I mplicant Expansion Methods Used in The Boom Minimizer

Petr FiSer, Jan Hlavi¢ka
Department of Computer Science and Engineering
Czech Technical University
Karlovo ndm. 13, 121 35 Prague 2
e-mail: fiserp@fel.cvut.cz, hlavicka@fel.cvut.cz

Abstract

The principles and functional properties of a new Boolean minimization system BOOM are presented.
The paper concentrates above all on one of the key phases of the minimization, namely the implicant
expansion. Different expansion techniques and strategies are presented and compared. Their properties are
evaluated above all from the point of view of overall performance measured by the quality of the result and
the time needed to reach it.

The resulting minimization method is efficient especially for functions with several hundreds of input
variables, whose values are defined only for a small part of their range. The BOOM minimization tool has
been tested on an extensive set of problems, which proved that for large problems the new algorithm
delivers better results than the state-of-the-art ESPRESSO, and that the size of problems to which it is
applicable by far exceeds that of ESPRESSO.

1. INTRODUCTION

The problem of two-level minimization of Boolean functions is old, but surely not dead. It is encountered in many
design environments, e.g., multi-level logical design, FPGA design, etc. In addition, it isatool for the solution of problems
in the area of artificial intelligence, software engineering, etc. The minimization methods started with the papers by Quine
and McCluskey [6], [9], which formed the basic two phases known as prime implicant (Pl) generation and covering
problem (CP) solution. Some more modern methods, including the well-known ESPRESSO [13], [4] try to combine these.
This is motivated above all by the fact that the problems encountered in modern application areas like design of control
systems, design of built-in self-test equipment, etc., often require minimization of functions with hundreds of input
variables, where the number of Pls is prohibitively large. Also the number of don't care states is mostly so large that
modern minimization methods must be able to take advantage of al don’t care states without enumerating them.

One of the most successful Boolean minimization methods is ESPRESSO and its later improvements. The original
ESPRESSO generates near-minimal solutions, as can be seen from the comparison with the results obtained by using
alternative methods — see Section 6. ESPRESSO-EXACT [10] was developed in order to improve the quality of the
results. The improvement consisted above all in combining the Pl generation with set covering. Finally, ESPRESSO-
SIGNATURE [7] was developed, accelerating the minimization by reducing the number of prime implicants to be
processed by introducing the concept of a“signature”.

A combination of Pl generation with solution of the CP, leading to a reduction of the total number of Pls generated, is
aso used in the BOOM (BOOIlean Minimization) approach proposed here. The most important difference between the
approaches of ESPRESSO and BOOM is the way they work with the on-set received as function definition. ESPRESSO
uses it as an initial solution, which has to be modified (improved) by expansions, reductions, etc. BOOM, on the other
hand, uses the input sets (on-set and off-set) only as areference, which determines whether a tentative solution is correct or
not. This allows us to remain to a great extent independent of the properties of the original function coverage. The second
main difference is the top-down approach in generating implicants. Instead of expanding the source cubes in order to
obtain better coverage, BOOM reduces the universal hypercube until it no longer intersects the off-set while the coverage
of the source function is satisfied. The basic principles of the proposed method and the BOOM algorithms were published
in some previous reports [3], [5]. The present BOOM system was constructed using the same approach, but we added
some new heuristics allowing us to control the iterative mode in order to meet the quality reguirements and runtime
limitations. BOOM was programmed in Borland C++ Builder and tested under MS Windows NT.

This paper has the following structure. After a formal problem statement in Section 2, the principles of the proposed
method and its implementation in the BOOM system are described in Section 3. The initial generation of implicants is
described in Section 4 and their expansion into prime implicants is studied in Section 5. Experimental results are evaluated
and commented in Section 6.

