
A Heuristic Method of Two-Level Logic Synthesis

Jan
���������
	�����

Petr Fišer
Department of Computer Science and Engineering

Czech Technical University
Karlovo nám. 13, 121 35 Prague 2

e-mail: hlavicka@fel.cvut.cz, fiserp@fel.cvut.cz

ABSTRACT

An original method of logic function minimization is
presented. Its implementation denoted as BOOM minimizer is
described an evaluated. The method is applicable to the
problems of logic design, artificial intelligence, software
engineering and graph theory, etc.

The innovative feature of the proposed method consists
above all in the top-down approach to implicant generation by
inclusion of literals. The selection of these newly included
literals is based on heuristics using the frequency of literal
occurrence. The proposed method is efficient especially for
functions with several hundreds of input variables, whose values
are defined only for a relatively small part of their range. The
method has been tested on several different problems including
standard design benchmarks, but also on problems of a much
larger dimension, generated randomly. These experiments
proved that the new algorithm is very fast and that for large
circuits it delivers better results than the state-of-the-art
ESPRESSO.

Keywords: Boolean Minimization, Logic Design, Implicant
Generation, Heuristics, Covering Problem, PLA

1. INTRODUCTION

The problem of two-level minimization of Boolean functions
is by far not limited to the area of switching circuit design,
where it was first identified [8, 12]. The new implementation
technologies of digital circuits li ke, e.g., multi -level custom
design, FPGAs, and above all the PLAs require in some phase
this minimization, sometimes referred to as PLA minimization.
The same problem is encountered in many other modern
application areas like design of on-line real-time control
systems, design of built-in self-test equipment for VLSI circuits,
in mathematical problems like graph coloring [11], during
solution of problems in the area of artificial intelli gence, in
software engineering, etc. These problems are mostly
characterized by a large number of input variables, but by
a limited number of input states for which the output value is
determined (care states). The number of don't care states reaches
then astronomical values, and the quality of a minimization
method is thus determined by its abilit y to take advantage of
their existence without enumerating them. Hence the proposed
method accepts functions defined by on-set and off-set, whereas
the don't care set is defined implicitl y. An efficient minimization

method must be further able to cope with the existence of large
number of prime implicants (PIs) of the given function, while
most of them are not needed for the minimal solution.

There are scores of texts treating the problem of Boolean
minimization, hence it is impossible even to mention them.
Some books like e.g. [1, 6] give a good survey of the important
methods and their li sts of references can be used as pointers to
most of the important papers. Although these methods differ in
many practical aspects, they mostly preserve the main feature of
the original method, namely the use of two basic phases known
as PI generation and covering problem (CP) solution. Some
more modern methods, including the well -known ESPRESSO
[1, 6] with its later improvements ESPRESSO-EXACT and
ESPRESSO SIGNATURE [9], combine these two phases,
reducing the number of implicants to be processed.

A sort of combination of PI generation with the solution of
the CP, leading to a reduction in the total number of prime
implicants generated, is also used in the BOOM (BOOlean
Minimization) approach proposed here. However, the principal
improvement consists in speeding up PI generation by applying
the top-down approach instead of the commonly used bottom-up
approach. Thus instead of starting from some 1-minterm (whose
selection mostly represents the key innovative idea in different
minimization methods), and increasing its dimension by
deleting some literals, we reduce the n-dimensional hypercube
by adding literals to its term, until it becomes an implicant of the
given function. Another - maybe even more important - feature
of the new method is the fact, that the terms (be it minterms or
terms of higher dimension) given in the definition of the
function to be minimized, are not used as a basis for the
solution. This means that the minimal solution is not influenced
by the primary solution and can be completely independent of
any implicants delivered within the input data.

The basic principles of the proposed method were published
in [7], the structure of the BOOM system in [4] and the
implicant expansion method was presented in [5]. The present
paper introduces some new amendments of the method
introduced into the system in order to achieve a higher
performance. BOOM was programmed in Borland C++ Builder
and tested under MS Windows NT.

