
How Much Randomness Makes a Tool Randomized?

Petr Fiser, Jan Schmidt
Faculty of Information Technology, Czech Technical University in Prague

Prague, Czech Republic
fiserp@fit.cvut.cz, schmidt@fit.cvut.cz

Abstract—Most of presently used academic logic synthesis tools,
including SIS and ABC, are fully deterministic. Up to the
knowledge of the authors, this holds for all available commercial
tools as well. This means that no random decisions are made; the
algorithms fully rely on deterministic heuristics. In this paper we
present several hints of insufficiency of such an approach and
show examples of perspective randomized logic synthesis
algorithms. Judging from our experiments, these algorithms have
a higher potential of performing better than the deterministic
ones. Further we study how much randomness is actually needed
for the algorithms to perform well. We show that some
algorithms require only a small amount of randomness, while
still taking full advantage of their randomized nature. On the
other hand, some algorithms require a very high level
of randomness to perform well. We propose reasons for this
behavior and show a way of computing the necessary measure
of randomness required.

Keywords-logic synthesis, minimization, randomized
algorithms, derandomization, Espresso, ABC

I. INTRODUCTION
Basic principles of most of viable logic synthesis

algorithms have been established already in early 1960’s, both
for two-level (PLA) minimization [1], [2] and multi-level logic
synthesis [3], [4], [5], [6], [7]. These basic algorithms suffer
from low scalability for large designs. This drawback has been
partially overcome by introducing binary decision diagrams
(BDDs) [8], [9]. New, BDD-based algorithms were proposed
[10], [11], [12]. However, even though BDDs represent logic
functions implicitly, their size may easily blow up
exponentially as well [8], [9].

In two-level minimization, the basic Quine-McCluskey
algorithm [1], [2] has been replaced by Espresso [13], which
became a well-established standard since 1980’s.

These logic synthesis algorithms were implemented
in academic tools MIS [14], SIS [15], and MVSIS [16]
by Berkeley Logic Synthesis and Verification Group.

Recently, the research shifted towards a different internal
network representation: the And-Inverter Graphs (AIGs) [17].
These are more scalable than standard tabular (PLA) circuit
nodes representations and new, more flexible synthesis and
mapping algorithms may be applied upon these structures [17],
[18], [19], [20]. A synthesis tool ABC [21] implementing these
algorithms came as a successor of SIS and MVSIS and its
development still continues.

Because of high complexities of present designs, using
exact algorithms (for two-level minimization, multi-level
optimization, resynthesis, etc.) is not feasible. Therefore,
approximate heuristic algorithms must be used in practice,
to reduce the search space. Even though the employed
heuristics usually produce solutions of a sufficient quality, they
do not guarantee an optimum and mostly do not even guarantee
a maximum relative error.

All of the mentioned algorithms and logic synthesis
systems (SIS, ABC) are fully deterministic; no random choices
are made in the synthesis process. This brings a benefit
of reproducibility of the result – two runs of the algorithm
using the same data will produce equal results. However, the
determinism also involves inability of reaching different,
possibly much better results.

The logic optimization can be treated as a general
combinatorial problem. In general, most of algorithms used
in logic synthesis are of a local search nature. Here moves
in the state space are usually driven by a deterministic heuristic
function. For example, when checking for tautology (which is a
co-NP-hard problem) in Espresso [13], the variable splitting
decision is made on the most binate variable. It has been shown
experimentally, that such an approach is “good”. However,
such a conclusion definitely cannot be generalized for any
tautology-checking problem instance.

Moreover, a granularity of the heuristic function may
become of concern as well. This means, it may happen that
there will appear two or more equally valued possibilities for
moves in the state space. Mostly this happens in cases where
the knowledge of the state space is limited, the heuristic
function cannot be evaluated precisely enough, or simply there
are several equivalent moves. In the Espresso tautology
checking example, it may happen that two or more variables
that are most and equally binate will appear. Then there is no
clue which one to select, so the first one found is chosen.
However, the decision on one variable may significantly affect
the algorithm run.