2. PROBLEM STATEMENT

Let us have a set of m Boolean functions of n input variables Fi(X3, X, ... Xn), Fo(X, X2y <. Xa), «o- Fie(X1, X2, --. Xy), WhOSE
output values are defined by truth tables. These truth tables describe the on-set Fi(xy, Xo, ... X,) and off-set Ri(Xg, X, ... Xp)
for each of the functions £. The terms not represented in the input field of the truth table are implicitly assigned don't care

values for the corresponding output function, i.e., they represent the don’t care set Di(Xy, Xo, ... Xy). Listing the two care
sets instead of an on-set and a don’t care set, which is usual, e.g., in MCNC benchmarks, is more practical for problems
with a large number of input variables, because in these cases the size of the don't care set largely exceeds the two care
sets. We will assume that n is of the order of hundreds and that only a few of the 2" minterms have an output value
assigned, i.e., the mgjority of the minterms are don't care states.

Our task is to formulate a synthesis algorithm which will for each output function £ produce a sum-of-products
expression Gi=g;+gs+...+gi, where K, 0 G; and G; n R, = 0. The expression G should be kept minimal, whereas the
criterion of minimality (number of product terms, number of literals, output cost, etc.) can be chosen in accordance with
the intended application.

3. PRINCIPLE OF THE METHOD
3.1 BOOM Structure

Like most other Boolean minimization algorithms, BOOM consists of two major phases: generation of implicants (Pls
for single-output functions, group implicants for multi-output functions) and the subsequent solution of the covering
problem. The generation of implicants consists of two steps: first the Coverage-Directed Search (CD-Sear ch) generates
a sufficient set of implicants needed for covering the source function and these are then passed to the Implicant
Expansion (I E) phase, which convertsthem into PIs.

The BOOM system improves the quality of the solution by repeating the implicant generation several times, and
records al different implicants that were found. Then the CP is solved using all obtained primes. A simple agorithm was
used for solving the CP at this stage. It is based on some heuristics, which prefer Pls covering 1-terms covered by the
lowest number of other implicants and those covering the highest number of yet uncovered 1-terms.

Multi-output functions are minimized in a similar manner. Each of the output functions is first treated separately; the
CD-search and |E phases are performed in order to produce primes covering al output functions. However, to obtain the
minimal solution, we may need implicants of more than one output function that are not primes of any. Here, I mplicant
Reduction takes place. Then the Group Covering Problem is solved and Output Reduction (corresponding to the
ESPRESSO’'s MAKE_SPARSE procedure [4]) is performed.

3.2 Iterative Minimization

Most current heuristic Boolean minimization tools, including ESPRESSO, use deterministic algorithms. Here the
minimization process always leads to the same solution, never mind how many times it is repeated. On the contrary, in the
BOOM system the result of minimization depends to a certain extent on random events, because when there are several
equal possibilities to choose from, the decision is made randomly. Thus there is a chance that repeated application of the
same procedure to the same problem would yield different solutions.

The iterative minimization concept takes advantage of the fact that each iteration produces a new set of implicants
satisfactory for covering all minterms of al output functions. The set of implicants gradually grows until a maximum
reachable set is obtained. The typical growth of the size of a Pl set as a function of the number of iterations is shown in
Fig. 1 (thin line). This curve plots the values obtained during the solution of a problem with 20 input variables and 200
minterms. Theoretically, the more primes we have, the better the solution that can be found. In redlity, the quality of the
final solution improves rapidly during the first few iterations and then remains unchanged. This fact can be observed in
Fig. 1 (thick line).

16000 -
14000 |-
12000 |-
10000 |-

8000 -

slesay

6000 -

Prime Implicants

a0 | |7

2000 - |l

Literals
Bl

n L L
10000 20000 30000

Iterations

Fig. 1: Growth of Pl number and decrease of SOP length during iterative minimization

The whole iterative minimization process can be described by the following pseudo-code. The inputs are the on-sets F;
and off-sets R; of the m functions, the output is a minimized disunctive form G of all £.

