A Heuristic Method of Two-L evel Logic Synthesis

Jan Hlavic¢ka, Petr FiSer
Department of Computer Science and Engineeing
Czedh Technica University
Karlovo nam. 13, 121 3%rague 2
e-mail: hlavicka@fel.cvut.cz, fiserp@fel.cvut.cz

ABSTRACT

An original method of logic function minimization is
presented. Its implementation denoted as BOOM minimizer is
described an evaluated. The method is applicable to the
problems of logic design, artificial intelligence, software
engineering and graph theory, etc.

The innovative feature of the proposed method consists
above all in the top-down approach to implicant generation by
inclusion of literals. The selection of these newly included
literals is based on heuristics using the frequency of literal
occurrence. The proposed method is efficient especially for
functions with several hundreds of input variables, whose values
are defined only for a relatively small part of their range. The
method has been tested on several different problems including
standard design benchmarks, but also on problems of a much
larger dimension, generated randomly. These experiments
proved that the new algorithm is very fast and that for large
circuits it delivers better results than the state-of-the-art
ESPRESSO.

Keywords: Boolean Minimizaion, Logic Design, Implicant
Generation, Heuristics, Covering Problem, PLA

1. INTRODUCTION

The problem of two-level minimization d Boolean functions
is by far not limited to the aea of switching circuit design,
where it was first identified [8, 12]. The new implementation
techndogies of digital circuits like, e.g., multi-level custom
design, FPGAs, and above dl the PLAS require in some phase
this minimizaion, sometimes referred to as PLA minimizaion.
The same problem is encourtered in many other modern
application aress like design o online red-time ntrol
systems, design of built-in self-test equipment for VLSI circuits,
in mathematicd problems like graph coloring [11], during
solution of problems in the aea of artificia intelligence in
software engineaing, etc. These problems are mostly
charaderized by a large number of inpu variables, but by
alimited number of inpu states for which the output value is
determined (care states). The number of dorit care states reades
then astronomicd vaues, and the quality of aminimizaion
method is thus determined by its ability to take alvantage of
their existence withou enumerating them. Hence the propaosed
method accepts functions defined by on-set and off-set, whereas
the don't care set is defined implicitly. An efficient minimization

method must be further able to cope with the existence of large
number of prime implicants (PIs) of the given function, while
most of them are not neeaded for the minimal solution.

There ae scores of texts treding the problem of Boolean
minimization, hence it is impossble even to mention them.
Some bodks like eg. [1, 6] give agood survey of the important
methods and their lists of references can be used as pointers to
most of the important papers. Although these methods differ in
many pradicad aspeds, they mostly preserve the main feature of
the origina method, namely the use of two besic phases known
as Pl generation and covering problem (CP) solution. Some
more modern methods, including the well-known ESPRESSO
[1, 6] with its later improvements ESPRESSO-EXACT and
ESPRESSO SIGNATURE [9], combine these two phases,
reducing the number of implicantsto be processed.

A sort of combination of Pl generation with the solution of
the CP, lealing to a reduction in the total number of prime
implicants generated, is aso used in the BOOM (BOOlean
Minimization) approach proposed here. However, the principal
improvement consists in speeding up Pl generation by applying
the top-down approach instead of the commonly used batom-up
approadh. Thusinstead of starting from some 1-minterm (whose
seledion mostly represents the key innovative ideain different
minimization methods), and increasing its dimension by
deleting some literals, we reduce the n-dimensional hypercube
by adding literalsto itsterm, until it becomes an implicant of the
given function. Anather - maybe even more important - fedure
of the new method is the fad, that the terms (be it minterms or
terms of higher dimension) given in the definition of the
function to be minimized, are not used as abasis for the
solution. This means that the minimal solution is not influenced
by the primary solution and can be mmpletely independent of
any impli cants deli vered within the input data.

The basic principles of the proposed method were published
in [7], the structure of the BOOM system in [4] and the
implicant expansion method was presented in [5]. The present
paper introduces me new amendments of the method
introduced into the system in oder to adciieve a higher
performance. BOOM was programmed in Borland C++ Builder
and tested under MS Windows NT.

