is shown in Fig. 1
(thin line). The values were obtained during the solution of a
problem with 20 input variables and 200 minterms.
Theoretically, the more primes we have, the better the solution
that can be found. In reali ty, the quali ty of the final solution
improves rapidly during the first few iterations and then remains
unchanged, as can be observed in Fig. 1 (thick line).

Fig. 1. Growth of PI number and decrease of SOP length
during iterative minimization

When the solution meets the requirements, the minimization is
stopped.

5. Experimental Results

Many different problems were solved to evaluate the
efficiency of the proposed algorithm, especially for large
numbers of input variables. The results obtained will be

presented in the following subsections. All problems were solved
by BOOM and ESPRESSO [14] to compare the results (i.e.,
number of implicants and/or number of literals and the output
cost) and the runtime in seconds. The processor used was a
Celeron 433 MHz with 160 MB RAM.

5.1. Standard MCNC Benchmarks

A set of 123 standard MCMC benchmarks [15] was solved by
BOOM and ESPRESSO. Of these 123 problems, 51.22 % were
solved by BOOM in shorter time than ESPRESSO, in 45.52 %
BOOM gave the same result as ESPRESSO (in one case even
better). In 30.89 % these results were reached faster than by
ESPRESSO. It is also worth mentioning that in 28 cases the
BOOM runtime was non-measurable and the timer inserted an
implicit value of .01 sec.

The so-called “hard” MCNC benchmarks were also solved by
BOOM and ESPRESSO. For 10 problems BOOM found the
same solution as ESPRESSO, once in a shorter time, 4 problems
gave slightly worse solutions and 5 problems could not be solved
because of high memory demands. This is due to the high
number of terms, because for BOOM the runtime (and memory
demand) grows with the square of the number of terms - see
Section 6.

5.2. Problems with more than 100 variables

The MCNC benchmarks have relatively few input variables
(only for 3 standard benchmarks does n exceed 50). In order to
compare the performance of the minimization programs on larger
tasks, a set of problems with up to 300 input variables and up to
300 minterms were solved. The truth tables were generated
randomly, only the number of input variables, number of care
terms and number of don’ t cares in the input portion of the truth
table (i.e., dimension of a term) were specified. The number of
outputs was set equal to 5. The on-set and off-set of each
function were kept approximately of the same size. First, the
problem was solved by ESPRESSO and then by BOOM, which
ran until a solution of the same or better quali ty was reached. The
quali ty criterion selected was the sum of the number of literals
and the output cost. For all samples BOOM found the same or
better solution than ESPRESSO in much shorter time. As can be
seen from Tab. 1, BOOM needed at most 75 % of the
ESPRESSO time, but often its runtime sank below 1 %. The
number in parentheses indicates the number of performed
iterations.

p/n 100 150 200 250 300
50 1.12 (1) 0.6 (1) 1.38 (4) 0.76 (2) 7.85 (35)
100 1.19 (7) 4.01 (9) 27.08 (35) 8.00 (19) 0.44 (2)
150 11.88 (10) 0.86 (1) 8.51 (20) 14.49 (29) 7.84 (19)
200 18.06 (15) 30.94 (25) 11.34 (20) 0.29 (1) 0.34 (1)
250 74.94 (36) 35.32 (23) 51.56 (50) 12.23 (27) 21.55 (52)
300 60.81 (22) 55.88 (38) 49.11 (34) 25.85 (38) 6.83 (32)

Table 1. Percentage of ESPRESSO runtime needed by
BOOM for problems with more than 100 variables

5.3. Solution of Very Large Problems

A third group of experiments aimed at establishing the limits
of applicability of BOOM. For this purpose, a set of single-

output functions with up to 1000 input variables and 2000
defined minterms was generated and solved by BOOM. For
problems with more than 300 input variables ESPRESSO cannot
be used at all. Hence when investigating the limits of
applicability of BOOM, it was not possible to verify the results
by any other method. The results of this test are listed in Tab. 2,
where the time in seconds needed to complete one iteration for
various problem sizes is shown. We can see that even the largest
problem was solved in less than 5 minutes.

p/n 200 400 600 800 1000
200 0.21 0.38 0.55 0.90 1.06
400 0.98 1.90 3.30 4.84 5.96
600 2.48 4.73 6.94 11.52 18.10
800 4.89 9.76 14.56 24.06 38.58
1000 8.34 15.51 27.88 48.85 74.29
1200 17.64 29.66 42.15 58.37 64.18
1400 23.72 41.49 58.58 74.09 106.65
1600 36.05 73.43 104.90 118.98 161.42
1800 49.53 95.78 146.28 178.29 210.99
2000 60.62 118.39 206.44 204.16 288.87

Table 2. Time for one iteration on very large problems

6. Time Complexity Evaluation

To establish the time complexity of the proposed algorithm,
we made a systematic investigation of the dependency of time
needed to complete one pass of the algorithm for various sizes of
single-output functions. Fig. 2 shows the growth of an average
runtime as a function of the number of care minterms (20-300)
and of the number of input variables (20-300). The curves on the
surface in Fig. 2 indicate that the runtime grows roughly with the
square of the number of care minterms and proportionally with
the number of input variables.