BOOM F[1..n], R1..n]) {

G=10
do
I =0
for (i =1; i < n; i++)
I’ CD_Search(F[i], Ril)
Expan(l)
Reduce(!l’, R 1..n])
=1 01"

G = Goup_cover(l, F[1..n])
Reduce_output (G, F[1..n])
if (Better(G, Q) then G=G
until (stop)
return G

}
3.3 Accelerating Iterative Minimization

When the CD-search phase is repeated, identical implicants are quite often generated in different iterations. These are
then passed to the Implicant Expansion phase, which might be unnecessarily repeated. To prevent this, all implicants that
were ever produced by the CD-search are stored in the |-buffer (Implicant buffer). Each new implicant is looked up in this

buffer, and if it is already present, its further processing is stopped. A flow diagram of the whole minimization algorithm
for a multi-output function is shownin Fig. 2.

- Implicant Implicant Covering Output -
CD-Search 1= o bansion || Reduction Solution | ~] Reduction
NO

[

Fig. 2: Iterative minimization schematic plan

The CD-search generates the set of implicants necessary for covering the function. Each implicant is first looked up in
the I-buffer and, if it is not present, it is stored both in the I-buffer and E-buffer (Expansion buffer). Otherwise it is
discarded. The E-buffer serves as a storage of implicants that are candidates for expansion into Pls and after expansion
they are removed. Then primes are reduced to group implicants and stored in the P-buffer. Finally, the covering problem is
solved using the implicants from the P-buffer.

The main implementation requirement for the I-buffer is its high look-up speed,
hence it is structured as a ternary tree whose depth is equal to n. At the k-th level of
the tree the direction is chosen according to the polarity (0, 1, -) of the k-th variable
in the searched term. The presence of a term is represented by the existence of its
corresponding leaf. The tree is dynamically constructed during the addition of
implicants. An example of such atreeisshownin Fig. 3.

. L. Fig. 3: I-buffer tree structure
The example shows the structure of a three-variable I-buffer containing terms

0-0, 10- and 11-. If, e.g., term 0-1 is looked for, the search will fail in the node O-
where no path leading to 0-1 is present.

The maximum number of steps needed to look up or to insert a term is equal to n. The E-buffer and P-buffer are
represented as linear linked lists.

4. COVERAGE-DIRECTED SEARCH

The idea of combining implicant generation with the covering problem solution gave rise to the coverage-directed
search (CD-search) method used in the BOOM system. This consists in a directed search for the most suitable literal s that
should be added to some previoudy constructed term. Thus instead of increasing the dimension of an implicant starting
from a 1-minterm, we reduce an n dimensional hypercube by adding literals to its term, until it becomes an implicant of A.
This happens at the moment when this hypercube does not intersect with any O-term. The implicant generation method
aims at finding a hypercube that covers as many 1-terms as possible. To do this, we start implicant generation by selecting
the most frequent input literal from the given on-set. The selected literal describes an n-1 dimensional hypercube, which
may be an implicant, if it does not intersect with any O-term. If there are some O-minterms covered, we add one literal and

verify whether the new term already corresponds to an implicant. We continue adding literals until an implicant is
generated, then we record it and start searching for other implicants.

During the CD-search, the key factor is the efficient selection of literals to be included into the term under construction.
After each literal selection we temporarily remove from the on-set the terms that cannot be covered by any term containing
the selected literal. These are the terms containing that literal with the opposite polarity. In the remaining on-set we find
the most frequent literal and include it into the previously found product term. Again we compare this term with al O-
terms and check if it is an implicant. After obtaining an implicant, we remove from the original on-set those terms that are
covered by thisimplicant. Thus we obtain areduced on-set containing only uncovered terms. Now we repeat the procedure
from the beginning and apply it to the uncovered terms, selecting the next most frequently used literal, until the next
implicant is generated. In this way we generate new implicants, until the whole on-set is covered. The output of this
agorithm isa set of product terms covering all 1-terms and does not intersect with any O-term.

The basic CD-search algorithm can be described by the following function in pseudo-code. The inputs are the on-set (F)
and the off-set (R), and the output is the sum of products (H) that covers the given on-set.

CD _Search(F, R {

H=0 /1 His the cube that is being created
do
F =F /1 F is the reduced on-set
t =1 // t is the termin progress
do
I = nmost_frequent_literal (F)
t =t * |
F' = F - cubes_not _i ncl udi ng(t)
while (t n Rz 0)
H=HOt
F=F-F
until (F == 0)

return H

When selecting the most frequent literal, it may happen that two or more literals have the same frequency of
occurrence. In these cases we select a literal that can change the current term into an implicant. When there are still more
possihilities to choose from, we select one at random. A detailed example of the CD-search algorithm was published in

[3].