The paper has the following structure. After a formal
problem statement in Section 2, the structure of the BOOM
system is presented in Section 3 together with the most
important algorithms used for the solution of individual phases
of the minimization. The results of experimental verification of
the BOOM system are evaluated and commented in Section 4.

2. THE PROBLEM OF LOGIC SYNTHESIS

We will be solving the standard problem of two-level
minimization [1, 6]. A Boolean function of n input variables is
defined by a truth table describing the on-set F(x1, x2, … xn) and
off-set R(x1, x2, … xn). Here the on-set (off-set) is the set of
terms to which the output value 1 (0) is assigned. We will
assume that both minterms and terms of higher dimension may
be used for defining the on-set and off-set. This means that
individual l ines of the truth table may contain don't care entries
in the input portion. The terms not represented in the input field
of the truth table are implicitl y assigned don’ t care values of the
output function, i.e., they represent the don’t care set D(x1, x2,
… xn). Listing the two care sets instead of an on-set and a don’t
care set, which is usual, e.g., in MCNC benchmarks, is more
practical for problems where n is of the order of hundreds,
because there the size of the don’t care set usually largely
exceeds all other sets.

Our task is to formulate a synthesis algorithm producing a
sum-of-products expression G = g1+g2+…+gt, where F ⊆ G ⊆
F+D and t is minimal. In case of a set of m functions we will
minimize the total number of implicants of all functions, while
some of them can be used for more output functions. According
to this specification, the number of product terms (implicants) is
used as a universal quality criterion. This is mostly justified, but
it should be kept in mind that the measure of minimali ty must
correspond to the needs of the intended application. ESPRESSO
uses the sum of the number of literals and the number of inputs
into all output OR gates (also denoted as the output cost).

3. PRINCIPLE OF THE METHOD

3.1. BOOM Structure

Like most other Boolean minimization algorithms, BOOM
consists of two major phases: generation of implicants (PIs for
single-output functions, group implicants for multi -output
functions) and the subsequent solution of the covering
problem. The generation of implicants consists of two steps:
first the Coverage-Directed Search (CD-Search) generates a
sufficient set of implicants needed for covering the given
function and these are then passed to the Implicant Expansion
(IE) phase, which converts them into PIs.

The BOOM system improves the quality of the solution by
repeating the implicant generation phase several times and
recording all different implicants that were found. At the end of
each iteration we have a set of implicants that is suff icient for
covering the function. In each following iteration, another
sufficient set is generated and new implicants are added to the
previous ones (if the solutions are not equal). After that the
covering problem is solved using all obtained primes using the
heuristic method suggested in [3, 14].

3.2. Coverage-Directed Search

The idea of combining implicant generation with the
covering problem solution gave rise to the coverage-directed
search (CD-search) method used in the BOOM system. This
consists in a directed search for the most suitable literals that
should be added to some previously constructed term. Thus
instead of increasing the dimension of an implicant starting from
a 1-minterm, we reduce the n-dimensional hypercube by adding
literals to its term, until it becomes an implicant of the given

function. This happens at the moment when this hypercube does
not intersect with any 0-term.

The implicant generation method aims at finding a
hypercube that covers as many 1-terms as possible. To do this,
we start implicant generation by selecting the most frequent
input literal from the given on-set. The selected literal describes
an n-1 dimensional hypercube, which may be an implicant, if it
does not intersect with any 0-term. If there are some 0-minterms
covered, we add one literal and verify whether the new term
already corresponds to an implicant by comparing it with all
0-terms. We continue adding literals until an implicant is
generated, then we record it and start searching for other
implicants.

During the CD-search, the key factor is the eff icient selection
of literals to be included into the term under construction. After
each literal selection we temporarily remove from the on-set the
terms that cannot be covered by any term containing the
selected literal. These are the terms containing that literal with
the opposite polarity. In the remaining on-set we find the most
frequent literal and include it into the previously found product
term. Again we compare this term with all 0-terms and check if
it is an implicant. After obtaining an implicant, we remove from
the original on-set the terms covered by this implicant. Thus we
obtain a reduced on-set containing only uncovered terms. Now
we repeat the procedure from the beginning and apply it to the
uncovered terms, selecting the next most frequently used literal,
until the next implicant is generated. In this way we generate
new implicants, until the whole on-set is covered. The output of
this algorithm is a set of product terms covering all 1-terms and
not intersecting with any 0-term.

