EFFICIENT MINIMIZATION METHOD FOR
INCOMPLETEL Y DEFINED BOOLEAN
FUNCTIONS

Petr Fiser, Jan Hlavicka

Czed Tedhnicd University, Karlovo ndm. 13, 12135 Prague 2
e-mail:_hlavicka@fel.cvut.cz, fiserp@fel.cvut.cz

Abstract

The paper presents a minimization algorithm for Boolean functions whose values are defined orly
for a small part of their range. In contrast to ather known minimizaion agorithms, it uses the
"start big" strategy gradudly reducing the dimensiondlity of aterm until an implicant is generated.
This approach leals to avery fast solution even for problems with several hundreds of input
variables and several hundeds of minterms with defined output values. Its programmed version
gave in these caes better results (in terms of runtime and minimality of the solution) than the
state-of-the-art ESPRESSO.

1 Introduction

Synthesis of combinational functions with large numbers of input variables is a problem that
appeasin different contexts. It may be encourtered e.g. in the design of control systems, where alarge
number of sensors deliver their input datato be processed by an automaton, or in diagnostics of logic
circuits, where a sequence of code words is to be transformed into a sequence of test patterns.
A common feature of those problems is the dispropation between the total number of minterms
existing for the given number of input variables and the number of redly used minterms, for which the
output value is defined (care minterms). An efficient synthesis method, whose time and memory
complexity is accetable even for large problems with several hundreds of input variables and several
hundreds of care minterms, is needed for the solution of such problems.

When generating a prime implicant (Pl) for a given function F, the usual approac isto start from a
1-minterm and combine it with ather 1-minterms (neighbors) in order to crede an implicant with
highest possble dimension. This was the principle of the original Quine's method [6] and of all
minimizaiion methods proposed later, whose representative survey can be found e.g. in [4]. The
Quine-McCluskey minimization method, yielding al prime implicants and possbly a minimal form (if
we succeal in solving the cvering table), is applicable to problems with the maximum of 10 input
variables. To solve dso problems with higher number of variables, different heuristics have been
proposed, acceéerating the prime implicant generation and/or seledion. To the most frequently used
ones belongs the principle of consensus, starting the implicant generation from minterms having the
lowest number of neighbors. However, the increase of tradable problem size gained thanks to the use
of this method is rather modest, reaching e.g. 15to 20 input variables— see eg. [1].

One of the best known and probably the most successful of al programs for minimizaion of
switching functions, cdled ESPRESSO [2], [4], uses a heuristic procedure for locd seach. This means
that starting from some initial solution, the procedure tries to improve the quality of the solution
through successve modifications. These modificaions are direded by some quality criterion
evaluating each newly readed situation. A similar approach was used aso in other methods like eg.
[3]. A kind of locd seach isused also in our case, although the heuristic is different.

Organization of the paper is the following. The principle of the minimizaion meeghod is
formulated in sedion 3. Then an illustrative example is olved using the proposed method in sedion 4.

Statisticd data based on results of experimental evaluation of the method are listed and commented in
sedion 5. Some mncluding remarks are offered in section 6.

2 Problem Statement

Let us have aBodean function of n input variables F(xy, X, ... X,), whose output values are defined
by atruth table. Let the number of 1-minterms and O-minterms be equal to u and z respedively, the rest
are don't care states. The function is highly undefined, i.e. only few of the 2" minterms have an output
value assgned (u+z<<2"). Our task is to formulate a synthesis algorithm, which will produce a
two-level digunctive form of F, whose cmplexity is close to the minimal disunctive form. The
measure of minimality generally corresponds to the needs of the intended applicaion. Thus e.g. for
PLAs, the number of product terms is what counts, whereas the total number of literals has no
importance In some other cases, the total number of literals may be important, hence we will resped
both posshiliti es here.

3 Prime Implicant Generation

3.1 “Start Big” Approach

Instead of increasing the dimension of an implicant starting from a 1-minterm, we will reduce the
size of a hypercube, which contains an implicant as its subset, by adding literals to its term, until the
hypercube bemmes an implicant. This happens at the moment, when no 0-minterm is covered by this
hypercube any more. Then we generate aPl by removing literals from the term, until we read the
maximum dimension without covering any O-minterm. These two principles will be used as a basis for
two phases of implicant generation. The first one, denoted as Coverage-directed search (or
CD-seach), combines the implicant generation with solution of the cvering problem. The second one
is denoted as Sequential search, becauise the literals that are candidates for rejedion from a term are
seleded one by one.

