
RT-level Benchmarks

44 IEEE Design & Test of Computers0740-7475/00/$10.00 © 2000 IEEE

The availability of suitable and meaningful

benchmarks influences the speed and effective-

ness of any technical research area’s evolution

process. These allow an easier and unbiased

evaluation of new ideas, accelerating the process

towards selection of proposals that can be adopt-

ed most effectively in industrial practice.

In the area of digital circuit testing, the

International Symposium on Circuits and

Systems (ISCAS) 19851 and ISCAS 892 gate-level

benchmarks were introduced to evaluate com-

binational and sequential automatic test-pat-

tern generation (ATPG) tools. Despite their

initial purpose, they have been used for almost

all applications in the test field, as well as for

assessing the effectiveness of new methods in

additional areas, including logic optimization,

power estimation, and partitioning. Today, this

kind of benchmark is still essential to develop,

test, and improve computer-aided design

(CAD) algorithms and tools, but is gradually los-

ing importance due to the introduction of new

design techniques. For this reason, new bench-

marks that reflect current design requirements

need to be developed and distributed.

Current and future CAD tools must face a

new generation of systems-on-chip, whose com-

plexity increases in various ways, such as the

� incorporation of large portions of imported

blocks, such as memories, processor cores,

and intellectual property (IP) blocks;

� presence of particular architectural issues,

such as internal buses, test access logic

(boundary scan, scan chains) and test exe-

cution logic (built-in self test, or BIST),

power management logic, multiple clock

frequencies, and clock domains;

� increasing adoption of fault-tolerant structures,

now essential even in consumer electronic

products as circuit density increases; and

� higher level of abstraction, since in many

cases most of the circuit is described at the

register-transfer (RT) level in a hardware

description language.

RT-level ITC’99 Benchmarks
and First ATPG Results

New design flows require reducing work at the

gate level and perfoming most activities before

the synthesis step, including evaluatation of

testability of circuits. We propose a suite of RT-

level benchmarks that help improve research in

high-level ATPG tools. First results on the

benchmarks obtained with our prototype tool

show the feasibility of the approach.

Fulvio Corno

Matteo Sonza Reorda

Giovanni Squillero
Politecnico di Torino

Benchmark circuits donated by industrial enti-

ties encompass all these issues, but are largely dis-

similar in terms of description levels and styles,

adopted libraries, test strategy, and so on. This

creates difficulties for researchers developing

new techniques and testing them over a series of

circuit instances. While current design tools can-

not ignore all the complexity aspects, a simpler

set of benchmarks is more useful for core algo-

rithm development. ATPG algorithms, in partic-

ular, are easier to develop, optimize, and improve

when first applied to simplified circuits (that is,

single-clock, synchronous, with simple libraries)

and later adapted to general circuits by means of

both algorithm extensions and circuit/library

transformations. In fact, while new test tools able

to deal with RT-level descriptions (the last item

listed above) are a major conceptual problem,

most of the other issues can be considered sepa-

rately or added later. Here we concentrate on

benchmarks described at the RT level and will

ignore the other complexity sources.

The need for test tools that work on high-

level descriptions became apparent more than

two decades ago. It’s now increasingly accept-

ed that the availability of effective high-level test

tools would benefit the design process.3

Resistance comes from an unproven belief that

lack of structural information makes it impos-

sible to generate effective test sequences start-

ing from high-level descriptions. It’s true that

some fault effects can only be modeled at the

lower abstraction levels, but this may be bal-

anced by a higher efficiency of the high-level

ATPG process that works on more compact

descriptions, containing additional information

about the functional behavior of the compo-

nent modules. Some structural faults may be

missed, but a larger set of system configurations

is more readily accessible.4 Whether automat-

ic test generation can effectively be performed

on RT-level descriptions remains an open ques-

tion that requires a widely accepted suite of

neutral but representative benchmarks. Since

the common practice in industrial testing is still

to evaluate the effectiveness of generated

sequences on gate-level descriptions and fault

lists, the availability of both the RT- and the cor-

responding synthesized gate-level descriptions

proves crucial for the success of this suite.