Basically, there are two ways of solving this problem:
either a parallelism is involved, or randomized algorithms are
used. In the case of parallelism used, several heuristic decisions
are made simultaneously. From the theoretical point a view, the
problem is solved by a non-deterministic Turing machine,
which can be simulated on a sequential machine by, e.g., the
best-first search. Here the number of simultaneously active
states may grow exponentially, thus the general model cannot
be implemented for practical problem instances. Here, e.g.,
modifications of the best-first search strategy, like the

beam-search [22], [23] are used. Approaches based on genetic
algorithms partially belong to the category of parallel search
algorithms as well [27], [28].

The disadvantage of such an approach is that some
perspective parts of the state space may not be explored, due
to state explosion (i.e., only a strictly limited number of states
can be stored as candidates for expansion).

In the case of randomization employed, one of the
“equivalent” moves is chosen randomly, hoping that a “good
path” through the state space will be found. In a repeated run
of the randomized process, different choices will be (hopefully)
selected. As a result, larger part of the search space is explored,
at the cost of runtime.

In the limit case (unlimited space and time resources), these
two strategies produce equal results. Theoretically, repeatedly
restarted randomized algorithm fully simulates the
non-deterministic Turing machine.

There have been several attempts to use randomized
algorithms in logic synthesis. The optimization algorithm
proposed in [24] is deterministic, though it is suggested to be
run repeatedly, with random initial solutions. The local
optimum is avoided this way.

Randomized algorithms based on simulated annealing [25],
[26] or genetic algorithms [27], [28] were proposed for logic
synthesis. Since these algorithms are of an incremental nature,
a tradeoff between the result quality and runtime may be set.
Any combinatorial problem can be solved in a randomized way
using these problem-independent metaheuristics, as a universal
way to trade time for quality. The question is, can problem-
dependent randomized algorithms be designed, with better
efficiency.

Recently there has been developed a logic optimization
method based on a Cartesian Genetic Programming (CGP)
[29], [30]. This algorithm is able to reach outstandingly good
results (compared to, e.g., SIS or ABC), at the cost of long
runtime. Alike in all evolutionary algorithms, randomness is
the basis of success here.

In the past we have also proposed several synthesis
algorithms where randomness is essential for their successful
execution [32], [33], [34]. Some of these algorithms will be
briefly reviewed in Section III, for the sake of understanding
the rest of the paper.

We present some reasons for using randomized algorithms
in logic synthesis and show several synthesis processes, where
randomness becomes beneficial. Randomized and
de-randomized algorithms are compared to justify our claims.

The main scientific contribution of this paper is the
discussion on the required measure of randomness, i.e., the
quality of the random number generator used. These measures
are evaluated for different randomized processes. We show that
some randomized algorithms do not require too high level
of randomness; for example, we have observed that a random
number generator producing only two different values is
sufficient, in order to make a particular algorithm “fully
randomized”. Conversely, a high level of randomness is
required for some algorithms, in order to perform well.

Possible ways of explanation of this phenomenon will be
presented and a way of computing the upper bound of the
necessary measure of randomness will be proposed.

II. MOTIVATION

A. Design Variety
As it was said in the introduction, deterministic algorithms

benefit from reproducibility of the result, but they may suffer
from “insufficiency” of the heuristics used or inability
to explore sufficiently large search space due to resources
limitations. As present circuits become larger, also the variety
of features in a single design increases. We have shown logic
synthesis examples (benchmarks), which are “difficult” for
conventional synthesis processes [35], [36]. The “difficulty”
of these circuits consists in specificity of design processes that
have to be conducted in order to reach satisfactory results.
Heuristics that have been found successful for most of designs
of 1980’s need not be that successful for present designs.
Altering these heuristics to adapt to any design is probably
impossible. Here randomized algorithms could help – the
performance need not be optimum, however there will be still a
non-zero chance of reaching the desired solution. The
CGP-based optimization process is such a case [29], [30].

B. Iterative Synthesis
The concept of iterating the logic synthesis process was

proposed in Espresso [13]. Here the two-level minimization
process is conducted in two nested loops, where each loop is
terminated when no improvement is obtained, with respect
to the previous iteration. Even though techniques to get out
of the local minimum are employed, the overall strategy
belongs to the “best-only” search. All Espresso algorithms are
deterministic, thus for some “well-tailored” benchmarks
Espresso could fail.