The fact that the input file may contain both 1-minterms and 1-terms of higher dimension complicates to some extent
the search for the most frequent literal. In fact, every term with k don’t care input values (representing a k-dimensional
hypercube) might be replaced by 2“ minterms, thus increasing the occurrence of the used literals 2 times. Strictly
speaking, the weight assigned to these literals should be multiplied by this factor. This is, however, not feasible, because
for functions with several hundreds of input variables the number of vertices of any hypercube may reach astronomic
values. Different approaches to the solution of this problem have been evaluated and tested. The best results were obtained
when no corrections of the literal weight were made with respect to the dimensions of the input terms.

A certain drawback of the CD-search algorithmisthat it is greedy. Thus, once a literal is selected, it is kept till the end
of implicant generation, and therefore the obtained implicants need not be prime. Hence we have to check whether some
literals can be removed without losing the property of an implicant. Here the second part of the PI generation agorithm,
namely Implicant Expansion (IE), findsits application.

5. IMPLICANT EXPANSION

As mentioned above, the implicants constructed during the CD search need not be prime. To increase the chance that
fewer implicants will be needed to cover all 1-terms of the given function, we have to increase their size by IE, which
means by removing literals (variables) from their terms. When no literal can be removed from the term any more, we get a
Pl. The expansion is avery sensitive operation in the sense that much effort may be wasted if a bad strategy is chosen, and
the result may be far from optimum at that.

There are basically two problems to be solved in connection with implicant expansion. One of them is the mechanism
that effectively checks whether a tentative literal removal is acceptable. The other is the selection of the literals and the
order in which they are to be removed from the implicant term. First let us discuss the checking mechanism.

5.1 Checking a Literal Removal

Removing a variable from a term doubles the number of minterms covered by the term. The newly covered minterms
may be 1-minterms or DC-minterms, but none of them should be a O-minterm. In BOOM, individua literals are tried for
remova by checking whether the expanded term does not intersect the off-set. This means that the DC terms need not be
enumerated explicitly, because every newly created implicant is compared with the O-terms. If an intersection is found, the
removal is cancelled.

5.2 Expansion Strategy

The second problem is the selection strategy for the literals to be removed. The expansion of one implicant may yield
several different prime implicants. To find them all, we have to try systematically to remove each literal, whereas the order
of the literals selected plays an important role. Trying all possible sequences of literals to be removed will be denoted as an
Exhaustive Implicant Expansion. Using recursion or queue, all possible literal removals can be tried until all Pls are
obtained. Unfortunately, the complexity of this algorithm is exponential. Hence this method is usable only for smaller
problems. Nevertheless, the modification of this method called Distributed Exhaustive Implicant Expansion is generally
usable and quite effective.

There exist several other |E methods differing in complexity and quality of results obtained. Some of them that are used
in BOOM are described below.

The simplest one, namely a Sequential Search, systematically tries to remove from each term all literals one by one,
starting from arandomly chosen position. Every removal is checked against the off-set and if the removal is successful, we
make it permanent. Otherwise we put the literal back and proceed to the next one. After removing all possible literals we
obtain one PI covering the original term. This algorithm is greedy, i.e., we stay with one Pl even if there are more than one
Pls that can be derived from the original implicant. A sequential search only reduces the number of literals, the
experimental results show that this reduction may reach approximately 25%. The complexity of this algorithmislinear.

With a Multiple Sequential Search we try al possible starting positions and each implicant thus may expand into
several Pls. The upper bound of the number of Pls that can be produced from one implicant is n-d, where n is the number
of input variables and d is the dimension of the original implicant. The complexity of this algorithm is O(n*p), where p is
the number of defined on-terms.