The paper has the following structure. After a forma
problem statement in Sedion 2 the structure of the BOOM
system is presented in Sedion 3 together with the most
important algorithms used for the solution of individual phases
of the minimization. The results of experimental verification o
the BOOM system are evaluated and commented in Sedion 4.

2. THE PROBLEM OF LOGIC SYNTHESIS

We will be solving the standard problem of two-level
minimizetion [1, 6]. A Boolean function of ninput variables is
defined by atruth table describing the on-set F(xy, X, ... X,) and
off-set R(xy, X, ... Xy). Here the on-set (off-set) is the set of
terms to which the output value 1 (0) is assgned. We will
asume that both minterms and terms of higher dimension may
be used for defining the on-set and off-set. This means that
individual lines of the truth table may contain don't care entries
in the input portion. The terms not represented in the input field
of the truth table ae implicitly asggned dorit care values of the
output function, i.e., they represent the don’t care set D(xq, X,
... Xy). Listing the two care sets instead of an on-set and a don't
cae set, which is usual, e.g., in MCNC benchmarks, is more
pradicd for problems where n is of the order of hundreds,
becaise there the size of the don't care set usudly largely
exceeds all other sets.

Our task is to formulate asynthesis algorithm producing a
sum-of-prodicts expresson G = gy+g,+...+g, where F 0 G O
F+D and t is minimal. In case of a set of m functions we will
minimize the total number of implicants of al functions, while
some of them can be used for more output functions. According
to this gedfication, the number of product terms (implicants) is
used as a universal quality criterion. Thisis mostly justified, but
it should be kept in mind that the measure of minimality must
correspond to the needs of the intended appli cation. ESPRESSO
uses the sum of the number of literals and the number of inputs
into all output OR gates (also denoted as the output cost).

3. PRINCIPLE OF THE METHOD
3.1. BOOM Structure

Like most other Boodlean minimization algorithms, BOOM
consists of two major phases. generation of implicants (Pls for
single-output functions, group implicants for multi-output
functions) and the subsequent solution of the @vering
problem. The generation d implicants consists of two steps:
first the Coverage-Direded Search (CD-Search) generates a
sufficient set of implicants needed for covering the given
function and these ae then passed to the Implicant Expansion
(IE) phase, which converts theminto Pls.

The BOOM system improves the quality of the solution by
repeding the implicant generation plese several times and
recording all different impli cants that were found. At the end of
ead iteration we have aset of implicants that is wufficient for
covering the function. In eat following iteration, another
sufficient set is generated and rew implicants are added to the
previous ones (if the solutions are not equal). After that the
covering problem is lved using all obtained primes using the
heuristic method suggested in [3, 14].

3.2. Coverage-Directed Search

The idea of combining implicant generation with the
covering problem solution gave rise to the cverage-direded
seach (CD-seach) method wsed in the BOOM system. This
consists in a direded seach for the most suitable literals that
shoud be alded to some previously constructed term. Thus
instead of increasing the dimension d an implicant starting from
a 1-minterm, we reduce the n-dimensional hypercube by adding
literals to its term, until it becomes an implicant of the given

function. This happens at the moment when this hypercube does
not intersed with any O-term.

The implicant generation method ams at finding a
hypercube that covers as many 1-terms as posshle. To do this,
we start implicant generation by seleding the most frequent
input literal from the given onset. The seleded literal describes
an n-1 dimensiona hypercube, which may be an implicant, if it
does not intersed with any O-term. If there ae some O-minterms
covered, we ad ore literal and verify whether the new term
already corresponds to an implicent by comparing it with all
O-terms. We ontinue alding literals until an implicant is
generated, then we record it and start seaching for other
impli cants.

During the CD-seach, the key facor isthe dficient seledion
of literals to be included into the term under construction. After
ead literal seledion we temporarily remove from the on-set the
terms that cennat be wvered by any term containing the
seleded literal. These ae the terms containing that literal with
the opposite polarity. In the remaining on-set we find the most
frequent literal and include it into the previously found product
term. Again we @mpare this term with all 0-terms and ched if
it is an implicant. After obtaining an implicant, we remove from
the original on-set the terms covered by this implicant. Thus we
obtain a reduced on-set containing only uncovered terms. Now
we repeat the procedure from the beginning and apply it to the
uncovered terms, seleding the next most frequently used literal,
until the next implicant is generated. In this way we generate
new implicants, until the whole on-set is covered. The output of
this algorithm is a set of product terms covering all 1-terms and
nat interseding with any O-term.