These considerations motivated us to devel-

op a set of RT-level benchmarks and to con-

tribute it to the ITC 99 benchmark set.5 These

benchmarks lack many characteristics of indus-

trial circuits, but offer a wide set of test cases,

of different complexity, with uniform charac-

teristics. At the same time, we started develop-

ing an ATPG environment able to generate test

sequences starting from synthesizable RT-level

descriptions. Our goal was to prove that test

sequences generated by RT-level ATPGs could

reach a stuck-at fault coverage on the corre-

sponding gate-level circuits at least compara-

ble with the one obtained by traditional gate

level tools. RT-level ATPGs can assist designers

because they allow for identification of hardly

testable circuits (or circuit components) early

in the design flow (such as before the logic syn-

thesis step). This check is now performed at the

gate level only, requiring redesign in cases of

negative result. Moreover, for some circuits the

test sequences generated at the RT level are so

effective that the gate-level ATPG step can be

completely avoided. For the purpose of this

work, we assume that the circuits do not exploit

any design-for-testability mechanism (full or

partial scan, for example).

We introduce the suite of RT-level bench-

marks developed, providing general informa-

tion about characteristics and standards we

adopted for their description. In addition, we

outline the RT-level prototypical ATPG tool we

developed, called Automatic RT-level Input

Sequence generator for Test purposes (Artist),

and report a first set of experimental data gath-

ered using its prototypical implementation.

These results can serve as a reference point for

those working in the area of high-level ATPG

algorithms and should demonstrate the feasi-

bility of RT-level ATPG and design validation.

45July–September 2000

The need for test tools that

work on high-level descriptions

became apparent more than

two decades ago.

Benchmark circuits development
Among the ITC’99 benchmark suite, our

team at Politecnico di Torino contributed 22

circuits for developing algorithms working on

RT-level circuits described in VHDL. They con-

sist of VHDL sources in a standardized format

and of the corresponding gate-level netlists and

fault lists. The benchmarks are representative

of typical circuits, or circuit parts, that current

tools can automatically synthesize as a whole.

They share the following properties:

� Circuits are described in synthesizable

VHDL at the RT level. When different syn-

thesizers required different styles, we fol-

lowed Synopsys Design Compiler

description styles. However, we explicitly

avoided any compiler-specific directive. We

used no VHDL packages except IEEE stan-

dard logic and arithmetic packages. The

code is mainly behavioral, with one or more

concurrent processes, but some circuits also

contain structural code. For simpler parsing,

no concurrent statements appear outside

processes.

� Gate-level descriptions are available, in sim-

plified flattened electronic data interchange

format (EDIF) format and in ISCAS 89 bench

format. We obtained them with logic syn-

thesis over a library compatible with ISCAS

89 elementary gates.

� Fault lists for single stuck-at faults (complete

and collapsed) are available, generated by

an industry-standard tool in an easily read-

able format.

� Circuits behave in a purely synchronous

way: one single-phase clock signal goes

directly to all memory elements without

intervening logic. This constraint simplifies

the timing model under which the circuits

operate, but also increases the predictability

of the synthesis process.

� A global reset signal allows a trivial initial-

ization sequence for all benchmarks.

Different from gate-level circuits, RT-level

VHDL descriptions always require an initial-

ization sequence to simulate properly. (If

simulated from an undetermined state, the

VHDL simulation semantics for synthesiz-

able behavioral statements doesn’t correctly

propogate undefined values.) Thus the pres-

ence of a global reset signal is simply for syn-

tactic simplification.

� No internal memories (except register

banks), three-state busses, or wired connec-

tions are present.

� The 22 circuits cover wide size and com-

plexity ranges: from 1 to 37 primary inputs

(plus the ubiquitous clock and reset sig-

nals), from 1 to 97 primary outputs, from 1

to 33 VHDL processes, from 68 to 1,613

VHDL lines, from 4 to 3,320 flip-flops, and

from 46 to 68,752 combinational gates. One

of the circuits (b16) is parametric and can

be synthesized to different sizes. The largest

circuit (b18), with its 68K gates and 430K

faults (190K collapsed), is much larger than

the largest ISCAS 89 benchmark.

