
Copyright © 1991, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

BLIF-MV: AN INTERCHANGE FORMAT FOR

DESIGN VERIFICATION AND SYNTHESIS

by

R. K. Brayton, M. Chiodo, R. Hojati, T. Kam,
K. Kodandapani, R. P. Kurshan, S. Malik,
A. Sangiovanni-Vincentelli, E. M. Sentovich,
T. Shiple, K. J. Singh, H. Y. Wang

Memorandum No. UCB/ERL M91/97

1 November 1991

BLIF-MV: AN INTERCHANGE FORMAT FOR

DESIGN VERIFICATION AND SYNTHESIS

by

R. K. Brayton, M. Chiodo, R. Hojati, T. Kam,
K. Kodandapani, R. P. Kurshan, S. Malik,
A. Sangiovanni-Vincentelli, E. M. Sentovich,
T. Shiple, K. J. Singh, H. Y. Wang

Memorandum No. UCB/ERL M91/97

1 November 1991

BLIF-MV: AN INTERCHANGE FORMAT FOR

DESIGN VERIFICATION AND SYNTHESIS

by

R. K. Brayton, M. Chiodo, R. Hojati, T. Kam
K. Kodandapani, R. P. Kurshan, S. Malik,

A. Sangiovanni-Vincentelli, E. M. Sentovich,
T. Shiple, K. J. Singh, H. Y. Wang

Memorandum No. UCB/ERL M91/97

1 November 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

BLIF-MV: AN INTERCHANGE FORMAT FOR

DESIGN VERIFICATION AND SYNTHESIS

by

R. K. Brayton, M. Chiodo, R. Hojati, T. Kam
K. Kodandapani, R. P. Kurshan, S. Malik,

A. Sangiovanni-Vincentelli, E. M. Sentovich,
T. Shiple, K. J. Singh, H. Y. Wang

Memorandum No. UCB/ERL M91/97

1 November 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

BLIF-MV: An Interchange Format for Design Verification and Synthesis

R.K. Brayton M. Chiodo R. Hojati T. Kam K. Kodandapani R.P. Kurshan S.Malik
A. Sangiovanni-Vincentelli E.M. Sentovich T. Shiple K.J. Singh H.Y. Wang

November 1,1991

Abstract

This document briefly describes an interchange format for thespecification of systems to be used as inputs to formal
verification programs. The underlying system model is one of interacting, possibly non-deterministic state machines. The
proposed format meets therequirements foraninterchange format, namely simplicity andgenerality. Additionally, thisformat
serves asaninput format fordigital synthesis systems and provides a suitable interface to the formal specification languages
VHDL, Verilog and SDL. The proposed format isanatural extensionofthe BLIF format (Berkeley Logic Interchange Format),
which is currently accepted as a standard forspecifying digital systems at thelogic level.

1 Introduction

At the Workshop on Computer-Aided Verification (Rutgers University, June 1990) a forum was established to discuss the
creation of an interchange format for describing coordinating systems. This format should enable the exchange of design
examples as well as comparisons of the performance ofvarious verification systems on the same set ofdesigns. Specifically,
it was decided that the format selected should have the following attributes:

A. Simplicity: Itmust beunambiguous, simple toread and understand, and easy tomanipulate. Writing aparser should bea
relatively simple task.

B. Generality: Itshould becapable of describing a large range of hardware/software systems.

Among the suggestions which emerged from the forum was the KISS2 format [1] used as an interchange format bythe logic
synthesis community for describing finite state machines. The motivation behind this suggestion was that the systems being
verified were state machines of some kind, soitmade sense touse existing formats for describing them. In addition the same
format can be (and isbeing) used for automatic synthesis. However, the following limitations of KISS2 were pointed out
which could make it unsuitable for use as is:

1. Itpermits definition ofonlyonestatemachineatatime. The systemsofinterestare networks comprisedofinterconnected
state machines.

2. Thestate machine behaviors permitted are deterministic. Specification of non-deterministic behavior isoften needed.

3. The behavior descriptions are two-level, i.e. the description is in the form ofaPLA or two-level logic. While this may
be suitable for representing control logic, itmay lead to an inefficient or even infeasible representation for data path
logic with arithmetic functions.