When seleding the most frequent litera, it may happen that
two or more literals have the same frequency of occurrence In
these caes we seled a literal that makes an implicant from the
current term. When there ae till more possgbiliti es to choose
from, oneis sleded at random.

3.3. Implicant Expansion (I E)

The disadvantage of the CD-seach is that it is greedy and
the @nstructed implicants need not be prime. To increase the
chancethat fewer implicants will be needed to cover al 1-terms
of the given function, we have to increae their size by IE,
which means by removing literals (variables) from their terms.
When noliteral can be removed from the term any more, we get
aPl.

The expansion d implicants into Pls can be done by severa
methods differing in complexity and quality of results obtained.
We tested severa approaches, from the simplest sequentia
seach (which is linea) to the most complex exhaustive
(exporential) seach.

A sequential Search systematicdly tries to remove from
ead term al literals one by one, wheress the first literal is
chosen randomly. Every removal is made permanent if no
O-minterm is covered. Only one Pl is generated from each
implicant, even if it could yield more Pls. A Sequential Seach
obviously does nat reduce the number of product terms. On the
other hand, experimental results show that it reduces the number
of literals by approximately 25%.

With a Multiple Seguential Search we try all possble
starting positions within an implicant, which thus leals to

expansion into several Pls. This method poduces more primes
than a Sequential Seach, while the time mplexity is
acceptable.

Even the Multiple Sequentia Seach algorithm canna
expand an implicant into al possble Pls. To do so, an
Exhaustive Implicant Expansion must be used. Using
reaursion a queue, al posshle literal removals are then tried
until all primes are obtained. Unfortunately, the complexity of
this algorithm is exporential.

3.4. Minimizing M ulti-Output Functions

To minimize multi-output functions, only a few
modifications of the dgorithm need to be made. First, eat of
the output functions is treated separately: the CD-search and IE
phases are performed. After that, we have aset of Pls sifficient
for covering al m functions. However, to obtain the minimum
solution we may need groupimplicants, i.e., implicants of more
than ore output function that are not primes of any. Here, the
next part of minimization— I mplicant Reduction - takes place

All obtained primes are tried for reduction (by adding some
literals) in order to become impli cants of more output functions.
The method d implicant reduction is smilar to a CD-seach.
Literals are repetitively added to ead term until there is no
chance that the implicant will be used for more functions. We
prefer literals that prevent interseding with most of the terms of
the off-sets of all functions (i.e., covering the least zeros). When
no further reduction yields any possble improvement, the
reduction is gopped and the implicant is recorded. If aterm no
longer interseds with the off-set of any function, it becomes its
implicant. All implicants that were ever found are stored,
assgned to the output functions and then the Group Covering
Problem is lved.

As a solution o the wvering problem we get a set of
impli cants needed to cover al output functions. For ead ouput
we may find al implicants that do rot intersea the off-set of the
output function. However, to generate the required output
values, some of these implicants may not be necessary. These
implicants would creae redundant inputs into the output OR
gates. Sometimes thisis harmless(e.g., in PLAS), or it can even
prevent hazads. Nevertheless for hardware-independent
minimization the redundant outputs should be removed. Thisis
dore & the end of the minimization by solving m covering
problems once aain (for ead ouput function independently).

3.5. Iterative Minimization

Most current heuristic Boolean minimization tools, including
ESPRESSDO, wuse deterministic dgorithms. Here the
minimization process aways leals to the same solution, never
mind hav many times it is repeaed. On the ntrary, in the
BOOM system the result of minimization depends to a cetain
extent on random events, becaise when there ae severa equa
possbilities to choose from, the dedsion is made randomly.
Thus there is a dhance that repeaed applicaion o the same
procedure to the same problem would yield dfferent solutions.

The iterative minimizaion concept takes advantage of the
fact that ead iteration produces a new set of implicants
satisfadory for covering al minterms of al output functions.
The set of implicants gradualy grows until a maximum

reatable set is obtained. The typicd growth o the size of a Pl
set as a function o the number of iterationsis sown in Fig. 1
(thin line). This curve plots the values obtained during the
solution of a problem with 20 input variables and 200 minterms.
Theoreticdly, the more primes we have, the better the solution
that can be found, but the maximum set of primes is often
extremely large. In redity, the quality of the fina solution
improves rapidly during the first few iterations and then remains
unchanged, even though the number of Pls grows further. This
fact cen be observed in Fig. 1 (thick line).