The benchmark development process

appears in Figure 1. We started from a set of

VHDL descriptions collected from various

sources and modified them to comply with

RT-level Benchmarks

46 IEEE Design & Test of Computers

Larger
benchmarks

Manual
corrections

Automatic
validation

RT-level VHDL
benchmarks

Combine
variants

Modify for
uniformity and
synthesizability

Automatic
synthesis

Fault list
generation

Gate-level EDIF
benchmarks

Stuck-at
fault list

Collect and
select suitable

 Internet VHDL
archives

Class works

Public
release

Smaller benchmarks

Figure 1. Benchmark development process.

desired characteristics. The initial VHDL files

came from public archives over the Internet

and from student work at our institution.

Structurally combining copies or slight varia-

tions of smaller benchmarks created larger

ones. Modifications were aimed at guarantee-

ing synchronicity and at increasing syntactical

uniformity. They included adding reset signals,

moving or removing wait statements, adding

and/or joining clock signals, eliminating redun-

dant hierarchy levels, eliminating references to

external packages, and other minor correc-

tions. In this process, we sacrificed the original

behavior in favor of uniformity of description.

Finally the circuits were synthesized with

Synopsys Design Compiler version 1998.08 over

a library composed of 1- to 5-input simple gates

and D-type flip-flops.

The circuits have been publicly available

since 1997.6 However, in early 1999 they were

revised following discovery of semantic errors

were found during application of an automat-

ic validation tool.7 Such errors weren’t evident

in the first release, for in many cases they led to

out-of-range conditions on some signals that

occur only in particular conditions.

Table 1 reports, for each benchmark, the

number of primary inputs (PI), primary outputs

(PO), VHDL lines, and VHDL processes. The

number of PIs doesn’t include the clock and

reset input signals existing in all the benchmark

circuits. Results after synthesis are given in terms

of combinational gates and flip-flops. Intended

for the evaluation of purely sequential ATPGs,

the circuits don’t include any design-for-testa-

bility structure (such as full or partial scan),

although scan may be inserted easily thanks to

the simple clocking structure. To allow the gen-

eration of independent and quantitative mea-

sures about circuit testability, we generated

complete and collapsed stuck-at fault lists with

the “faultlist” tool of the Synopsys Testgen pack-

age version 3.0.2. The fault lists, whose size

appears in Table 1, are distributed with the

47July–September 2000

Table 1. Benchmark characteristics.

 VHDL Gate-Level

 Circuit No. of No. of No. of No. of Fault List Random

Name PI PO Lines Processes Gates Flip-flops Complete Collapsed Testability %

b01 2 2 110 1 46 5 258 127 98.45

b02 1 1 70 1 28 4 150 64 99.33

b03 4 4 141 1 149 30 822 382 74.82

b04 11 8 102 1 597 66 3,356 1,477 84.24

b05 1 36 332 3 935 34 5,552 2,553 33.48

b06 2 6 128 1 60 9 302 151 93.71

b07 1 8 92 1 420 49 2,404 1,120 58.28

b08 9 4 89 1 167 21 918 439 98.15

b09 1 1 103 1 159 28 900 417 87.33

b10 11 6 167 1 189 17 1,054 468 91.56

b11 7 6 118 1 481 31 2,868 1,308 91.81

b12 5 6 569 4 1,036 121 6,084 2,777 21.22

b13 10 10 296 5 339 53 1,818 835 32.45

b14 32 54 509 1 4,775 245 28,990 12,643 81.39

b15 36 70 671 3 8,893 449 55,568 23,316 13.05

b16 M+1 1 68 n f(N,M) N f(N,M) f(N,M) f(N,M)

b17 37 97 810 15 24,194 1,415 152,808 65,324 8.81

b18 36 23 1,424 33 68,752 3,320 429,712 188,458 1.34

b20 32 22 1,085 3 9,419 490 57,794 25,274 81.91

b21 32 22 1,089 3 9,803 490 60,052 26,516 85.20

b22 32 22 1,613 4 15,071 735 92,536 40,200 81.30

benchmarks. The last column reports the inher-

ent testability of the benchmarks, expressed as

the fault coverage attained by the application of

10,000 pseudorandom patterns at the circuit PIs.

To help researchers understand their results

with the benchmarks, Table 2 hints at the cir-

cuit function of the original VHDL description.

However, while the benchmarks are syntacti-

cally correct and their simulation doesn’t pro-

duce errors, their development process offers

no guarantee that current VHDL descriptions

are functionally meaningful.