3.2Coverage-Direded Search

First we describe the implicant generation method kased on hypercube reduction. Let us have a
single-output Boolean function F defined by its on-set and off-set (set of 1-minterms and set of
O-minterms respedively). As the first step, we seled the most frequent input literal from the given
on-set and use it as a term from which an implicant will be derived. This term describes an implicant,
if it does not cover any O-minterm. If it is not an implicant, we add me literal and verify whether the
new term already corresponds to an implicant by comparing it with all O-minterms. If we obtain an
implicant, we record the term and start searcching for other implicants (see below). If not, some other
literal must be alded. We divide the given on-set into two subsets. One subset contains those
minterms, which cannot be cvered by any term containing the seleded literal (minterms containing
the literal with the oppasite paarity). This subset will not be considered any more. In the other subset
(containing the minterms, which can be cvered by the seleded literal) we again find the most frequent
literal and multiply it with the previous one, so we have atwo-literal product term. Again we compare
this term with al O-minterms and ched if it is an implicant. We repea this procedure until no
O-minterm is covered any more, i.e. until we get an implicant. We record this implicant and remove
from the origina orn-set those minterms, which are covered by this implicant. Thus we obtain a
reduced on-set containing only uncovered minterms. Now we reped the procedure from the beginning
and apply it to uncovered minterms, seleding the next most frequently used literal, until the next
implicant is generated. In this way we generate new implicants, until the whole on-set is covered. The
output of thisagorithmisa set of product terms, covering al 1-minterms and no O-minterm.

When selecting the most frequent literal, it may happen that two or more literals have the same
frequency of occurrence In these caes another heuristics can be gplied. We construct terms as
candidates for implicants by multiplying all seleded literals with the previously selected one(s). From
them we seled those terms which are implicants. This will prevent a useless term prolongation. When
there ae still more posshilities to choose from, we seled one & random.

A certain drawbadk of thisalgorithm isthat it is greedy. Thus, once aliteral is slected, it is kept till
the end of the term generation. Therefore the obtained impli cants need not be prime. In other words,
we have to check whether some literals can be removed without losing any implicant. Here the second
part of the Pl generation a gorithm, namely the Sequential search, findsits appli cation.

3.3Sequential Search

To chedk the results of the previous sach, we may try and systematicadly remove from ead term
al literals one by one, starting from a randomly chosen position. If the hypercube obtained after
removal of one literal does not cover any O-minterm, we make the removal permanent. If, on the
contrary, some O-minterm is covered, we put the litera badk and proceal to the next literal. After
removing all removable literals we obtain one prime implicant covering the origina term. This
agorithm is aso gredly, i.e. we stay with one Pl even if there ae more Pls that can be derived from
the original term.

The sequential search obviously cannot reduce the number of product terms. On the other hand, the
experimental results $ow that it reduces the number of literals by approximately 25%. After reducing
the number of literalsin the terms (and therefore extending the range they cover) some impli cants may
absorb cathers. Although this sStuation doesn’'t occur very often, solving the cvering problem is
desirablein this case.

3.4 Solution of the Covering Problem

A usua heuristic dgorithm was used for solution of the wvering problem. First, we prefer
impli cants covering minterms covered by the lowest number of other implicants. If there ae more such
impli cants, we select impli cants covering the highest number of yet uncovered 1-minterms. From these
primes we seled the “shortest” ones, i.e. terms constructed of the lowest number of literals. When still
more primes could be seleded, we seled one randomly.