Some |E agorithms, especially Exhaustive Implicant Expansion are rather time consuming for large problems.
Therefore a distributed version for each of them was proposed and tested. Distributed Expansion is based on the idea of
distributing the expansion among several consecutive iterations. The advantage of this approach is the possibility to stop
the expansion at the moment when an acceptable result is reached and save a considerable amount of time, because the
quality of the solution is checked after each iteration.

In the Distributed M ultiple Sequential Search only one pass of a sequential search is made for every implicant. After
that, these implicants are stored in the E-buffer. In the following iteration they are processed again together with the newly
created implicants, while another starting position for the sequential search is used. When all meaningful starting positions
are exhausted, the corresponding implicant is removed from the buffer. In other words, if the multiple sequential search
produces j primes from some implicant in one pass, the distributed multiple sequential search will find all of them in |
iterations.

Distributed Exhaustive Implicant Expansion uses the same mechanism as the Distributed Multiple Sequential
Search. In this case, aso the partially expanded implicants are stored in the E-buffer. This ensures the exhaustiveness of
the expansion.

5.3 Evaluation of Expansion Strategies

The properties of the proposed | E methods and their influence on the minimization process (time and quality of the final
solution) will be discussed in this section. The distributed mode of the implicant expansion methods will not be studied
separately, as it is always a simple modification of the original algorithm. Hence their properties in the given example are
similar.

The choice of 1E method may influence two properties of the minimization process: the time of minimization and the
quality of the result obtained. Fig. 4 shows the time of the minimization of a single-output function of 30 input variables
and 500 defined minterms as a function of the number of iterations. The growth for the sequential search is linear, which
means that an equal time is needed for each iteration. The time for the multiple sequential search and the exhaustive
expansion grows faster at the beginning and then it turns to linear with a dower growth. At this point the CD-search no
longer produces new implicants and thus the |E and the following phases are no longer executed. This causes the smple
sequential search, which is seemingly the fastest, to become the slowest after a certain number of iterations.

Fig. 5 illustrates the growth of the Pl set as a function of time. We can see that the Sequential Search achieves the
lowest values, athough it is the fastest implicant expansion method. However, when this method is used we cannot take
advantage of the I-buffer and the implicants are repetitively expanded, even if they have been expanded in al possible
ways. We can see that the most complex method, namely exhaustive expansion, produces Pls at the fastest rate.

2000 Multiple Sequential Search
Sequential Search Exhaustive Expansion

4000
Multiple Sequential Search
1500
Sequential Search
3000

1000 Exhaustive Expansion

Primes

2000 -

500
1000 4

T T T T J 0
T T T T T
o 1000 2000 3000 4000 5000 0 2000 4000 6000 8000 10000

lterations Time [s]

Fig. 4: Growth of time for different |E methods Fig. 5: Growth of Plsfor different |IE methods

We saw in subsection 3.2 that only a small nhumber of Pls may be enough for the minimum solution. Moreover, the
quality of the final solution strongly depends on the CP solution algorithm. With a large number of Pls exact solving is
impossible and some heuristic must be used. Here the large number of implicants may misguide the CP solution agorithm
and thereby prevent the minimum solution from being achieved. Practice shows that the more complex |E methods are
more advantageous for less sparse functions, where the number of implicantsin the final solution is big, while the simplest
sequential search is better for very sparse functions.

6. EXPERIMENTAL RESULTS

Extensive experimental work was done to evaluate the efficiency of the proposed algorithm, especially for problems of
large dimensions. Both runtime in seconds and result quality were evaluated. The processor used was a Celeron 433 MHz,
160 MB RAM. Three groups of experiments, listed in the following three subsections, were performed.

6.1. Solution of MCNC Benchmark Problems

First agroup of several MCNC benchmark problems was solved by ESPRESSO 2.3 and by BOOM [11]. The results of
the comparison are shown in Tab. 1. The column n/m/p contains the parameters of the problem, namely the number of
inputs, outputs and care terms. The benchmarks appearing in the table were solved by BOOM in one pass, hence the
runtimes are very short (the 0.01 sec. value in most cases indicates a non-measurable runtime). To check the quality of the
result, all problems were also solved by ESPRESSO-EXACT. The results obtained from BOOM, measured by the number
of literals, output cost and number of implicants (lit/out/impl) werein all cases equal or better. Tab. 1 shows that problems
with a large number of defined terms (p) were often solved by ESPRESSO in a shorter time. This is due to the quadratic
dependence of runtime on the number of termsin BOOM [3].