Since the first appearance of the bench-

mark set, people from more than 200 institu-

tions (estimated from the different domain

names on the Web access log) have already

downloaded it from our Web site, and pub-

lished results are beginning to appear.5 We

encourage researchers to download8 and use

the circuits, and perhaps generate new ones

with the same characteristics to increase the

availability of test cases to the research com-

munity. Furthermore, if authors notify us of the

publication of results concerning the bench-

marks, we will maintain an ongoing, publical-

ly available reference list.

The Artist ATPG system
The goal of Artist is to implement an RT-level

ATPG, a tool able to generate input sequences

starting from a synthesizable RT-level descrip-

tion. This should attain a high fault coverage

with respect to the standard stuck-at fault list

when simulated on the corresponding gate-

level description. The reported experimental

results, together with the research results

recently presented in the literature, support the

claim that RT-level test sequence generation is

now feasible.9

Although other proposals exist in the literature

to attack similar problems, Artist adopts an origi-

nal solution compared to previous approaches.

Most previously published papers on the subject10-

12 are much less general in terms of accepted cir-

cuit descriptions and much more complex to

use. Due to the approach it’s based on, Artist can

produce sequences for more general synthesiz-

able VHDL description, with few limitations in

size, complexity, or characteristics, and doesn’t

require any effort from the designer for remodel-

ing the circuit or extracting special information

from it. Artist shares some common ideas with

the RAGE tool CPSR 97 (Corno, Prinettoand

Sonza Reorda) but, when compared to RAGE,

Artist proves much more powerful both in terms

of accepted descriptions (most of the limitations

existing in RAGE have been removed) and qual-

ity of the results produced.

System overview
The Artist system implements a simulation-

based approach, inspired by the success of

gate-level ATPG based on genetic algorithms

(GAs). Some (initially random) input

sequences are simulated, and their coverage

characteristics are iteratively improved by ana-

lyzing the simulation trace.

The system can process structural and

behavioral synthesizable VHDL descriptions at

the RT level. It consists of four main compo-

nents (Figure 2):

� A GA whose goal is to cultivate test

sequences, improving their value under the

RT-level Benchmarks

48 IEEE Design & Test of Computers

Table 2. Original functions.

Circuit Name Original Function

b01 Finite state machine (FSM) comparing serial flows

b02 FSM that recognizes binary coded decimal (BCD) numbers

b03 Resource arbiter

b04 Compute minimum and maximum

b05 Elaborate the contents of a memory

b06 Interrupt handler

b07 Count points on a straight line

b08 Find inclusions in sequences of numbers

b09 Serial-to-serial converter

b10 Voting system

b11 Scramble string with variable cipher

b12 1-player game (guess a sequence)

b13 Interface to meteo sensors

b14 Viper processor (subset)

b15 80386 processor (subset)

b16 Hard-to-initialize circuit (parametric)

b17 Three copies of b15

b18 Two copies of b14 and two of b17

b20 A copy of b14 and a modified version of b14

b21 Two copies of b14

b22 A copy of b14 and two modified versions of b14

selected metric. In this context, a test

sequence is a series of vectors, to be applied

at consecutive clock cycles.

� A commercial VHDL simulator that simu-

lates the sequences computed by the GA.

� An analyzer that examines the VHDL control

and data dependencies to identify basic

blocks (that is, jump-free consecutive

sequences of statements); to compute con-

trol and data dependencies, and correlation

probabilities; and to generate the list of high-

level faults to cover.

� A code instrumentation tool that modifies

the original VHDL description by inserting

always-false “assert” statements, which allow

the GA to determine the actual sequence of

executed basic blocks.

To improve sequences, the GA analyzes the

trace of the executed instructions and com-

putes a fitness function that quantifies the effec-

tiveness of each sequence. Such a fitness

function is based on the list of executed basic

blocks and on the correlation probabilities

among basic blocks.