3.51terative Minimization

The minimizaion process consists of the three dove-mentioned phases (CD-search, Sequential
seach and Covering problem solution). The results of al these phases depend to a cetain extent
on random events, becaise whenever there ae more posshiliti es to choose from and no selection
criterion is given, a random number generator is used. Thus there is a dhance that the repeaed
applicdion of the same procedure to the same problem will yield dfferent solutions. We can improve
the quality of the solution by repeaing the CD-seach phase followed by the Sequential search severa
times and recording all different Pls that were found. After the first pass we have aset of primes that is
sufficient for covering the function. After every new iteration, another sufficient set could be alded to
the previous one (if the solutions are not equal). Finally, the avering problem is lved using al
obtained primes. The set of primes gradually grows until a maximal readable set is obtained. A typicd
growth of the size of the prime impli cant set as afunction of the number of iterationsis shownin Fig. 1
(thin line). This curve plots the values obtained during the solution of a problem with 20 input
variables and 200 minterms. Theoreticdly, the more primes we have, the better solution could be
found. In most of problems the maximal set of primes is extremely large. In the redity, the quality of
the final solution improves rapidly during the first few passes and then remains unchanged, even
though the number of prime implicants grows further. This fad can be observed in Fig. 1 (thick line).
After reating the minimal (or nea-minimal) solution, its quality remains unchanged, even though the
number of prime impli cants grows further.

From the curvesin Fig. 1 it is obvious, that seleding a suitable aiterion for the termination of the
iterative process has a key importance for the efficiency of the minimization. The most appropriate
moment to stop the computation is marked with T1 on the horizontal axis in Fig. 1. However,
determining its position is quite adifficult task. One posshility is to estimate the number of primes
needed to make agood solution. This number strongly depends on a nature of the input function.
Another posshility is to find the stoppng point judging by the size of the temporary solution. In this
case the aovering problem must be solved repetitively after every iteration (or after several iterations).
This means, that after every iteration there is known the best solution that could be obtained so far.
This comfort is paid for by the “useless’ loss of time when solving the cvering problem. The

approximate paosition of the stopping point can be found by observing the relative change of the
solution quality during several conseautive iterations. If the size of the solution does not change during
a cetain number of iterations (e.g. twice as many iterations, as were nealed for the last improvement),
the minimization is gopped. The stoppng point can aso be defined explicitly, like eg. when the
current solution meds ome aiterion, (the maximum all owed number of product terms to fit into the
PLA chip). The aiteria described above ae more flexible than terminating the minimization by the
number of iterations or amount of elapsed time, athough these last criteria may be used as an
emergency exit for the cae of unexpeded problem size and complexity.

16000 ~

i Number of PIs 120
14000
12000 - 110
" L
£ 10000 |-
® | 4100
2 C
g_ 8000 E
= F - 90 %
6000
E
o
4000 - 80
2000 - Number of literals
- 70
0 | . 1 A 1 " 1
0o ™ 10000 20000 30000
lterations

Fig. 1. Growth of Pl number and deaease of SOP length dwing iterative minimization
4 [llustrative Examples

4.1 CD-Search Example

Let us have an incompletely defined Boolean function F(xg..Xg) of ten input variables with ten care
minterms given by atruth table shown below (the 1-minterms are shaded).

: 0123456789.
0000000010
1000111011
0000011001
1111011000
1011001100
1111000100
0100010100
0011011011
0010111100
1110111000

Q
=

CoNOUrWNROS
PRPOOROORRERET

As the first step of the minimizaion we aunt the numbers of literas in the input table. The
“0”"-line and “1”-line give wunts of x,” and X, literals respedively.

var: 0123456789
0: 3435322434
1: 3231344232

In this table we @an locae x3' as the most frequent literal with five occurrences (underlined). This
literal is our candidate for an implicant, but is not yet an implicant, because it covers a 0-minterm (the
6™ minterm) in the original function. Hence another literal must be alded. When searching for the next
literal, we can reduce the range of our search by suppressng al 1-minterms containing the selected
literal with the oppasite polarity. In our case it is only the 5™ minterm, which contains the x, literal and

thus cannot be covered by an implicant containing the x3* literal (in the next table shaded dark). In the
remaining 1-minterms we look for the most frequent literal:

: 0123456789
0000000010
1000111011
0000011001
1111011000
1011001100
1111000100
0100010100 O
0011011011 O
0010111100 1
1110111000 1