4. Various parallel composition schemes cannot be described.

The format proposed in this document overcomes these limitations and has the desired properties stated earlier. It is an
extension of the BLIF (Berkeley Logic Interchange Format) used bythe logic synthesis community [1] toexchange circuit
descriptions at thelogic level(gate-level netlists), and incorporates theKISS2 format asasubcase. BLBF is used to describe
digital circuits and thus signals/variables described there have binary values. However, our current needs involve general
systems with variables, as inKISS2, which are notrestricted tobinary values. The extension ofBLIFtohandle multiple-valued
(or symbolic) variables is simple. The proposed format subsumes the KISS2 description of single, deterministic machines
with two-level behavior descriptions, and is powerful enough to support a variety of parallel composition paradigms for

interacting, non-deterministic machines with multi-level descriptions ofbehavior. The ability to specify multi-level behavior
is essential for describing some types ofcircuits, such as arithmetic functions (whose two-level representations are exponential
in thenumber of inputs). Specifically, the proposal has these additional attributes:

C. Non-determinism: The format supports non-determinism, which is important for representing abstraction, modelling
delays, and defining system constraints such as fairness through theuse of automata. Non-determinism isalso used as
thebasis of support for various parallel composition paradigms (see below).

D. Synthesis: The format iscompatible with alarge number ofexisting hardware synthesis tools (MISII, SIS, NOVA, JEDI,
etc).

E. Standards: In addition tosupporting an interface with avariety ofverification and simulation tools, the format supports an
interface tosubstantial subsets of theformal specification languages VHDL, Verilog, SDL, and perhaps others, and can
beeasily generated from HDF (Hardware-Data Flow), thedata structure used in BLIS(Behavior-to-Logic Interactive
Synthesis) [4].

We propose usingthisextendedformat astheinterchange format Wecallit BLIF-MVsinceit is themultiple-valuedextension
of BLIF.

The issue of parallel composition requires further discussion. As there are a multitude of different notions of parallel
composition,this could become acomplicatedissue if parallel compositionoperators were introduceddirectly into the format.
Rather, it is proposed to have a very simple format which supports a large variety of parallel composition semantics at a
meta-level. Specifically, it is proposed to have a format whose base semantics is purely synchronous, but which, through the
use of non-determinism, is capableof modelling asynchrony, delay, interleaving semantics, true concurrency and so on, at
the meta- or interpretive level. For example, asynchrony may be modelled, as in [3], through a non-deterministic choice of
"pause" or "ready", where "pause" inhibits changing state, in each state machine at an asynchronous interface. Interleaving
semantics can be modelled throughnon-determinism and a simple constraintpreventingsimultaneityof events. (In systems
with implicit FIFO queues, these would become explicit, with the caveat that we limit ourselves to finite state systems.)
True concurrency can be modelled likewise, utilizing non-determinism and "projections" to a global state. In summary,
rather than to support explicitly a multitude of parallelcomposition operators, we propose a format which allows, through
non-determinism, a variety of models of parallel composition to be represented.

There are some additional representation issues which thus far we have not addressed. While we have proposals for all of
these, we feel they should be discussed in the wider forum. As their particularresolution does not conflict with the BLIF-MV
format proposal, but rather augments that proposal, we separate these issues from the basic proposal.

1. Sequential constraints: It is often necessary to impose constraints upon sequences of events, such as automaton
acceptance conditions and fairness. Apparently, all such constraints can be represented through automata. As the
proposed format already supports automata transition structures, the issue may be narrowed to acceptance structures.
Acceptance structures all are defined in terms of sets of states, sets of sets of states, sets of edges, and sets of pairs of
these. Therefore, a fairly simple addition to the format could be provided to specify acceptance structures and outcome
(accept or reject).