Artist adopts a testability metric derived from

statement coverage. We enhanced the metric for

observability to lead the ATPG first to excite (exe-

cute) each basic block in the description, then

to observe it (propagate to some primary output

the values assigned in the block). We detail the

criteria used for observability later. The Artist

algorithm implements two different phases:

� In the first phase all basic blocks are consid-

ered simultaneously. The goal is to generate

a set of sequences S that activate most of the

blocks. They are used to initialize the genet-

ic population in the second phase and aren’t

necessarily included in the final test set. The

fitness function is the ratio of activated

blocks:

� In the second phase each block is targeted

separately. For each target block T, the goal

is to generate a sequence S able to test it. In

this phase the activated blocks are weighted

by their correlation probability9 with the tar-

get (term “+O” takes into account observ-

ability and is described in the next section):

The algorithm stops when all target basic

blocks have been considered.

Observability issues
When RT-level test pattern generation targets

design validation tasks, traditional branch cov-

erage metrics are usually considered satisfac-

tory. Even if moving to more complex metrics,

such as path coverage, the main goal during

design verification is just to excite all behaviors.

Their observation is guaranteed, thanks to the

simulation environment whereby all internal

values of the design can be inspected.

However, when dealing with production

testing, but also for black box verification, the

effects of observability can’t be neglected13—

all activated instructions must be observed at

the circuit primary outputs. In the Artist frame-

work, the generated sequences must observe a

block after having executed it. To lead the GA

to this goal, we added the term “+O”, which

measures how close the sequence is to observ-

ing the target, to the fitness equation.

The exact computation of this term would

require complete integration with an RT-level

fault simulator. Since satisfactory commercial

fault simulation solutions do not exist yet, and

given the inherent overhead introduced by

fault simulation of VHDL code, we approxi-

fitness correlation(
activated_bb()

S T b T O
b S

, ,)() = +
∈

∑

fitness
activated_blocks

S
S

tot blocks
() =

()
_

49July–September 2000

VHDL

Analyzer

Genetic
algorithm

Instrumenter

Commercial
simulator

Seqs

Trace

Figure 2: Artist structure

mate the observability term with a computa-

tional cost as close as possible to that of simu-

lating the fault-free system. Fallah et al13

provide a good example of this approach

where analysis of data dependencies across

conditional statements helps estimate the set

of signals affected by an assignment. In Artist,

we implemented an observability strategy

more approximate than those proposed earli-

er13,14 due to the looser integration with the sim-

ulator in our case.

Artist explicitly traces the set of variables and

signals to which the target fault has been prop-

agated by analyzing the simulation trace, with

the knowledge of the data transfers performed

in each basic block.

This analysis is exact, except for dependen-

cies where a variable is assigned depending on

a conditional. There we optimistically assume

that variables in conditional expressions are

observed on all signals and variables assigned

within the conditioned blocks.

Finally, the value of the term “+O” is the

weighted sum of the execution

counts of the statements contain-

ing the variables or signals to

which the target fault effects have

been propagated. Weights are

determined as the distance

between the statement and the

nearest PO. A more detailed dis-

cussion of the observability term in

Artist appears elsewhere.12

Implementation details
We implemented the above-

described method in a prototypi-

cal environment consisting of a

mix of commercial and in-house

developed tools. The preliminary

VHDL code analysis process

exploits the GraphGen option of

the LEDA VHDL System (LVS)

toolkit. For simulating RT-level

descriptions we resort to the V-

System 5.3 VHDL simulator by

Model Technology. The code

instrumentation process uses the

reverse analysis option of the LVS

toolkit. The implementation con-

sists of about 4,700 lines of C code for VHDL

code analysis and instrumentation, linked to

the LEDA Procedural Interface (LPI), and of

3,500 lines of C code for the GA and the inter-

face to the simulator.

Experimental results for ATPG
The genetic population consists of 50 indi-

viduals. In each generation 30 new sequences

are generated, then selection is performed on

the whole set of individuals. Individuals are

selected for reproduction using their linearized

fitness. In 30% of the cases, the new individual

is built by mutating a single parent: the original

sequence can be shortened, or enlarged, or

some bits may be flipped. In 70% of the cases,

the new individual is built by mating two differ-

ent parents: the offspring sequence can inherit

the beginning from one parent and the end

from the other, or entire bit columns from each

parent.

Table 3 reports the results obtained by run-

ning Artist on a Sun Ultra 5 working at 333 MHz

RT-level Benchmarks

50 IEEE Design & Test of Computers

Table 3. Gate-level quality of RT-level generated sequences.