When selecting the most frequent literal, it may happen that
two or more literals have the same frequency of occurrence. In
these cases we select a literal that makes an implicant from the
current term. When there are still more possibiliti es to choose
from, one is selected at random.

3.3. Implicant Expansion (IE)

The disadvantage of the CD-search is that it is greedy and
the constructed implicants need not be prime. To increase the
chance that fewer implicants will be needed to cover all 1-terms
of the given function, we have to increase their size by IE,
which means by removing literals (variables) from their terms.
When no literal can be removed from the term any more, we get
a PI.

The expansion of implicants into PIs can be done by several
methods differing in complexity and quality of results obtained.
We tested several approaches, from the simplest sequential
search (which is linear) to the most complex exhaustive
(exponential) search.

A sequential Search systematically tries to remove from
each term all lit erals one by one, whereas the first literal is
chosen randomly. Every removal is made permanent if no
0-minterm is covered. Only one PI is generated from each
implicant, even if it could yield more PIs. A Sequential Search
obviously does not reduce the number of product terms. On the
other hand, experimental results show that it reduces the number
of literals by approximately 25%.

With a Multiple Sequential Search we try all possible
starting positions within an implicant, which thus leads to

expansion into several PIs. This method produces more primes
than a Sequential Search, while the time complexity is
acceptable.

Even the Multiple Sequential Search algorithm cannot
expand an implicant into all possible PIs. To do so, an
Exhaustive Implicant Expansion must be used. Using
recursion or queue, all possible literal removals are then tried
until all primes are obtained. Unfortunately, the complexity of
this algorithm is exponential.

3.4. Minimizing Multi-Output Functions

To minimize multi -output functions, only a few
modifications of the algorithm need to be made. First, each of
the output functions is treated separately: the CD-search and IE
phases are performed. After that, we have a set of PIs suff icient
for covering all m functions. However, to obtain the minimum
solution we may need group implicants, i.e., implicants of more
than one output function that are not primes of any. Here, the
next part of minimization – Implicant Reduction - takes place.

All obtained primes are tried for reduction (by adding some
literals) in order to become implicants of more output functions.
The method of implicant reduction is similar to a CD-search.
Literals are repetiti vely added to each term until there is no
chance that the implicant will be used for more functions. We
prefer literals that prevent intersecting with most of the terms of
the off-sets of all functions (i.e., covering the least zeros). When
no further reduction yields any possible improvement, the
reduction is stopped and the implicant is recorded. If a term no
longer intersects with the off-set of any function, it becomes its
implicant. All implicants that were ever found are stored,
assigned to the output functions and then the Group Covering
Problem is solved.

As a solution of the covering problem we get a set of
implicants needed to cover all output functions. For each output
we may find all i mplicants that do not intersect the off-set of the
output function. However, to generate the required output
values, some of these implicants may not be necessary. These
implicants would create redundant inputs into the output OR
gates. Sometimes this is harmless (e.g., in PLAs), or it can even
prevent hazards. Nevertheless, for hardware-independent
minimization the redundant outputs should be removed. This is
done at the end of the minimization by solving m covering
problems once again (for each output function independently).

3.5. Iterative Minimization

Most current heuristic Boolean minimization tools, including
ESPRESSO, use deterministic algorithms. Here the
minimization process always leads to the same solution, never
mind how many times it is repeated. On the contrary, in the
BOOM system the result of minimization depends to a certain
extent on random events, because when there are several equal
possibiliti es to choose from, the decision is made randomly.
Thus there is a chance that repeated application of the same
procedure to the same problem would yield different solutions.