�� � �
� � �� � 	

 � � � �
� � �� � �
� � �

�� �� ��� � ! "#$ %%$ %&$ '(() * + , -
, , -

. / 0 132
4 5 6 7 8 9 : ; < : = > ? @

AB CDE F
G

Fig. 2. Dependence of runtime on the number of inputs and
number of terms

7. Conclusions

An original Boolean minimization method has been presented.
Its most important features are its applicabili ty to functions with
several hundreds of input variables and very short minimization
times for sparse functions. The function to be minimized is
defined by its on-set and off-set, whereas the don't care set,
which normally represents the dominant part of the truth table,
need not be specified explicitly. The entries in the truth table may
be minterms or terms of higher dimensions. The implicants of the
function are constructed by reduction of n-dimensional cubes;
hence the terms contained in the original truth table are not used
as a basis for the final solution.

The properties of the BOOM minimization tool were
demonstrated on examples. Its application is advantageous above
all for problems with large dimensions and a large number of
don't care states where it beats other methods, like ESPRESSO,
both in minimality of the result and in runtime. The PI generation
method is very fast, hence it can easil y be used in an iterative
manner. The problems with more than 100 input variables were
in all cases solved faster and mostly with better results than by
ESPRESSO. The dimension of the problems solved by BOOM
can easily be increased over 1000, because the runtime grows
linearly with the number of input variables. For problems of very
high dimension, success largely depends on the size of the care
set. This is due to the fact that the runtime grows roughly with
the square of the size of the care set.

The BOOM system is available on [13].

References

[1] Fišer, P. -
HJI KMLON PRQOKTSVUXW YTZ\[][]N ^XN _R`badceN `ON fgN hTKMaiN jb`Jce_MalkOjnmo[]jVp

Incompletely Defined Boolean Functions, Proc. 4th Int.
Workshop on Boolean Problems, Freiberg (Germany), Sept.
21-22, 2000, pp. 91-98

[2] Fišer, P. - qJr sMtOu vRwOsTxVyXz {}|]~o�dr u �XsR�b�d���b�dsR�d��u �b�J�e�M� �O�n���d���X�ou �
the BOOM Minimizer. Proc. IEEE Design and Diagnostics of
Electronic Circuits and Systems Workshop (DDECS’01),
Gyor (Hungary), 18-20.4.2001, pp. 291-298

[3] �J� �M�O� �M�O�T�V�X�}� Fišer, P.: A Heuristic method of two-level logic
synthesis. Proc. The 5th World Multiconference on
Systemics, Cybernetics and Informatics SCI'2001, Orlando,
Florida (USA) 22-25.7.2001, pp. 283-288, II

[4] Brayton, R.K. et al.: Logic minimization algorithms for VLSI
synthesis. Boston, MA, Kluwer Academic Publishers, 1984,
192 pp.

[5] Coudert, O. - Madre, J.C.: Implicit and incremental
computation of primes and essential primes of Boolean
functions, In Proc. of the Design Automation Conf.
(Anaheim, CA, June 1992), pp. 36-39

[6] Coudert, O.: Two-level logic minimization: an overview.
Integration, the VLSI journal, 17-2, pp. 97-140, Oct. 94

[7] Hachtel, G.D. - Somenzi, F.: Logic synthesis and verification
algorithms. Boston, MA, Kluwer Academic Publishers, 1996,
564 pp.

[8] McCluskey, E.J.: Minimization of Boolean functions. The
Bell System Technical Journal, 35, No. 5, Nov. 1956, pp.
1417-1444

[9] McGeer, P. et al.: ESPRESSO-SIGNATURE: A new exact
minimizer for logic functions. Proc. DAC’93

[10] Nguyen, L. – Perkowski, M. – Goldstein, N.: Palmini – fast
Boolean minimizer for personal computers. In Proc. DAC’87,
pp.615-621

[11] Rudell , R.L. – Sangiovanni-Vincentelli , A.L.: Multiple-
valued minimization for PLA optimization. IEEE Trans. on
CAD, 6(5): 725-750, Sept.1987

[12] Rudell , R.L.: Logic Synthesis for VLSI Design, PhD Thesis,
UCB/ERL M89/49, 1989

[13] http://cs.felk.cvut.cz/~fiserp/boom/
[14] http://eda.seodu.co.kr/~chang/ download/espresso/
[15] ftp://ic.eecs.berkeley.edu