)
=
HoOoORr Rk EFLT

CONoAEWNMNROS

© 0123456789
343-211433
212- 344122

o<
T
=

=

Thistime we find severa literals with maximal frequency of occurrence (X;’, Xs, Xs, X7), hence the
second seledion criterion must be gplied. Multiplying the x5’ literal by all lit erals found so far, we
crede four product terms. X3'X;', X3'Xs, X3'Xs, X3'X7'. First we check whether some of them are drealy
implicants. The term x5’ s is not an implicant (it covers the 6™ minterm), so it is discarded, whereas the
remaining three terms represent impli cants. Now we must choaose one of them. As they are dl equal,
we may seled at random — e.g. X3'Xs. This implicant is gored and the seach continues. For further
seach we discard the minterms covered by thisimplicant (minterms 1, 2, 8 and 9— dark shading in the
next table) and the next most frequent literal can be seleded:

ar: 0123456789 F
0000000010 1
0000011001 1
1111011000 O
1011001100 O
1111000100 1

0100010100 O
0011011011 O

0010111100 1
1110111000 1
: 0123456789

1111222112
1111000110

CENokwhdROS

RrOo<
2es
o

Now we find four literals with equal frequency (2) and choose one & random — e.g. xy'. Thisis not
an implicant, thus we must add more literals. The seleded literal does not suppress any of the
remaining 1-minterms, therefore we need not reduce the range of our seach. We mnstruct three
product terms. X4’ Xg', Xs' Xg', Xg' Xo' . None of them is an implicant, we seled e.g. X4'X'. Now we have
two paosshilities to choose the next literal: X4 Xs'Xg OF X4’ Xg'Xo' . Again, none of these terms is an
implicant. Hence, we must add ane more literal to creae an implicant. The result of the CD-search is
thus X3' X+ X4’ X5 Xg' Xg' .

4.2 Sequential Search Example

We will continue with our running example. The result of the CD-seach, i.e. the function x3'Xs+
X4 Xs'Xg' X9’ is now to be simplified by the Sequential Search algorithm. We must processboth product
terms one by one, the order is not significant. We start with the term x5’ X5 and try to remove one literal.
If we remove x3' and compare the remaining term (Xs) with al the O-minterms, we'll find that it
colli des with 3, 4™ and 7" minterm and thus X3 cannot be removed. We mntinue with the x literal. It
cannot be removed either, becaise the remaining term covers the 6™ minterm. This term cannot be
reduced any more and thus it is a prime implicant. Now we try to reduce the second term (X4 Xs' Xs' Xo').
We remove X, and find that the remaining term xs'Xs' %o’ is an implicant. So we keep the removal
permanent. Now by removing xs' we get X5’ Xo'. This is not an implicant (it covers the 6™ minterm).
Similarly, when we remove Xg', the term xs'xg' covers the 4™ minterm, hence xg'cannot be removed
either. Findly, after removing Xo', the term x5'xs’ will be an implicant. As we exhausted all

possbiliti es of removal, this is a prime implicant. The minimal SOP form of the function is x3'Xg+
X5' Xg -

5 Experimental Results

The proposed algorithm was programmed in Borland C++ Builder and tested under
MSWindows NT. The processor used was a Celeron 433 MHz and 160MB RAM, the runtime was
measured in seconds. The quality of the results was measured by two parameters. number of product
terms (implicants) and total number of literals. Although every implementation basis requires diff erent
evaluation criteria, these two figures are good representatives of the overall complexity of the solution
obtained.

An extensive experimental work was done to evaluate the efficiency of the proposed agorithm,
espedally for the problems of large dimensions. These experiments can be divided into threegroups.

First a smal example with 10 input variables and 20 care minterms, where dso the true
minimizaion could be used, was ©lved by different methods. The results were compared with the
Quine-McCluskey minimization method [5], [6] (programmed by ourselves) and with ESPRESSO. All
methods gave the same results (minimal digunctive form). The runtimes in sewnds were the
following: CD-seach 0.03, Espreso 0.03 Quine-McCluskey 43832.

In the second group of experiments the efficiency was compared with ESPRESSO 2.3 [8]. The
problems lved were & the beginning the standard Berkeley benchmarks [7]. As the size of these
benchmark problems is relatively small, the runtimes needed by the CD-search were longer than those
of ESPRESS0O. Hence some larger problems had to be used to prove the caabiliti es of the method.
The truth tables of single-output functions were generated by a random number generator, for which
only the number of input variables and number of care minterms in the truth table were spedfied. The
on-set and off -set were kept approximately of the same size

A third group of experiments aimed at establi shing the limits of applicabili ty of the newly designed
method. Therefore aset of large problems was generated, where only the proposed agorithm was
tested (seeparagraph 5.2).