The iterative minimization concept takes advantage of the
fact that each iteration produces a new set of implicants
satisfactory for covering all minterms of all output functions.
The set of implicants gradually grows until a maximum

reachable set is obtained. The typical growth of the size of a PI
set as a function of the number of iterations is shown in Fig. 1
(thin line). This curve plots the values obtained during the
solution of a problem with 20 input variables and 200 minterms.
Theoretically, the more primes we have, the better the solution
that can be found, but the maximum set of primes is often
extremely large. In reality, the quality of the final solution
improves rapidly during the first few iterations and then remains
unchanged, even though the number of PIs grows further. This
fact can be observed in Fig. 1 (thick line).

Fig. 1: Growth of PI number and decrease of SOP length
during iterative minimization

From the curves in Fig. 1 it is obvious that selecting a
suitable moment T1 for terminating the iterative process is of
key importance for the efficiency of the minimization. The
approximate position of the stopping point can be found by
observing the relative change of the solution quality during
several consecutive iterations. If the solution does not change
during a certain number of iterations (e.g., twice as many
iterations as were needed for the last improvement), the
minimization is stopped. The amount of elapsed time may be
used as an emergency exit for the case of unexpected problem
size and complexity.

3.6 Accelerating Iterative Minimization

When the CD-search phase is repeated, identical implicants
are quite often generated in various iterations. These are then
passed to the Implicant Expansion phase, which might be
unnecessarily repeated. To prevent this, all implicants that were
ever produced by the CD-search are stored in the I-buffer
(Implicant buffer). Each new implicant is looked up in this
buffer, and if it is already present its further processing is
stopped. A schematic plan of the whole minimization algorithm
for a multi-output function is shown in Fig. 2.

Fig. 2: Schematic plan of iterative minimization

First, the CD-search generates the set of implicants necessary
for covering the function. These are looked up in the I-buffer.
Implicants that are not present there are stored both in the
I-buffer and E-buffer (Expansion buffer). Implicants already
present are discarded. The E-buffer serves as a storage of
implicants that are candidates for expansion into PIs. After
expansion, the implicants are removed from the E-buffer. Then
they are reduced to group implicants and the newly created
group implicants are stored in the P-buffer (after duplicity and
dominance checks). Finally, the covering problem is solved
using the primes from the P-buffer.

The main implementation requirement for the I-buffer is its
high look-up speed. Thus it was implemented as a ternary tree
whose depth is equal to n. At the k-th level of the tree the
direction is chosen according to the polarity (0,1,-) of the k-th
variable in the searched term. The presence of a term is
represented by the existence of its corresponding leaf. The tree
is dynamically constructed during the addition of implicants. An
example of such a tree is shown in Fig. 3.

Fig. 3: I-buffer tree example

The example shows the structure of a three-variable I-buffer
containing terms 0-0, 10- and 11-. If e.g., term 0-1 is looked for,
the search will fail i n the node 0- where no path leading to 0-1 is
present. The maximum number of steps needed to look up or to
insert a term is equal to n. The E-buffer and P-buffer are
represented as a linear linked list.

4. EXPERIMENTAL RESULTS

Extensive experimental work was done to evaluate the
efficiency of the proposed algorithm, especially for problems of
large dimensions. Both runtime in seconds and result quality
were evaluated. The processor used was a Celeron 433 MHz
with 160 MB RAM. The quality of the results was measured by
three parameters: total number of literals, output cost and
number of product terms (implicants). Three groups of
experiments, li sted in the following three subsections, were
performed.

4.1. Solution of MCNC Benchmark Problems

First a group of MCNC benchmark problems was solved by
ESPRESSO 2.3 [16] and by BOOM [15]. The results of the
comparison are shown in Tab. 1. The column n/m/p contains the
parameters of the problem, namely the number of inputs,
outputs and care terms. The benchmarks appearing in the table
were solved by BOOM in one pass, hence the runtimes are very
short (the 0.01 sec. value in most cases indicates a non-
measurable runtime). Tab. 1 shows that problems with a large

number of defined terms (p) were often solved by ESPRESSO
in shorter time. This is due to the quadratic dependence of
runtime on the number of terms in BOOM (see Subsection 4.4).
In all these examples the quality of solutions was equal, in one
case BOOM gave even better result than ESPRESSO. These
solutions reached by BOOM and ESPRESSO are probably the
minimum ones.