16000
14000
12000 |- T H 110
10000

- 100

8000 -

sfesai]

6000 -

Prime Implicants

4000 -

2000 | Literals

L L
10000 20000 30000

Iterations

Fig. 1: Growth of PI number and decrease of SOP length
during iterative minimization

From the curves in Fig. 1 it is obvious that selecting a
suitable moment T1 for terminating the iterative process is of
key importance for the efficiency of the minimization. The
approximate position of the stopping point can be found by
observing the relative change of the solution quality during
several consecutive iterations. If the solution does not change
during a certain number of iterations (e.g., twice as many
iterations as were needed for the last improvement), the
minimization is stopped. The amount of elapsed time may be
used as an emergency exit for the case of unexpected problem
size and complexity.

3.6 Accelerating Iterative Minimization

When the CD-search phase is repeated, identical implicants
are quite often generated in various iterations. These are then
passed to the Implicant Expansion phase, which might be
unnecessarily repeated. To prevent this, al implicants that were
ever produced by the CD-search are stored in the I-buffer
(Implicant buffer). Each new implicant is looked up in this
buffer, and if it is already present its further processing is
stopped. A schematic plan of the whole minimization algorithm
for a multi-output function is shown in Fig. 2.

YES
- - Implicant Implicant Covering Output -
.w CD—Search H Expansion H Reduction Solution Reduction

T NO

Fig. 2: Schematic plan of iterative minimization

First, the CD-search generates the set of implicants necessary
for covering the function. These are looked up in the I-buffer.
Implicants that are not present there are stored both in the
I-buffer and E-buffer (Expansion buffer). Implicants aready
present are discarded. The E-buffer serves as a storage of
implicants that are candidates for expansion into Pls. After
expansion, the implicants are removed from the E-buffer. Then
they are reduced to group implicants and the newly created
group implicants are stored in the P-buffer (after duplicity and
dominance checks). Finally, the covering problem is solved
using the primes from the P-buffer.

The main implementation requirement for the I-buffer is its
high look-up speed. Thus it was implemented as a ternary tree
whose depth is equal to n. At the k-th level of the tree the
direction is chosen according to the polarity (0,1,-) of the k-th
variable in the searched term. The presence of a term is
represented by the existence of its corresponding leaf. The tree
is dynamically constructed during the addition of implicants. An
example of such atreeisshownin Fig. 3.

Fig. 3: I-buffer tree example

The example shows the structure of a threevariable I-buffer
containing terms 0-0, 10- and 11-. If e.g., term 0-1 is looked for,
the seach will fail i n the node 0- where no peth leadingto 0-1 is
present. The maximum number of steps needed to look up or to
insert a term is equa to n. The E-buffer and P-buffer are
represented as alinea linked list.

4. EXPERIMENTAL RESULTS

Extensive eperimental work was dore to evauate the
efficiency of the proposed agorithm, espedally for problems of
large dimensions. Both runtime in seconds and result quality
were evaluated. The processor used was a Celeron 433 MHz
with 160 MB RAM. The quality of the results was measured by
three parameters. total number of literals, output cost and
number of product terms (implicants). Three groups of
experiments, listed in the following three subsedions, were
performed.

4.1. Solution of MCNC Benchmark Problems

First a group o MCNC benchmark problems was lved by
ESPRESSO 2.3 [16] and by BOOM [15]. The results of the
comparison are shown in Tab. 1. The wlumn n/nmVp contains the
parameters of the problem, namely the number of inpus,
outputs and care terms. The benchmarks appeaing in the table
were solved by BOOM in ore pass hence the runtimes are very
short (the 0.01 sec vaue in most cases indicaes a non-
measurable runtime). Tab. 1 shows that problems with a large

number of defined terms (p) were often solved by ESPRESSO
in shorter time. This is due to the quadratic dependence of
runtime on the number of termsin BOOM (see Subsedion 4.4).
In al these examples the qudity of solutions was equal, in ore
case BOOM gave even better result than ESPRESSO. These
solutions reatied by BOOM and ESPRESSO are probably the
minimum ones.