2. Dense time: Discrete time can be introduced simply through counters. Recent interest in dense time (e.g. [2]) warrants
support of this in the interchange format. Designation of minimum and maximum sojourn times in a state (as a
function of state) appearto support all known needs in this regard. This can be representedusing multi-valuedvariables
understood to represent real time, without the need for any additional augmentation of the proposed format. These
variables may be evaluated against minimum and maximum sojourn times using non-deterministic look-up tables. For
simulation, these variables could be connected to real timers.

3. Stochastic behavior A system of coordinating state machines defined through the proposed format may be interpreted
as a stochastic process by designating a density distribution for the sojourn time in a state (in place of the bounds in
2. above), and probabilities on non-deterministic choice. Density distributions could be designated from a library
(standard or user-supplied) through the use of embedded C-code in the machine specification, and such a designation
would be easy to integrateinto the proposedbasic format. Definingthe stochastic properties ofacoordinating system in
this fashionis completely general. Allowingthe userto embed C-code in a machine specificationprovidesa mechanism
for specifying many constructs not explicitly supportedby the format (however, such embedded code will be treated
like a black box, and no analysis or verification will be performed on the code).

in1 in2 in3 out

a green in on

b red out off

c blue out ready

c blue out pause

Figure 1: Non-deterministic look-up table with multi-valuedinput variables inl, in2, in3, and multi-valuedoutput variable
out. Note the non-determinism represented by the last two rows.

4. Macro expansion: A macro facility couldbe important with respect both to succinctness andto tractability (in the case
of analysis, whichmay operate on the macro representation rather than theexpansion). This is especially important in
the caseof arrays of statemachines (a setof coordinating state machines distinguished by index), arrays of variables,
arithmetic expressions andrelations. A multiplexor macro wouldbe very useful for implementing general if-then-else
type clauses with multi-valued variables. Sucha facility couldbe integrated readily intothe proposed format.

5. Input/Output encoding: The look-up table specification (see section 2) can be given with the inputs and outputs in
symbolic form (as in KISS2)or in one-hot-encoded form using positional notation as used by ESPRESSO-MV. (Even
in one-hot-encoded form, the codes can be interpreted as symbolic.) One-hot-encoded form is preferred because it
is easier to parse and is identical to the ESPRESSO-MV format, which is the format already in use in the two-level,
multi-valued logic minimizer ESPRESSO-MV.

6. Annotation: Itmay bedesirable toannotate each machine with information about itsbehavior. For example, annotating
amachine with information revealing its function (e.g. multiplier) would preserve some of theinformation passed down
from a higher-level specification, and make it easier for a higher-level tooltorecognize and utilizecertain behavior. A
simple extension of the format could be incorporated for thepurpose of annotating machines.

2 Finite State Machine Specification

In this section, the specification ofasingle finite state machine will bedescribed; the specification ofasystem of interacting
finite state machines is described in the next section.

A description of a single finite state machine contains a listof input variables, a listof output variables, the transition
structure, the output functions, and optionally a set of initial states and external don't care functions for the output and
transition functions. For verification purposes, itmay not bedesirable tohave each signal (e.g. each outputorstate variable)
encoded (no encoding may be necessary to verify a design). For this purpose, multi-valued variables may be used for all
signals in the machine (binary-valued variables being a special case). The transition and output behavior are described in
terms of the inputs. This behavior isrepresented byaDAG, where each vertex isamultiple-input, single-output look-up table
(see Figure 1), and each edge represents the dependency ofone table onthe outputofanother (in the figure, symbolic variable
names are used rather than one-hot-encoded names). The output representing the state variable can be used in subsequent
time periods byconnecting it tothe inputs of the look-up tables through a feedback latch (see Figure 2). Similarly, the latches
can be used to connect logic blocks in a data path. A purely combinational block of logic can be described by using an
interconnection of look-up tables with no latches.

By using a DAG of look-up tables (rather than a single look-up table), complex logical behavior (such as arithmetic
functions) can bespecified inthis multi-level format that cannot becompactly described inasingle look-up table. In addition,
non-determinism inamachine can bedescribed easily, using several lines inthe look-up table tospecify the several outputs
resulting from a single input (Figure 1).