Tab. 1. MCNC Benchmark problems
ESPRESSO BOOM

Bench n/m/p time lit/out/impl time lit/out/impl
9sym 9/1/158 0.12 516/86/86 0.05 516/86/86
al2 16/47/139 0.15 324/103/66 0.66 324/103/66
Alu1 12/8/39 0.10 41/19/19 0.01 41/19/19
Alu2 10/8/241 0.20 268/79/68 0.04 268/79/68
b9 16/5/292 0.18 754/119/119 0.25 754/119/119
br1 12/8/107 0.12 206/48/19 0.02 206/48/19
br2 12/8/83 0.11 134/38/13 0.01 134/38/13
Clpl 11/5/40 0.12 55/20/20 0.01 55/20/20
Con1 7/2/18 0.10 23/9/9 0.01 23/9/9
dc1 4/7/25 0.12 27/27/9 0.01 27/27/9
dc2 8/7/101 0.13 207/52/39 0.01 206/51/39
dk27 9/9/24 0.10 31/15/10 0.01 31/15/10
dk48 15/17/64 0.24 115/28/22 0.02 115/28/22
ex7 16/5/292 0.19 754/119/119 0.22 754/119/119
in7 26/10/142 0.14 337/90/54 0.13 337/90/54
Max46 9/1/155 0.14 395/46/46 0.03 395/46/46
Misex1 8/7/41 0.12 51/45/12 0.01 51/45/12
Newpla 12/10/60 0.14 74/28/17 0.02 74/28/17
Newpla1 17/2/25 0.15 64/12/10 0.01 64/12/10
Newpla2 10/4/26 0.18 42/7/7 0.01 42/7/7
Newbyte 5/8/16 0.17 40/8/8 0.01 40/8/8
Newcond 11/2/72 0.16 208/31/31 0.01 208/31/31
Newcwp 4/5/24 0.18 31/19/11 0.01 31/19/11
Newill 8/1/18 0.13 42/8/8 0.01 42/8/8
Newtag 8/1/12 0.16 18/8/8 0.01 18/8/8
Newtpla 15/5/63 0.15 176/23/23 0.01 176/23/23
Newtpla1 10/2/15 0.16 33/4/4 0.01 33/4/4
Newtpla2 10/4/26 0.19 54/15/9 0.01 54/15/9
p82 5/14/74 0.17 93/56/21 0.02 93/56/21
rd53 5/3/67 0.09 140/35/31 0.01 140/35/31
rd73 7/3/274 0.14 756/147/127 0.08 756/147/127
sao2 10/4/137 0.11 421/75/58 0.04 421/75/58
sqrt8 8/4/66 0.11 144/44/38 0.01 144/44/38
squar5 5/8/65 0.12 87/32/25 0.01 87/32/25
vg2 25/8/304 0.15 804/110/110 0.47 804/110/110
xor5 5/1/32 0.08 80/16/16 0.01 80/16/16

4.2. Test Problems with n>100

The MCNC benchmarks have relatively few input terms and
few input variables (n never exceeds 128) and also have a small
number of don’t care terms. In order to compare the
performance and result quality achieved by the minimization
programs on larger problems, a set of problems with up to 300
input variables and up to 300 minterms were solved. The truth
tables were generated by a random number generator, for which
only the number of input variables, number of care terms and
number of don’t cares in the input portion of the truth table were
specified. The number of outputs was set equal to 5. The on-set
and off-set of each function were kept approximately of the
same size. First, the problem was solved by ESPRESSO and
then by BOOM, which ran until the solution of the same or

better quality was reached. The quality criterion selected was
the sum of the number of literals and the output cost. For all
samples the same or better solution was found by BOOM in
much shorter time than by ESPRESSO.