Tab. 1. MCNC Benchmark problems

ESFRESSO BOOM
Bench n/m/p time| lit/out/impl | time| lit/out/impl
9sym 9/1/158 0.12 | 516/86/86 0.05 | 516/86/86
al2 16/47/139 | 0.15| 324/103/66 | 0.66 | 324/103/66

Alul 12/8/39 0.10] 41/1919 0.01| 41/1919

Alu2 10/8/241 0.20 | 268/79/68 0.04 | 268/79/68

b9 16/5/292 0.18 | 754/119/119 | 0.25 754/119/119
brl 12/8/107 0.12 | 206/48/19 0.02 | 206/48/19
br2 12/8/83 0.11 | 134/38/13 0.01 | 134/38/13
Clpl 11/5/40 0.12 | 55/20/20 0.01 | 55/20/20
Conl 7/2/18 0.10| 23/9/9 0.01] 23/9/9

dcl 417125 0.12 | 27/27/9 0.01 | 27/27/9

dc2 8/7/101 0.13| 207/52/39 0.01 | 206/51/39
dk27 9/9/24 0.10 | 31/1510 0.01 | 31/1510
dk48 15/17/64 0.24 | 115/28/22 0.02 | 115/28/22
ex? 16/5/292 0.19| 754/119/119 | 0.22 | 754/119/119
in7 26/10/142 | 0.14 | 337/90/54 0.13 | 337/90/54
Max46 9/1/155 0.14 | 395/46/46 0.03 | 395/46/46
Misexl | 8/7/41 0.12 | 51/4512 0.01 | 51/4512

Newpla | 12/10/60 0.14 | 74/2817 0.02 | 74/128/17

Newplal | 17/2/25 0.15| 64/12/10 0.01 | 64/12/10

Newpla2 | 10/4/26 0.18 | 42/7/7 0.01 | 42177
Newbyte | 5/8/16 0.17 | 40/8/8 0.01 40/8/8
Newcond | 11/2/72 0.16 | 208/31/31 0.01 | 208/31/31
Newcwp | 4/5/24 0.18]| 31/1911 0.01] 31/1911
Newill 8/1/18 0.13 | 42/8/8 0.01 | 42/8/8
Newtag | 8/1/12 0.16 | 18/8/8 0.01 18/8/8
Newtpla | 15/5/63 0.15] 176/23/23 0.01] 176/23/23
Newtplal | 10/2/15 0.16 | 33/4/4 0.01 | 33/4/4
Newtpla2 | 10/4/26 0.19| 54/159 0.01| 54/15/9

p82 5/14/74 0.17 | 93/56/21 0.02 | 93/56/21
rd53 5/3/67 0.09 | 140/35/31 0.01 | 140/35/31
rd73 7131274 0.14 | 756/147/127 | 0.08 | 756/147/127
san2 10/4/137 0.11 | 421/75/58 0.04 | 421/75/58
sort8 8/4/66 0.11 | 144/44138 0.01 | 144/44/38
squars 5/8/65 0.12 | 87/32/25 0.01 | 87/32/25
vg2 25/8/304 0.15| 804/110/110 | 0.47 | 804/110/110
Xor5 5/1/32 0.08 | 80/16/16 0.01 | 80/16/16

4.2. Test Problemswith n>100

The MCNC benchmarks have relatively few inpu terms and
few input variables (n never excealds 128 and also have asmall
number of dont cae terms. In order to compare the
performance and result quality achieved by the minimizaion
programs on larger problems, a set of problems with upto 300
input variables and up to 300 minterms were solved. The truth
tables were generated by a random number generator, for which
only the number of inpu variables, number of care terms and
number of dor't caresin the input portion of the truth table were
spedfied. The number of outputs was st equal to 5. The on-set
and off-set of each function were kept spproximately of the
same size First, the problem was lved by ESPRESSO and
then by BOOM, which ran urtil the solution of the same or

better quality was reached. The quality criterion seleded was
the sum of the number of literals and the output cost. For all
samples the same or better solution was found tly BOOM in
much shorter time than by ESPRESSO.