TABLE 1.
MCNC Benchmark problems

ESPRESSO BOOM ESPRESSO BOOM
Bench n/m/p time | lit/out/impl | time| lit/out/impl Bench n/m/p || time | lit/out/impl | time | lit/out/impl
9sym 9/1/158 0.12 | 516/86/86 0.05 | 516/86/86 Newplal |17/2/25 | 0.15 | 64/12/10 0.01 | 64/12/10
al2 16/47/139 | 0.15 | 324/103/66 | 0.66 | 324/103/66 Newpla2 | 10/4/26 | 0.18 | 42/7/7 0.01 | 421717
Alul 12/8/39 0.10 | 41/19/19 0.01 | 41/19/19 Newbyte | 5/8/16 0.17 | 40/8/8 0.01 | 40/8/8
Alu2 10/8/241 | 0.20 | 268/79/68 0.04 | 268/79/68 Newcond | 11/2/72 | 0.16 | 208/31/31 0.01 | 208/31/31
b9 16/5/292 | 0.18 | 754/119/119 | 0.25 | 754/119/119 Newcwp | 4/5/24 0.18 | 31/19/11 0.01 | 31/19/11
brl 12/8/107 | 0.12 | 206/48/19 0.02 | 206/48/19 Newill 8/1/18 0.13 | 42/8/8 0.01 | 42/8/8
br2 12/8/83 0.11 | 134/38/13 0.01 | 134/38/13 Newtag 8/1/12 0.16 |18/8/8 0.01 | 18/8/8
Clpl 11/5/40 0.12 | 55/20/20 0.01 | 55/20/20 Newtpla | 15/5/63 | 0.15 | 176/23/23 0.01 | 176/23/23
Conl 7/2/18 0.10 | 23/9/9 0.01 | 23/9/9 Newtplal | 10/2/15 | 0.16 | 33/4/4 0.01 | 33/4/4
dcl 4/7/125 0.12 | 27/27/9 0.01 | 27/27/9 Newtpla2 | 10/4/26 | 0.19 | 54/15/9 0.01 | 54/15/9
dc2 8/7/101 0.13 | 207/52/39 0.01 | 206/51/39 p82 5/14/74 | 0.17 | 93/56/21 0.02 | 93/56/21
dk27 9/9/24 0.10 | 31/15/10 0.01 | 31/15/10 rd53 5/3/67 0.09 | 140/35/31 0.01 | 140/35/31
dk48 15/17/64 | 0.24 | 115/28/22 0.02 | 115/28/22 rd73 7/3/274] 0.14 | 756/147/127 | 0.08 | 756/147/127
ex? 16/5/292 | 0.19 | 754/119/119 | 0.22 | 754/119/119 sa02 10/4/137 | 0.11 | 421/75/58 0.04 | 421/75/58
in7 26/10/142 | 0.14 | 337/90/54 0.13 | 337/90/54 sqrt8 8/4/66 0.11 | 144/44/38 0.01 | 144/44/38
Max46 | 9/1/155 0.14 | 395/46/46 0.03 | 395/46/46 squarb 5/8/65 0.12 | 87/32/25 0.01 | 87/32/25
Misex1 | 8/7/41 0.12 | 51/45/12 0.01 | 51/45/12 vg2 25/8/304 || 0.15 | 804/110/110 | 0.47 | 804/110/110
Newpla | 12/10/60 | 0.14 | 74/28/17 0.02 | 74/28/17 xor5 5/1/32 0.08 | 80/16/16 0.01 | 80/16/16

6.2. Test Problems with n>100

The MCNC benchmarks have relatively few input terms and few input variables (n never exceeds 128) and also have a
small number of don’t care terms. To compare the performance and result quality achieved by the minimization programs
on larger problems, a set of problems with up to 300 input variables and up to 300 minterms were solved. The truth tables
were generated by a random number generator, for which only the number of input variables, number of care terms and
number of don’t cares in the input portion of the truth table were specified. The number of outputs was set equal to 5 for
al problems. The on-set and off-set of each function were kept approximately of the same size. For each problem size ten

different samples were generated and solved. Tab. 2 contains the average values of the ten solutions.