A kind of an iterative process was proposed in ABC [21],
for a multi-level synthesis followed by technology mapping.
Here the authors suggest running the sequence of resynthesis
and technology mapping commands repeatedly, to reach better
results. The network is iteratively refined by this way, partially
respecting demands of the mapper. However, since all ABC
algorithms are deterministic, such an iterative process will
quickly get stuck in a local optimum [34].

Randomness in the iterative synthesis could introduce new
structures, that may (or may not) be beneficial. Moreover, a
higher level of randomness (say, kind of mutations) could
introduce structures that couldn’t have been produced by a
deterministic algorithm. Introducing “accidentally bad”
structures should not matter in the iterative synthesis; they can
be just thrown off. Or, parts of them could contribute to the
solution. Chatterjee and Mishchenko proposed the concept
of “structural choices” [38], which is now implemented
in ABC. Here the structure of the network is not forgotten after
one synthesis step, all network structures that ever appeared
during the synthesis process are accumulated, and later
exploited in technology mapping.

C. Sources of Randomness in Deterministic Algorithms
EDA tools designers sometimes object to randomization

by claiming that their algorithms cannot be randomized,
for their very nature. The algorithms always choose the
(locally) best decision under given circumstances and therefore
there is no place for random decisions. However, we will show
that this needs not be true.

The first source has already been mentioned in the
introduction. If the “best-only” local heuristic is used, and there
are multiple “best” moves, the result depends on lexicographic
order of the moves examined. In the case of the “first
improvement” heuristic, the situation can be much worse if the
moves are examined in some fixed lexicographical order; the
search is biased towards moves located earlier in the order.
Thus, the sensitivity of results to the (semantically equivalent)
ordering of input data is an indication of lexicographical bias.

To present an example, Espresso [13] is sensitive
to permutation of variables. This means that when the columns
in the PLA file (which is an input to Espresso) are permuted,
Espresso returns different results. Of course, the permuted
PLAs are functionally equivalent, just the ordering of variables
in the matrix is different (the equivalence was verified by the –
DPLAverify Espresso command). We have processed 138
PLAs from the MCNC benchmark set [39], each PLA
10,000 times, while variables of each were randomly permuted.
As a result, we have observed up to 43% difference in the
literal count between the minimum and maximum obtained
minimized PLA. The average difference was 2.1%. Results
of five of the most striking PLAs are shown in TABLE I. After
the circuit name, the number of literals of the unmodified
minimized benchmark circuit is shown (“Orig.”). Then
minimum, maximum and average literal counts from the
10,000 permutations (after minimization) are shown. Finally
the percentage difference between the minimum and maximum
values is given. The data of all the 138 circuits are summed
(averaged) in the last table row.

The results indicate that some essential algorithms
in Espresso process variables in a lexicographical order. Thus,
the minimization results may be improved by just properly
permuting the inputs. For example, results of the original dk48
and pdc benchmarks are very close to the worst case
permutation; they can be improved at least by 20%. In the
extreme cases, the circuit size was increased (Orig. vs. Max).

Surprisingly, the result quality differs in Espresso-Exact as
well, by up to 6% of literals (the numbers of SOP terms are,
of course, equal).

TABLE I. INFLUENCE OF VARIABLE ORDERING IN ESPRESSO

Circuit Orig. Min Max Avg Diff.
mark1 97 85 149 102.9 43.0%
dk48 115 92 124 106.3 25.8%
pdc 912 727 961 794.0 24.3%
ex5 444 399 463 435.8 13.8%
z5xp1 287 260 295 267.0 11.9%
Sum/Avg. 157,412 156,434 158,599 157,283 2.1%

The average quality difference in the Espresso case is not
that remarkable. However, we have studied many processes
in ABC [21] and we have found that most of them are not
immune to variable ordering in the source file as well. The
source file (BLIF [40]) describes a logic network. Here the
names of the network primary input and output variables are
listed in the file header. When we changed the order of these
variables in the header (which does not alter the circuit
function, or the meaning of variables), ABC produced different
results, sometimes significantly differing in quality.