 Artist Gate-Level ATPG

CPU Fault Test CPU Fault Test

Circuit Time Coverage % Length Time Coverage % Length

b01 4,118 100.00 1,061 < 1 100.00 129

b02 1,731 99.33 940 < 1 99.33 60

b03 5,131 74.33 374 5,356 74.82 245

b04 6,905 89.42 427 2,359 91.51 558

b05 33,393 33.50 2,800 51,467 33.38 223

b06 2,315 97.02 62 < 1 97.35 118

b07 2,251 57.53 461 33,415 57.28 148

b08 2,106 86.27 329 12 98.15 582

b09 9,054 81.33 1,187 3,624 90.56 967

b10 10,851 90.42 586 919 92.22 416

b11 5,092 85.98 532 24,198 81.00 228

b12 67,575 45.99 5,541 77,297 21.17 276

b13 43,450 68.37 4,538 23,625 59.19 300

b14 55,240 79.65 4,743 14,014 95.04 7,728

b15 60,990 31.96 2,733 50,822 16.26 66

b17 14,475 15.50 1,197 38,245 2.07 16

b18 278,338 1.50 279 > 500,000 0.62 10

b20 128,193 79.99 7,825 29,961 26.57 112

b21 74,845 82.61 6,376 46,202 55.14 148

b22 149,544 71.59 2,582 31,323 55.79 102

with 256 Mbytes of memory. For easy evalua-

tion of the generated sequences’ effectiveness,

we also report the results obtained by running a

state-of-the-art commercial gate-level ATPG on

the gate-level version of the same benchmarks.

The first column reports the CPU time of the

ATPG run in seconds. The second column

shows the fault coverage attained at the gate

level using the stuck-at fault model. When Artist

is considered, this means that first the tool is run

on the RT-level description, then the sequences

produced are fault simulated on the corre-

sponding gate-level description to obtain their

percent stuck-at fault coverage. The third col-

umn reports the test length in clock cycles.

The results show that

� Artist generates test sequences whose gate-

level fault coverage is generally comparable

with that obtained by the gate-level ATPG. A

few circuits exist for which the latter per-

forms substantially better (for example, b08,

b09, and b14), but for others the reverse is

true (such as b11, b12, b13, b15, b17 and

b20 through b22). By analyzing those bench-

marks that proved critical for Artist, we

found that their test requires very specific

sequences hard to find using a genetic

approach such as the Artist one.

� For the smallest circuits, Artist has much

higher CPU time requirements than the gate-

level ATPG, while for the largest benchmarks

the CPU time requirements of the two tools

are comparable.

� Sequences generated by Artist are longer

than those generated by the gate-level ATPG.

This occurs mainly because no test com-

paction mechanism is currently implement-

ed, not even a basic fault dropping one.

According to these results we can conclude

that, starting from RT-level descriptions, Artist

generally can produce test sequences whose

quality is comparable with that of the

sequences generated by a state-of-the-art gate-

level ATPG, thus reducing the cost of running a

gate-level ATPG step.

Exploiting RT-level sequences for design
validation

At the RT level, a strong link exists between

test pattern generation for physical faults and

pattern generation for functional validation.

The fault detection metric used in Artist sub-

sumes branch coverage, frequently used for

design validation and software testing.15

Moreover, Artist takes into account observabil-

ity, which has proved crucial for effective test

bench generation.16 For these reasons,

sequences generated by ARTIST can be exploit-

ed during design validation. They also prove

very effective in pinpointing critical sections in

the VHDL code, from the syntactical and

semantic points of view.

In particular, Artist can, when generating test

patterns, identify the VHDL entities, processes,

or statements that are poorly controllable or

observable, and those for which it couldn’t gen-

erate any test pattern. This information is vital

for design validation. In many cases, while test-

ing Artist, we found that the statements that it

couldn’t cover were effectively unreachable—

we discovered some design errors in our

benchmarks while generating test patterns. As

an example, we found that a common design

error corresponds to missing or incorrect

bounds checking. In this case Artist found some

overflow conditions (mainly sums or incre-

ments not truncated or wrapped to the allowed

range of values) that escaped manual simula-

tion. These conditions allowed us to correct the

ITC’99 VHDL benchmarks, which in their pre-

vious release contained those bugs. Further

details about the usage of the Artist system for

design validation appear elsewhere.7

THE POLITECNICO DI TORINO CIRCUITS

belonging to the ITC’99 benchmark suite main-

51July–September 2000

At the RT level, a strong link

exists between test pattern

generation for physical faults

and pattern generation for

functional validation.

ly support research in the area of high-level

ATPG. To ease development of new test tools

at the RT level, we standardized the bench-

marks in terms of description styles and lan-

guage. They don’t contain rarely used

statements or system-level structures. We

adopted the VHDL language, and for every cir-

cuit the corresponding gate-level description

and fault list are also available.