BOOM was aways run iteratively, using the same total runtime as ESPRESSO needed for one pass. The quality
criterion selected for BOOM was the sum of the number of literals and the output cost. The first row of each cell contains
the BOOM results, the second row shows the ESPRESSO results. The missing ESPRESSO results in the lower right-hand
corner indicate the problems for which ESPRESSO could not be used because of the long runtimes. Hence only one

iteration of BOOM was performed, and its duration in secondsis given as alast value.

TABLE 2.
Solution of problems with n>100
p/n 20 60 100 140 180 220 260 300
20 [26/16/11(41) [22/12/9(67) 18/11/8(96) 18/10/8(127) 16/10/8(161) 17/10/8(201) 16/10/8(219) 16/9/8(262)
29/20/10/0.31 23/15/9/1.01 23/13/8/1.95 22/14/8/3.47 19/13/8/5.59 19/12/7/9.52 18/11/7/12.03 20/12/8/16.44
60 [109/43/30(19) 76/29/22(54) 68/24/20(77) 65/22/19(127) 61/21/19(151) 58/21/17(183) 56/20/17(218) 55/19/17(271)
116/52/28/1.03 86/40/21/6.54 75/34/19/14.26 |73/34/19/28.99 |68/30/17/42.46 |62/28/16/57.53 |64/29/17/78.68 |65/27/17/111.62
100 [206/64/48(15) 143/42/35(45) 127/38/32(74) 118/36/30(100) [110/32/28(157) [108/31/28(162) [105/31/27(215) [102/30/27(260)
203/79/43/2.09 150/61/33/13.85 |133/55/29/41.26 [127/52/28/69.02 [121/46/27/124.22 |116/46/26/152.44 [116/45/26/248.67 [112/44/25/328.37
140 [298/87/65(13) [206/56/47(46) 190/50/44(70) 177/46/41(94) 165/44/39(127) |159/44/37(160) [154/39/36(210) [149/40/36(231)
296/108/58/3.81 [215/80/43/28.70 [191/72/39/71.23 [177/66/36/129.66 [171/63/36/206.76 [164/60/34/273.15 [164/60/33/452.93 |156/55/32/516.63
180 [A07/108/83(12) 288/70/61(45) 251/61/54(79) 230/56/51(111) [220/55/49(139) [209/50/46(181) |255/49/48/1.36 [250/48/48/1.60
397/139/74/6.09 [284/101/54/48.70 [253/92/48/141.97 [233/84/44/261.95 [228/80/44/397.36 |220/77/42/630.53 - -
20 [P3Y/132/102(11) [363/85/72(48) 310/74/64(88) 201/68/60(118) [273/65/57(146) [329/61/60/1.79 |320/60/59/2.09 [308/58/57/2.43
497/162/88/8.01 |352/120/63/80.68 |310/109/57/256.40 [290/103/53/392.86 [285/98/52/632.04 - - -
260 [B48/155/120(10) 1436/98/84(46) 374/84/74(87) 353/81/70(116) f420/75/73/2.15 [398/71/70/2.55 |391/70/69/2.98 [372/66/65/3.39
594/193/100/10.95 |427/144/74/108.50 [382/124/67/336.32 [348/119/61/580.84 - - - -
300 [786/182/142(8) 521/109/96(40) [450/97/87(81) 422/88/81(107) J493/84/8/32.88 |469/80/79/3.48 [449/77/77/3.91 |441/77/75/4.75
710/226/118/11.59 [489/160/83/120.69 [447/149/75/427.72 |416/139/71/719.54 - - - -

Entry format: BOOM:

#of literals/output cost/#of implicants(# of iterations).