Tab. 2. Solution of problems with n>100

p/n 100 150 200 250 300

50 | 92/0.1 83/0.1 77/0.6 77/0.4 75/8.7

@ @ 4 @ 39
92/7.2 | 84/200 |88/428 |77/51.3 | 76/110.7

100 | 190/2.6 174/4.2 163/31.1 | 155/14.7 154/1.4

v © 39 (19 @
190/280 | 176/104.4 | 165/114.7 | 158/184.3 | 154/317.4

150 | 287/9.4 [289/1.1 |[249/31.2 |23L/57.4 | 247/44.7
(10) @ (20) 29 (19
287/79.5 | 289/129.2 | 253/367.2 | 233/396.0 | 248/569.4

200 | 401/37.8 | 349/92.0 |344/63.2 |331/2.3 321/2.9

(159 (29 (29 @ @
404/209.3 | 350/297.2 | 347/557.5 | 334/795.0 | 328/857.2

250 | 460/242.3 | 443/142.7 | 409/481.6 | 423/196.6 | 385/507.2
(36 (23 (59) @7 (52
463/323.3 | 450/404.1 | 445/934.1 | 425/1607.5 | 389/2354.2

300 | 580/203.1 | 505/446.4 | 506/416.0 | 500/470.9 | 465/205.8
(22 (39 (39 (39 (32
588/333.9 | 508/798.8 | 512/847.1 | 500/1822.0 | 466/3012.9

Entry format: BOOM: #of literals+output cost/time in seconds
(# of iterations)

ESPRESSO: #of literal s+ output cost/time in seconds

4.3. Solution of Very Large Problems

A third group of experiments aims at establi shing the limits
of applicability of BOOM. For this purpose, a set of 10-output
functions with up to 1000 input variables and 2000 defined
minterms was generated and solved by BOOM. For problems
with more than 300 input variables ESPRESSO cannot be used
a al. Hence when investigating the limits of applicability of
BOOM, it was not posshle to verify the results by any other
method The results of this test are listed in Tab. 3, where the
time in seconds nealed to complete one iteration for various
problem sizesis shown.

Tab. 3. Time for one iteration on very large problems
p/n 200 400 600 800 1000
200 |3.67 6.26 9.87 12.79 30.40
400 | 17.25 28.25 45.44 59.32 156.38
600 | 42.66 76.54 13337 [23519 [379.94
800 |91.77 168.67 [300.23 [379.36 [816.28
1000 | 157.26 323.58 617.04 781.77 1101.85
1200 | 32554 [536.09 |78427 [97091 |118.07
1400 | 492.28 888.56 118141 |1617.84 |1785.01
1600 | 736.24 | 1167.49 |1606.09 |2064.99 | 2559.53
1800 | 988.79 1778.00 |2457.84 | 274945 | 343751
2000 | 1483.81 | 2269.78 | 3339.00 | 4107.73 | 4835.20

4.4. Time Complexity Evaluation

As for most heuristic and iterative dgorithms, it is difficult
to evaluate the time cmplexity of the proposed algorithm
exadly. We have observed the arerage time needed to complete

one pass of the dgorithm for various gzes of functions. For
simplicity, only single-output functions are studied here. Fig. 4
shows the growth of an average runtime & a function d the
number of care minterms (20-300) where the number of input
variables is changed as a parameter (20-300). The airves in
Fig. 4 can be gproximated with the square of the number of
cae minterms. Fig. 5 shows the runtime growth depending on
the number of input variables (20-300) for various numbers of
defined minterms (20-300). Althowgh there ae some
fluctuations due to the low number of samples, the time
complexity isamost linea.

080
075 300
070
065 260
060
055
050 180
045
040 140
035
030 100
025
020 60
015
010 20
005

Time(s]

0,00 =
o 50 100 150 200 250 300

Fig. 4: Time complexity (1)

080
075
070
065
060

30
055 26
22
18

0
0
050
045
0,40
0
035
030
025 0
0.20
015 140
010 /_/_/—/100
20

0,05
0,00

Time[s]

)

o 50 100 150 200 250 300

Input variable s

Fig. 5: Time complexity (2)

6. CONCLUSIONS

The proposed minimization method hes svera spedfic
features. The function to be minimized is defined by its on-set
and df-set. Thus the don't care set, which namally represents
the dominant part of the truth table, need not be spedfied
explicitly. The entries in the truth table may be minterms or
terms of higher dimensions. The implicants of the function are
constructed by reduction of n-dimensional cubes; hence the
terms contained in the original truth table ae not used as a basis
for the final solution.