Exploiting these circuits, we evaluated the

RT-level ATPG Artist. Experimental results on

the benchmarks demonstrate that RT-level

ATPG is now feasible. Designers can exploit it

to evaluate the testability of their descriptions

before the synthesis step, significantly improv-

ing the whole design flow.

Artist can be extended to the case of partial-

scan circuits or to circuits including some BIST

portion. Moreover, the proposed ATPG tech-

nique can be successfully adopted for other

purposes outside the test area, such as for gen-

erating test benches for design validation or ver-

ifying properties of the design (model

checking). We hope to improve the ATPG algo-

rithm by supporting more effective fault mod-

els and by reducing the required CPU time.

References
1. F. Brglez, and H. Fujiwara, “A Neutral Netlist of 10

Combinational Benchmark Circuits and a Target

Translator in Fortran”, Proc. IEEE Int’l Symp. Cir-

cuits and Systems, IEEE Computer Soc. Press,

Los Alamitos, Calif., June 1985, pp. 695-698.

2. F. Brglez, D. Bryan, and K. Kozminski, “Combina-

torial Profiles of Sequential Benchmark Circuits,”

Proc. IEEE Int’l. Symp. Circuits and Systems,

IEEE Computer Soc. Press, Los Alamitos, Calif.,

1989, pp. 1929-1934.

3. “High Time for High-Level Test Generation,” Panel

at ITC99: Int’l Test Conf., IEEE Computer Soc.

Press, Los Alamitos, Calif., 1999, pp. 1112-1119.

4. M.B. Santos, et al, “RTL-based Functional Test

Generation For High Defect Coverage in Digital

SoCs,” IEEE European Test Workshop, Cascais

(P), IEEE Computer Soc. Press, Los Alamitos,

Calif., May 2000, pp. 99-104.

5. “ITC’99 Benchmark Circuits?Preliminary Results,”

Panel at ITC’99: Int’l Test Conf., IEEE Computer

Soc. Press, Los Alamitos, Calif., 1999, pp. 1125-

1130.

6. F. Corno, P. Prinetto, and M. Sonza Reorda,

“Testability analysis and ATPG on behavioral RT-

level VHDL,” Proc. IEEE Int’l Test Conf., IEEE

Computer Soc. Press, Los Alamitos, Calif., 1997,

pp. 753-759.

7. F. Corno, et al, “Automatic Test Bench Generation

for Validation of RT-level Descriptions: an Industri-

al Experience,” IEEE Design, Automation and Test

in Europe, Paris (F), IEEE Computer Soc. Press,

Los Alamitos, Calif., March 2000, pp. 385-389.

8. Politecnico di Torino ITC’99 benchkmarks, down-

loadable at the URL

http://www.cad.polito.it/tools/itc99.html.

9. F. Corno, M. Sonza Reorda, and G. Squillero,

“High-Level Observability for Effective High-Level

ATPG, VTS-2000,” 18th IEEE VLSI Test Symp.,

Montreal (CA), IEEE Computer Soc. Press, Los

Alamitos, Calif., May 2000, pp. 411-416

10. D. Moundanos, J.A. Abraham, and Y.V. Hoskote,

“A Unified Framework for Design Validation and

Manifacturing Test,” Proc. IEEE Int’l Test Conf.,

IEEE Computer Soc. Press, Los Alamitos, Calif.,

1996, pp. 875-884.

11. K.-T. Cheng, and A.S. Khrishnakumar, “Automatic

Generation of Functional Vectors Using the

Extended Finite State Machine Model,” ACM

Transactions on Design Automation of Electronic

Systems, Vol. 1, No. 1, Jan. 1996, pp. 57-79.