The specification of a single finite state machine is achieved with the .model construct, which introduces a new state
machine by name:

.model model_name [model_attributes]

Optionally, attributes of themodel can bespecified, such as cell area, pin-to-pin delays, oratag such as "black box" that
indicates to synthesis andverification programs thatthe interior of the modelis not to be altered.

INPUTS OUTPUTS

Nrur^C^r

L-T: Lookup Table

Figure 2: Network Representation of a Single Finite State Machine

The state machine input and output multi-valued variable name lists are specified using .inputs and .outputs constructs
as follows:

.inputs inl in2 ...

.outputs outl out2 ...

Each multi-valued variable is given a set of values that it can assume with the .mv statement:

mv symbolic_name n_values [value_0 value_l value n-1]

The symbolic-name is the name of the variable and n.values is the number of values that it can take. This is followed
optionallyby a list of the values. If the list is omitted, nonnegativeintegersare assumed. For example, .mv x 3 indicates that
the values x can take on are 0,1,2.

For two variablesto be connected(e.g. the outputof one table to the inputof another)they must have the same numberof
possiblevalues. It is assumed that the first valueof one variableis equivalentto the firstvalueof the other, the secondlisted
values are equivalent, and so on.

Each look-up table is specified by the .names constructas in BLIF, but taking multi-valued inputs and producing a
multi-valued output In the following example, inl, in2,... are namesof input signals to the look-up table (althoughnot
necessarily primary inputs to the state machine), and out is the name of the multi-valued output signal produced by this
particular look-up table. Thesubsequent linesdefine the transition structure: inl-value is oneof thevalues in thedomain of
inl, out-value is one of the values in the domain of out, and so on (see Figure 1).

.names inl in2 ... out

inl_value_l in2_yalue_l ... out_value_l
inl value 2 in2 value 2 ... out value 2

Signals which define the next state are fed into a .latch construct (which implements delay). These signalscan be fed
back to the DAG and used as input in the next time period. The syntax for .latch is as follows:

.latch latch_input latch_output

where latchJnput is a (multi-valued) variable which is eitheran input to the machine or the outputof a look-up table, and
latch.output is a (multi-valued) variable which is eitheran inputof a look-up tableor an outputof the machine.

The initial state(s) of the machine are specified with the .r ("reset") construct:

r latchl_output=latchl_value_l latch2_output=latch2_value_l ...
r latchl_output=latchl_value_2 latch2_output=latch2_value_2 ...

where latch 1.output is the name of the output of a particular latch, and latchl.value is a particular value in the range of
the (multi-valued) latch output. Multiple reset states can be specified by including multiple .r constructs, at any level of the
hierarchy.

Finally, the external don't care functions are specified in a similar way to the output and transition functions, and preceded
with the .exdc construct:

.exdc

names inl in2 ... out

inl_value in2_value ... out_value
names inl in2 ... next_state

inl value in2 value ... next state value

The following example illustrates the simple conversion from a machine described in KISS2 format to one described in
BLIF-MV format. The state table in the KISS2 format is essentially duplicated to produce two tables describing the behavior
of the state variable and the output variable, and a latch is added to model the delay in latching the state (this is fed back to
the two tables for use in the subsequent computation). KISS2 description:

.i 1 # number of inputs

.0 1 # number of outputs

.s 3 # number of states

stop stO st2 off # transition structure

go stO stl on

stop stl stl off

go stl stO on

stop st2 st2 off

go st2 stO on

.e

The corresponding BLIF-MV description is as follows:

.model example

.inputs vin # input variable name list

.outputs vout # output variable name list

.names vin prev_state next_state # next state logic
stop stO st2

go stO stl

stop stl stl

go stl stO

stop st2 st2

go st2 stO

.names vin prev_state vout # output logic

Figure 3: System of Communicating Finite State Machines

A.B1.D1 A.B1.D2 A.C1.D1

Figure 4: Unique Naming of Instances

stop stO off

go stO on

stop stl off

go stl on

stop st2 off

go st2 on

.latch next_state prev_state

.end

latch for state variable

3 System Specification

The previous section described how to create a single state machine. These machines, each of which is defined by a .model
declaration, can be connected together to generate the system specification (see Figure 3). The hierarchical interconnection
of these state machines is defined using the .subckt construct, allowing one to refer to .models within .models. The .subckt
command is followed by a model-name, which refers to a specific state machine; this is followed by i-name, which is a
unique name given to this particular instantiation within the model model-name. Each subcircuit can be uniquely named
by prepending the instance name with a string of instance names that lead to that instance in the hierarchy. For example,
in Figure 4, there are three occurrences of model D (the circles represent models, the names are model names, the names in
parentheses are instance names). The two instances of D that are called by B are uniquely named Dl and D2. The three D
instances are uniquely referred to as A.B.D1, A.B.D2, and A.C.D1. Finally a list of items of the form io-pin=signal_name is
given, where io-pin is one of the input or output variables in the called model, and signal-name is any variable in the calling

model, and instance-attributes, i-attributes, such as "black box" (see Section 2) may be given. The syntax of the .subckt
construct is as follows:

.subckt model_name i_name io_pin=signal_i . . . [i_attributes]

This mechanism will define the use of the model model-name and declare it's connectivity. Additionally, it allows an arbitrary
hierarchy of models (correspondingly of state machines).

As an example, consider a system made up of two portions, A and B that communicate with each other. In turn B is
made up of two parts C andD . The specification of such a system may appear as —

.model system # The root of the hierarchy

.inputs

.outputs

.subckt A terminal=signal # connectivity specification between

.subckt B terminal=signal # the components and system terminals

.end # of the system composed of A and B

.model A # The description of model A

.inputs

.outputs

Definition of the model for A

.end # of model A

.model B

.inputs

.outputs

.subckt C terminal=signal # connectivity specification

.subckt D terminal=signal # between C, D and the terminals of B

.end # of model B composed of C and D

.model C

.inputs

.outputs

Definition of the model for C

.end # of model C

.model D

.inputs

.outputs

Definition of the model for D

.end # of model D

Only the terminals declared as .inputsand .outputs can be used in expressing the connectivity between models (i.e.
internal names ina model cannot beused toexpress connectivity). Thus the terminals (inputs and outputs) and the attributes
of a model are theonlyabstractions thatare seen byanother statemachine (model).

This format byitselfdoes notenforce any particular delay semantics (one may specify purely combinational cycles); it is
thedesigner's responsibility toensure thatnosuch conditions existin thespecification.

4 Concluding Comments

In conclusion we would like tohighlight the strengths of BLIF-MV as an interchange format.

1. It is asimple description format. It is simple to read and understand, and utilizes the simplicity ofasynchronous system
for describing a wide rangeof coordinationmechanisms.

2. Itisageneral interchange format. Thesame format can beused todescribe either structure orbehavior oracombination
of both.

3. It supports non-determinism, which can be used for representing abstraction, modelling delays, defining system
constraints, andsupporting various parallel composition paradigms.

4. It is compatible with existing hardware synthesis tools. Itencompasses theKISS2 description of single, deterministic
state machines. When all the signals are binary-valued and deterministic, it reduces to theaccepted BLIF description
for a digital circuit.

5. It supports an interface to formal specification languages. In particular, it can serve as a gateway to other standard
languages (e.g. VHDL and Verilog) because there is a simple map from a substantial subset of these higher-level
languages to this format.

6. It supports aninterface to hardware synthesis systems. The format subsumes KISS2, whichis currently usedasthe input
language for many state assignment and state minimization programs, and BLIF, which is used as the input language
to many logic synthesis systems.

References

[1] Robert Lisanke (MCNC P.O. Box 12889 Research Triangle Park NC 27709). Logic Synthesis and Optimization Bench
marks: User's Guide, 1989.

[2] Rajeev Alur and David Dill. Automata for Modelling Real-Time Systems. In ICALP, 1990.

[3] R. P. Kurshan. Analysis of DiscreteEvent Coordination. In LNCS,pages414-453,1990.

[4] Gregory S. Whitcomb and A. Richard Newton. High-level Design Representation and Synthesis in BLIS. In SRC
TECHCON'90, October 1990.