Tab. 2. Solution of problems with n>100
p/n 100 150 200 250 300
50 92/0.1

(1)
92/7.2

83/0.1
(1)
84/20.0

77/0.6
(4)
88/42.8

77/0.4
(2)
77/51.3

75/8.7
(35)
76/110.7

100 190/2.6
(7)
190/28.0

174/4.2
(9)
176/104.4

163/31.1
(35)
165/114.7

155/14.7
(19)
158/184.3

154/1.4
(2)
154/317.4

150 287/9.4
(10)
287/79.5

289/1.1
(1)
289/129.2

249/31.2
(20)
253/367.2

231/57.4
(29)
233/396.0

247/44.7
(19)
248/569.4

200 401/37.8
(15)
404/209.3

349/92.0
(25)
350/297.2

344/63.2
(20)
347/557.5

331/2.3
(1)
334/795.0

321/2.9
(1)
328/857.2

250 460/242.3
(36)
463/323.3

443/142.7
(23)
450/404.1

409/481.6
(50)
445/934.1

423/196.6
(27)
425/1607.5

385/507.2
(52)
389/2354.2

300 580/203.1
(22)
588/333.9

505/446.4
(38)
508/798.8

506/416.0
(34)
512/847.1

500/470.9
(38)
500/1822.0

465/205.8
(32)
466/3012.9

Entry format: BOOM: #of literals+output cost/time in seconds
(# of iterations)

ESPRESSO: #of literals+output cost/time in seconds

4.3. Solution of Very Large Problems

A third group of experiments aims at establishing the limits
of applicabilit y of BOOM. For this purpose, a set of 10-output
functions with up to 1000 input variables and 2000 defined
minterms was generated and solved by BOOM. For problems
with more than 300 input variables ESPRESSO cannot be used
at all . Hence when investigating the limits of applicabilit y of
BOOM, it was not possible to verify the results by any other
method. The results of this test are listed in Tab. 3, where the
time in seconds needed to complete one iteration for various
problem sizes is shown.

Tab. 3. Time for one iteration on very large problems
p/n 200 400 600 800 1000
200 3.67 6.26 9.87 12.79 30.40
400 17.25 28.25 45.44 59.32 156.38
600 42.66 76.54 133.37 235.19 379.94
800 91.77 168.67 300.23 379.36 816.28
1000 157.26 323.58 617.04 781.77 1101.85
1200 325.54 536.09 784.27 970.91 1182.07
1400 492.28 888.56 1181.41 1617.84 1785.01
1600 736.24 1167.49 1606.09 2064.99 2559.53
1800 988.79 1778.00 2457.84 2749.45 3437.51
2000 1488.81 2269.78 3339.00 4107.73 4835.20

4.4. Time Complexity Evaluation

As for most heuristic and iterative algorithms, it is diff icult
to evaluate the time complexity of the proposed algorithm
exactly. We have observed the average time needed to complete

one pass of the algorithm for various sizes of functions. For
simplicity, only single-output functions are studied here. Fig. 4
shows the growth of an average runtime as a function of the
number of care minterms (20-300) where the number of input
variables is changed as a parameter (20-300). The curves in
Fig. 4 can be approximated with the square of the number of
care minterms. Fig. 5 shows the runtime growth depending on
the number of input variables (20-300) for various numbers of
defined minterms (20-300). Although there are some
fluctuations due to the low number of samples, the time
complexity is almost linear.

0 5 0 100 150 200 250 300

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

300

260

220

180

140

100

60

20

T
im

e
[s

]

Terms

Fig. 4: Time complexity (1)

0 50 1 00 150 200 250 300

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

3 00

2 60

2 20

180

140

1 00
6 0

20

T
im

e
[s

]

Input variable s

Fig. 5: Time complexity (2)

6. CONCLUSIONS

The proposed minimization method has several specific
features. The function to be minimized is defined by its on-set
and off-set. Thus the don't care set, which normally represents
the dominant part of the truth table, need not be specified
explicitl y. The entries in the truth table may be minterms or
terms of higher dimensions. The implicants of the function are
constructed by reduction of n-dimensional cubes; hence the
terms contained in the original truth table are not used as a basis
for the final solution.