Number of input variables

20 60 00 140 180 220 260 300
0.01/3/8 0.01/2/4 0.00/2/4 0.01/2/5 0.01/2/4 0.02/2/5 0.01/2/4 0.02/2/4
20 (1) (2) (1) (1) (1) (1) (1) (2
0.09/3/8 0.20/2/4 0.41/2/6 0.72/2/6 1.36/2/4 1.30/2/7 3.24/2/4 3.60/2/4
0.20/7/25 6.49/5/15 |0.15/5/17 |0.03/4/12 |0.04/4/17 |0.06/4/15 [0.11/4/12 |0.15/4/13
60 (19 (254) (4 (1) (1) (1) (2 (2
0.19/6/25 |1.09/5/15 2.51/5/20 4.68/4/14 6.84/4/17 11.96/4/16 |18.83/4/12 |21.87/4/13
0.12/11/42 0.84/7/28 0.18/7/29 4.00/7/27 1.50/6/27 0.12/6/24 1.33/6/24 16.74/5/19
100 (4 (14) (2 (29) (10) (1) (6) (78)
0.35/10/43 [1.86/6/28 |6.62/7/31 |10.22/7/28 |23.22/6/27 |26.64/6/24 |39.12/6/24 |40.58/5/19
1.30/1364 14.83/10/45 14.79/9/39 2.65/9/38 17.74/8/36 |4.82/7/33 0.29/7/31 0.76/6/27
140 ((19) (37) (26) (12) (63) (14) (1) (2)
0.51/14/66 |3.93/10/45 12.68/9/40 |20.99/9/40 |35.73/8/36 |35.76/7/35 |76.03/8/36 |[74.47/7/32
6.28/1574 |5.72/13/60 (0.60/11/55 |26.06/10/48 |47.68/10/45 [2.20/9/45 |66.20/9/42 [2.38/10/47
180 |(49) (24) (2 (63) (90) (4 (92) (3
0.86/15/76 |[7.92/1361 |19.27/11/55 |33.27/10/48 |91.56/10/45 |73.71/9/45 |99.91/9/43 |149.46/10/47
2.51/21/104 |10.55/16/76 {36.41/12/58 |28.40/13/61 [65.91/12/59 [42.47/12/58 |0.99/11/60 [44.89/11/54
220 (19 (28) (72) (40) (75) (43 (1) (37)
1.34/21/105 |9.87/15/77 |39.35/12/61 |54.43/13/63 |87.40/12/59 |141.97/11/59)167.00/12/61|179.06/10/54
1.78/25/136 [18.21/18/89 62.85/14/72 |26.20/14/74 |31.17/14/74 |11.02/12/69 |50.19/13/66 [43.04/13/68
260 (6) (34 (81) (26) (26) (8) (33 (25)
1.32/26/146 |15.06/17/89 |41.78/14/73 |70.06/14/79 |135.27/14/76|149.86/13/71|207.24/12/69]314.29/12/68
1.88/28/153 [11.28/20/114(21.38/16/93 |[56.51/17/86 |253.29/14/71|257.16/14/75|81.32/16/81 |11.57/13/77
300 |(5) (16) (23) (42 (145) (136) (33) (5)
1.41/29/163 |15.77/20/11842.18/16/94 |99.59/16/86 |201.60/14/76|294.64/13/75|334.32/15/85|347.02/14/83

Number of care minterms

Tab. 1. Comparison d CD-search and ESPRESSD

5.1Comparison of CD-Search and ESPRESSO

To compare the performance and result quality achieved by the two minimizaion programs, a set
of problems with up to 300input variables and up to 300minterms were used. Larger problems could
not be solved, becaise ESPRESSO would not read a solution within acceptable computing time.

Every problem was at first solved by ESPRESSO and then by iterative CD-search. The
minimizaion was gopped when CD-seach reated equal or better solution than ESPRESSO did.