We have processed 228 circuits from the IWLS’93
benchmark set [41]. The experimental setup was the same as
in the Espresso case: each circuit was processed 10,000-times
with different variable ordering. We have observed the
sensitivity on variable ordering even for the most basic ABC
command for balancing the AIG, “balance”. Even here the
maximum difference in the resulting circuits’ sizes was more
than 10% (measured in the number of AIG nodes).

Finally we have simulated a standard synthesis process: the
circuits were optimized by the “choice” script and mapped into
standard cells (“map”). Samples of results are shown
in TABLE II. The format is retained from TABLE I.

We can see that for the circuit “squar5” there is more than
67% difference between “worst” and “best” variable ordering.
The average difference was more than 11%.

TABLE II. INFLUENCE OF VARIABLE ORDERING

Circuit Orig. Min Max Avg Diff.
b12 372 184 566 387.6 67.5%
squar5 50 35 90 53.8 61.1%
z4ml 75 60 140 92.3 57.1%
rd53 65 37 73 55.4 49.3%
x4 333 285 445 348.8 36.0%
apex5 1015 946 1248 1093.0 24.2%
Sum/Avg. 135,476 130,664 140,865 135,544 11.0%

A similar sensitivity to variable ordering may also be
observed in the BDD-based decomposition tool BDS [11].
Here the default BDD variable ordering is given
by lexicographic order of input variables in the source BLIF.

Variable ordering is one of the points where randomness
can be introduced without affecting principles of the algorithms
used. There is a chance that different results will be obtained
when variables will be randomly reordered prior to the
execution of the algorithm. The overall result quality may be
improved by repeatedly running the synthesis and picking the
best result obtained, or in an iterative way described
in Subsection II.B.

D. Result Reproducibility
The main objection of EDA tools designers

to randomization is the problem of reproducibility of results.
A randomized algorithm will return different results when run
repeatedly on the same data. This is not desirable because
of several aspects:

1. Unexpected behavior can occur when re-synthesizing
complex designs.

2. Design errors will be difficult to locate, assuming the
synthesis will always produce different solutions.

3. Small changes in the specification shall produce small
changes in solution.

Problems ad 1 and 2 can be easily avoided by fixing the
random number generator seed via a synthesis parameter
(together with many other parameters, like, e.g., optimization
effort). This will not affect the randomized nature of the
algorithms, and equal results will be obtained whenever
required.

For problems ad 3, we must assume that the algorithm will
be used in a way that will produce nearly-optimum results,
stabilizing the solution. Of course, cases can be constructed
where adding a single term turns a large function into
tautology, etc.

 Therefore, we do not consider the result reproducibility as
a serious threat.

III. RANDOMIZED LOGIC SYNTHESIS ALGORITHMS
In this section we will briefly review some randomized

algorithms developed in the past and show the importance
of randomness. In particular, we will compare results obtained
by the original randomized algorithm and de-randomized ones.
De-randomization was done by modifying the random number
generation function, so that it produces only 1, 2, etc. distinct
values. In further text, the measure of randomness will be
denoted as RF (randomness factor). For RF = 1, the degraded
random number generator always produces one value,
constant 0. For RF = 2, two border values are produced (0,
MAXINT), etc. For RF = infinity the unmodified random
number generator is used.

We will show examples where a high level of randomness
is essential for a successful algorithm run and examples where
high randomness, though beneficial, is not essentially
important.

All the presented randomized algorithms are of an iterative
nature – the final result is obtained by iteratively refining an
intermediate solution. Intermediate solutions are then obtained
based on random decisions.

A. Two-Level Minimizer BOOM
The idea of partially randomized generation of the solution

is used in a two-level (SOP) minimizer BOOM [31], [32]. The
minimization is run repeatedly, whereas a new set of implicants
covering the source function is produced in each iteration.