The properties of the BOOM minimization tool were
demonstrated. Its applicaion is advantageous above dl for
problems with large dimensions and a large humber of don't
care states where it bedas other methods, like ESPRESS0, both
in minimality of the result and in runtime. The Pl generation
method is very fast, hence it can easily be used in an iterative
manner. However, in most cases it finds the minimum solution
alrealy in ore iteration. For example, for most of the standard
benchmark problems the runtime needed to find the minimum
solution on a @mmon PC was nonmeaurable. The dimension
of the problems ®lved can be eaily increased over 1000,
because the runtime grows linealy with the number of input
variables. For problems of very high dmension, the success
largely depends on the size of the cae set. Thisisdue to the fad

that the runtime grows roughly with the square of the size of the
care set.

The BOOM minimizer has been placal on a web page [15],
from where it can be downloaded by anybody who wants to use
it.

Acknowledgment

Thisreseach wasin part supported by the grant of the Czech
Grant Agency GACR 102/99/1017.

REFERENCES

[1] Brayton, RK. et al.: Logic minimization agorithms for
VLSI synthesis. Boston, MA, Kluwer Academic Publi shers,
1984, 192 pp

[2] Coudert, O. - Madre, JC.: Implicit and incremental
computation o primes and esential primes of Boolean
functions, In Proc. of the Design Automation Conf.
(Anaheim, CA, June 1992), pp. 36-39

[3] Coudert, O.: Two-level logic minimizaion: an overview.
Integration, the VLSI journal, 17-2, pp. 97-140, Oct. 1994.

[4] Fi%er, P. — Hlavicka, J.: Efficient minimization method for
incompletely defined Boolean functions, Proc. 4th Int.
Workshopon Boolean Problems, Freiberg, (Germany), Sept.
21-22, 2000, pp. 91-98

[5] Figer, P. — Hlavi¢ka, J.: Implicant expansion method used in
the BOOM Minimizer. Proc. IEEE Design and Diagnostics
of Eledronic Circuits and Systems Workshop (DDECS 01),
Gyor (Hungary), 18-20.4.2001 (in print)

[6] Hadtel, G.D. - Somenzi, F.. Logic synthesis and
verificdion algorithms. Boston, MA, Kluwer Academic
Publishers, 1996, 564 pp

[7] Hlavicka, J. - FiSer, P.: Algorithm for minimizaion d partia
Bodlean functions. Proc. IEEE Design and Diagnostics of
Eledronic Circuits and Systems Workshop (DDECS00),
Smolenice (Slovakia) 5-7.4.2000, pp.130-133

[8] McCluskey, E.J.: Minimizaion o Boolea functions. The
Bell System Technicd Journal, 35, No. 5, Nov. 1956, pp.
1417-1444

[9] McGeg, P. et d.: ESPRESSO-SIGNATURE: A new exad
minimizer for logic functions. Proc. DAC'93

[10] Nguyen, L. — Perkowski, M. — Goldstein, N.: Pamini — fast
Bodean minimizer for personad computers. In Proc.
DAC' 87, pp.615-621

[11] Ostapko, D.L. - Hong, S.J.: Generating test examples for
heuristic Boolean minimizaion. IBM Journal of Res. &
Dev., Sept. 1974, pp. 459-464

[12] Quine, W.V.: The problem of simplifying truth functions.
Amer. Math. Monthly, 59, No. 8, 1952, pp. 521-531.

[13] Rudel, R.L. — Sangiovanni-Vincentelli, A.L.: Multiple-
valued minimization for PLA optimization. IEEE Trans. on
CAD, 6(5): 725-750, Sept.1987

[14] Ruddl, R.L.: Logic Synthesis for VLSl Design, PhD
Thesis, UCB/ERL M89/49, 1989

[15] http://cs.felk.cvut.cz/~fiserp/boom/

[16] http://eda.seodu.co.kr/~chang/ download/espresso/

[17] ftp://ic.eecs.berkeley.org