12. F. Ferrandi, F. Fummi, and D. Sciuto, “Implicit Test

Generation for Behavioral VHDL Models,” Proc.

IEEE Int’l. Test Conf., IEEE Computer Soc. Press,

Los Alamitos, Calif., 1998, pp. 436-441.

13. F. Fallah, P. Ashar, and S. Devadas, “Simulation

Vector Generation from HDL Descriptions for

Observability-Enhanced Statement Coverage,”

Proc. 35th Design Automation Conf., ACM press,

1999, pp. 666-671.

14. S. Devadas, A. Ghosh, and K. Keutzer, “An

Observability-Based Code Coverage Metric for

Functional Simulation,” Proc. IEEE/ACM Int’l

Conf. on Computer Aided Design, IEEE Computer

Soc. Press, Los Alamitos, Calif., 1996, pp. 418-

425.

15. B. Beizer, Software Testing Techniques (second

edition), Van Nostrand Rheinold, New York, 1990.

16. P.A. Thaker, V.D. Agrawal, and M.E. Zaghloul,

“Validation Vector Grade (VVG): A New Coverage

Metric fo Validation and Test,” Proc. 15th IEEE

VLSI Test Symp., IEEE Computer Soc. Press, Los

Alamitos, Calif., 1999, pp. 182-188.

RT-level Benchmarks

52 IEEE Design & Test of Computers

Fulvio Corno is an assis-
tant professor at the
Politecnico di Torino. His
research interests include
CAD for VLSI design, test of
digital systems, high-level

design, genetic algorithms, and symbolic tech-
niques. He received his MS degree in electron-
ic engineering from the Politecnico di Torino,
Italy, in 1991 and his PhD degree in computer
science from the same institution in 1994.

Matteo Sonza Reorda is
an associate professor in the
Department of Computer
Science and Automation at
Politecnico di Torino, Italy.
His research interests

include automatic test pattern generation, built-in
self-test, and fault tolerant design. He received
his MS in electronics and PhD in computer sci-
ence from the Politecnico di Torino, Italy, in 1986
and 1990, respectively.

Giovanni Squillero is
working on his PhD on
approximate techniques for
test and verification of digital
systems described at a high
level at the Politecnico di

Torino, Italy. His research interests also include
evolutionary algorithms. He. received his MS
degree in computer science engineering in 1996
from the Politecnico di Torino.

Send questions and comments to Fulvio
Corno, Politecnico di Torino, Dipartimento di
Automatica e Informatica, Corso Duca degli
Abruzzi 24, 10129 Torino, Italy; e-mail
fulvio.corno@polito.it.

53July–September 2000

How to Contact Us
Subscription Questions
IEEE Computer Society

PO Box 3014
Los Alamitos, CA 90720

Paper, electronic, or combination subscriptions to IEEE
Design & Test are available. Send subscription change-of-
address requests to address.change@ieee.org. Be sure to
specify IEEE Design & Test.

Membership Change of Address
Send change-of-address requests for the Computer
Society membership directory to directory.updates@
computer.org.

IEEE Design & Test on the Web
Visit our Web site at http://computer.org/dt/ for article
abstracts, access to back issues, and information about
IEEE Design & Test. Full articles are available online to
subscribers of the magazine’s electronic version.

Writers
Author Guidelines and IEEE copyright forms are

available from dt-ma@computer.org, or access
http://computer.org/dt/edguide.htm.
Letters to the Editor

Send letters to Managing Editor, IEEE Design & Test,
10662 Los Vaqueros Circle, PO Box 3014, Los
Alamitos, CA 90720. Please provide an e-mail address
with your letter.

Reprints of Articles
For price information or to order reprints, send e-mail
to dt-ma@computer.org or fax to IEEE Design & Test at
(714) 821-4010.

Reprint Permission
To obtain permission to reprint an article or column,
contact William Hagen, IEEE Copyrights and Trade-
marks Manager, at w.hagen@computer.org.

Missing or Damaged Copies
If you did not receive an issue or you received a
damaged copy, contact membership@computer.org.

News Releases
Mail microprocessor, microcontroller, operating system,
embedded system, microsystem, and related systems
announcements to IEEE Design & Test, 10662 Los
Vaqueros Circle, PO Box 3014, Los Alamitos, CA
90720.