ESPRESSO: #of literals/output cost/#of implicants/time in seconds

6.3 Solution of Very Large Problems

A third group of experiments aims at establishing the limits of applicability of BOOM. For this purpose, a set of large
test problems was generated and solved by BOOM. For each problem size (# of variables, # of terms) 10 different
problems were generated and solved. Each problem was a group of 10 output functions. For problems with more than 300
input variables ESPRESSO cannot be used at all. Hence when investigating the limits of applicability of BOOM, it was
not possible to verify the results by any other method. The results of thistest are listed in Tab. 3, where the average timein
seconds needed to complete one iteration for various problem sizes is shown. We can see that a problem with 1000 input

variables, 10 outputs and 1000 care minterms was solved by BOOM in less than 20 minutes.

TABLE 3.
Time for oneiteration on very large problems

p/n 200 400 600 800 1000
200 3.67 6.26 9.87 12.79 30.40
400 17.25 28.25 45.44 59.32 156.38
600 42.66 76.54 133.37 235.19 379.94
800 91.77 168.67 300.23 379.36 816.28
1000 157.26 323.58 617.04 781.77 1101.85

7 CONCLUSIONS

A new method for Boolean function minimization has been proposed and implemented as the BOOM minimization
tool. Its application is advantageous above all for problems with large dimensions and a large number of don't care states.
The Pl generation method is very fast, hence it can easily be used in an iterative manner. On MCNC benchmark problems,
the runtime improvement as compared with ESPRESSO-EXACT was significant, in most cases more than one order of
magnitude. For large problems with several hundreds of input variables and several hundreds of care terms, the BOOM
system beats ESPRESSO both in minimality of the result and in runtime.

The BOOM minimizer has been placed on aweb page [11], from where it can be downloaded by anybody who wants to
useit.

Acknowledgment

Thisresearch was in part supported by the grant of the Czech Grant Agency GACR 102/99/1017.

REFERENCES

[1] Brayton, R.K. et a.: Logic minimization algorithms for VLS| synthesis. Boston, MA, Kluwer Academic Publishers,
1984

[2] Coudert, O. - Madre, J.C.: Implicit and incremental computation of primes and essential primes of Boolean functions,
In Proc. of the Design Automation Conf. (Anaheim, CA, June 1992), pp. 36-39

[3] FiSer, P. - Hlavicka, J.: Efficient Minimization Method for Incompletely Defined Boolean Functions, Proc. 4th Int.
Workshop on Boolean Problems, Freiberg, (Germany), Sept. 21-22, 2000, pp. 91-98

[4] Hachtel, G.D. - Somenzi, F.: Logic synthesis and verification algorithms. Boston, MA, Kluwer Academic Publishers,
1996, 564 pp.

[5] Hlavi¢ka, J. - Fiser, P.: Algorithm for Minimization of Partial Boolean Functions, Proc. IEEE Design and Diagnostics
of Electronic Circuits and Systems (DDECS00) Workshop, Smolenice, (Slovakia) 5-7.4.200, pp.130-133

[6] McCluskey, E.J.: Minimization of Boolean functions. The Bell System Technical Journal, 35, No. 5, Nov. 1956, pp.
1417-1444

[7] McGeer, P. et a.: ESPRESSO-SIGNATURE: A new exact minimizer for logic functions. Proc. DAC'93

[8] Nguyen, L. - Perkowski, M. - Goldstein, N.: Palmini — fast Boolean minimizer for personal computers. In Proc.
DAC'87, pp.615-621

[9] Quine, W.V.: The problem of simplifying truth functions, Amer. Math. Monthly, 59, No. 8, 1952, pp. 521-531.

[10] Rudéell, R.L. - Sangiovanni-Vincentelli, A.L.: Multiple-valued minimization for PLA optimization. |IEEE Trans. on
CAD, 6(5): 725-750, Sept.1987

[11] http://cs.felk.cvut.cz/~fiserp/boom/

[12] http://eda.seodu.co.kr/~chang/ downl oad/espresso/

[13] ftp://eecs.berkeley.org