The properties of the BOOM minimization tool were
demonstrated. Its application is advantageous above all for
problems with large dimensions and a large number of don't
care states where it beats other methods, like ESPRESSO, both
in minimali ty of the result and in runtime. The PI generation
method is very fast, hence it can easily be used in an iterative
manner. However, in most cases it finds the minimum solution
already in one iteration. For example, for most of the standard
benchmark problems the runtime needed to find the minimum
solution on a common PC was non-measurable. The dimension
of the problems solved can be easily increased over 1000,
because the runtime grows linearly with the number of input
variables. For problems of very high dimension, the success
largely depends on the size of the care set. This is due to the fact

that the runtime grows roughly with the square of the size of the
care set.

The BOOM minimizer has been placed on a web page [15],
from where it can be downloaded by anybody who wants to use
it.

Acknowledgment

This research was in part supported by the grant of the Czech
Grant Agency GACR 102/99/1017.

REFERENCES

[1] Brayton, R.K. et al.: Logic minimization algorithms for
VLSI synthesis. Boston, MA, Kluwer Academic Publishers,
1984, 192 pp.

[2] Coudert, O. - Madre, J.C.: Implicit and incremental
computation of primes and essential primes of Boolean
functions, In Proc. of the Design Automation Conf.
(Anaheim, CA, June 1992), pp. 36-39

[3] Coudert, O.: Two-level logic minimization: an overview.
Integration, the VLSI journal, 17-2, pp. 97-140, Oct. 1994.

[4] Fišer, P. –
��� ����� ��	���

��� ���
����� ��� ��������� ��� ��� ����� � !�"����� #� �$%�� !&

incompletely defined Boolean functions, Proc. 4th Int.
Workshop on Boolean Problems, Freiberg, (Germany), Sept.
21-22, 2000, pp. 91-98

[5] Fišer, P. – '�()�*�+ ,�-�)�.0/�1 2436587�(+ 9�)�:�;=<�>07�)�:@?A+ B!:85�<�; C�B�DFE�?A<�D8+ :
the BOOM Minimizer. Proc. IEEE Design and Diagnostics
of Electronic Circuits and Systems Workshop (DDECS’01),
Gyor (Hungary), 18-20.4.2001 (in print)

[6] Hachtel, G.D. - Somenzi, F.: Logic synthesis and
verification algorithms. Boston, MA, Kluwer Academic
Publishers, 1996, 564 pp.

[7] G�H I�J�K L�M�I�N0O�P!Q Fišer, P.: Algorithm for minimization of partial
Boolean functions. Proc. IEEE Design and Diagnostics of
Electronic Circuits and Systems Workshop (DDECS'00),
Smolenice, (Slovakia) 5-7.4.2000, pp.130-133

[8] McCluskey, E.J.: Minimization of Boolean functions. The
Bell System Technical Journal, 35, No. 5, Nov. 1956, pp.
1417-1444

[9] McGeer, P. et al.: ESPRESSO-SIGNATURE: A new exact
minimizer for logic functions. Proc. DAC’93

[10] Nguyen, L. – Perkowski, M. – Goldstein, N.: Palmini – fast
Boolean minimizer for personal computers. In Proc.
DAC’87, pp.615-621

[11] Ostapko, D.L. - Hong, S.J.: Generating test examples for
heuristic Boolean minimization. IBM Journal of Res. &
Dev., Sept. 1974, pp. 459-464

[12] Quine, W.V.: The problem of simpli fying truth functions.
Amer. Math. Monthly, 59, No. 8, 1952, pp. 521-531.

[13] Rudell, R.L. – Sangiovanni-Vincentelli , A.L.: Multiple-
valued minimization for PLA optimization. IEEE Trans. on
CAD, 6(5): 725-750, Sept.1987

[14] Rudell, R.L.: Logic Synthesis for VLSI Design, PhD
Thesis, UCB/ERL M89/49, 1989

[15] http://cs.felk.cvut.cz/~fiserp/boom/
[16] http://eda.seodu.co.kr/~chang/ download/espresso/
[17] ftp://ic.eecs.berkeley.org