The results of the comparison are shown in Tab.1. The first row of every cdl contains the
CD-seach results, the last row shows ESPRESSO results. The entry format is: “time in seconds #of
implicants/ #of literals’. The number of iterations is indicated in parentheses. When the CD-search
readed the same or better solution than ESPRESSO in shorter time, the gpropriate cdl is saded

gray.

5.2 Solution of Very Large Problems

For problems with more than 300 input variables ESPRESSO cannot be used at all. Hence when
investigating the limits of applicability of the CD-seach, there was no passhility to verify the results
by any other method. The results of this test are listed in Tab. 2. The time in seconds needed to
complete one iteration for various szes of the problem is shown here. We can seethat a problem with
1000variables and 1000 minterms was lved by the CD-seach in lessthan 3 minutes.

#minterms/ #vars | 200 400 600 800 1000
200 Q73 | 181 |146 |277 234
400 335 | 543 |824 |1103 |1327
600 2187 | 1422 | 1735 | 2849 | 3796
800 4365 | 2958 | 3233 | 67.78 | 9009
1000 7187 | 5583 | 5690 | 12203 | 15555

Tab. 2. Time for oneiteration on big problems

5.3Time Complexity Evaluation

Like for most heuristic and iterative dgorithms, it isimpaossble to evaluate the time wmplexity of
CD-seach agorithm exadly. We have observed the arerage time needed to complete one passof this
agorithm for various sizes of the input truth table. For every problem size ten different samples were
generated and solved and the average of runtimes was taken. Fig. 2 shows the growth of an average
runtime & a function of the number of care minterms (20-260) where the number of input variablesis
changed as a parameter (20-300). The arves in Fig. 2 can be gproximated with the square of the
number of care minterms. Fig. 3 on the other hand shows the runtime growth depending on the number
of input variables (20-300) for various numbers of care minterms (20-260). Here the time complexity
isamost linea.

30 24
22)
20 //4 g
18
16
14
12

Time[s]

10
08 |
06 [
04|
02|

00|
L L L L ! L L !
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Minterms Input variables

Fig. 2. Time cmmplexty (1) Fig. 3. Time mmplexty (2)

6 Conclusions

A new method for single-output Boolean function minimizaion method has been presented. It is
applicable aove dl to problems with large dimensions and large number of dort care states. The Pl
generation method is quite straightforward and therefore very fast. Hence it can easily be used in an
iterative manner. The strength of the method consists in the posshility to choose between a very fast
solution, obtained in one iteration and minimal (or nea-minimal) solution which is obtained during
severd iterations. The same results as with ESPRESSO can be adieved, but the runtimes are much
shorter. For large problems with several hundreds of variables the program beas ESPRESSO both in
minimality of the result and in the runtime.

The future reseach will be oriented towards the posshility to processthe cae terms (not only
minterms) in the input file and towards the group minimizaion in order to minimize dso the
multi-output functions.

Acknowledgment

The research wasin part supparted by the grant of the Czech Grant Agency GACR 102/99/1017.
References

[1] AREVALO, Z. - BREDESON, J. G.: "A method to simplify a Bodean function into a nea
minimal sum-of-products for programmable logic arays," IEEE Trans. on Computers, Vol. C-
27,No.11, Nov. 1978, pp. 1028-1039

[2] BRAYTON, RK. et a.: Logic minimizaion agorithms for VLSl synthesis. Boston, MA,
Kluwer Academic Publishers, 1984

[8] COUDERT, O. - MADRE, J.C.: Implicit and incremental computation of primes and essential
primes of Boolean functions. In Proc. of the Design Automation Conf. (Anaheim, CA, June
199), pp. 36-39

[4] HACHTEL, G.D. - SOMENZI, F.: Logic synthesis and verificaion agorithms. Boston, MA,
Kluwer Academic Publishers, 1996 564 pp

[5] McCLUSKEY, E.J.: Minimizaion of Boolean functions. The Bell System Technicd Journal,
35, No. 5, Nov. 1956, pp. 1417-1444

[6] QUINE, W.V.: The problem of simplifying truth functions. Amer. Math. Monthly, 59, No. 8,
1952 pp. 521-531

[71 ftp//ftp.menc.org/pub/benchmark/Benchmark_dirs/L GSynth93/testcases/plal

[8] http://eda.seodu.co.kr/~chang/downl oad/espreso/