In general, BOOM comprises of four consecutive steps:
CD-search, implicant expansion, implicant reduction, and
covering problem solution. CD-search (Coverage-Directed
search) is the vital phase of BOOM. Here implicants are
generated by reducing a universal hypercube (n-dimensional
cube, where n is the number of variables) by adding literals one
by one to it. This is conducted until the term becomes an
implicant, i.e., stops intersecting the off-set. Then the implicant

is stored and a next one is generated, until the whole on-set is
covered.

We use a simple, but efficient heuristic to select literals
for addition to the term under construction: the cost function is
the frequency of appearance of a given literal in the uncovered
on-set. Literals maximizing this cost function are selected
into the solution. However, it often happens that the cost is
equal for several literals. In this case, one of these literals is
selected randomly. As a result, repeated runs of CD-search
may produce different results, i.e., different sets of terms
covering the on-set.

To introduce even more randomness to the implicant
generation process, mutations may be present. With a given
probability, a mutation occurs. Then a literal with any non-zero
cost is selected, instead of the literal with the maximum cost.
We have found experimentally, that 2-5% of mutations are
beneficial. For details see [42].

The obtained terms are further expanded to prime
implicants and then reduced to obtain group implicants. These
two phases are randomized as well; the direction
of expansion/reduction is chosen randomly.

The implicant generation phase is iterated for a given
number of cycles and all produced implicants are stored in one
common implicant pool and the covering problem using all
implicants is solved, to find an irredundant cover. Only new
implicants are recorded in the pool, so that no duplicities occur.
The basic BOOM algorithm is shown in Figure 1.

BOOM(F, R) { // F = on-set, R = off-set
Pool = ∅;
do {

Cover = CD-Search(F, R);
Pool = Pool ∪ Cover;
Pool = Pool ∪ Expand(Cover, R);
Pool = Pool ∪ Reduce(Cover, R);

} while (!stop());
Solution = CP_Solve(F, Pool);
return Solution;

}

Figure 1. BOOM algorithm

0 100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

7000

Espresso cross-point

Solution literalsIm
pl

ic
an

ts

Iteration

0

200

400

600

800

1000

1200

1400

1600

Figure 2. Iterative process in BOOM

The benefit of iterating the process is illustrated in Figure 2.
A randomly generated function of 20 input variables, 5 output
variables, 200 care terms and 10% of input don’t cares was
processed. A random function was chosen in order
to maximally suppress an influence of any possible singular
behaviors of industrial benchmark circuits.

The graph shows the progress of the minimization, in terms
of the total number of implicants in the pool and the solution
quality (CP was solved after each iteration, for the example
purposes). The solution quality, in terms of total sum-of-
products literals is depicted by the bold line (and the right
y-axis). We can observe that the number of implicants follows
the saturation curve, while the solution improves in the
progress. The deterministic result obtained by Espresso [13] is
shown as a horizontal hairline. It can be seen that even though
rather inferior solutions are produced in the early iterations,
BOOM overcomes Espresso in the solution quality in the
144-th iteration. This result may be generalized for any circuit.
In cases where Espresso does not produce exact results, BOOM
is able to obtain them for a possible cost of runtime.

The importance of randomness in the minimization process
is illustrated in Figure 3. Here BOOM was de-randomized, as
described in the beginning of this Section and the progress
of the implicants number growth was traced. The final result
quality obtained after 1000 iterations for different RFs is shown
in TABLE III. and the progress of the result quality during
1000 iterations is visualized by Figure 4. The values were
obtained by averaging 5 BOOM runs (for each RF value).

0 200 400 600 800 1000

0

1000

2000

3000

4000

5000

6000

7000

8000
RF = inf.

RF = 10

RF = 3

RF = 1

RF = 2

Im
pl

ic
an

ts
 in

 p
oo

l

Iteration
Figure 3. Derandomized BOOM – implicant growth

0 200 400 600 800 1000
0

200

400

600

800

1000

1200

1400

1600

1800

RF = inf.

RF = 3
RF = 2

RF = 1

Li
te

ra
ls

Iteration

Figure 4. Derandomized BOOM – result quality

TABLE III. DERANDOMIZED BOOM – RESULT QUALITY

RF Literals
1 1695
2 669
3 650
10 648
100 649
infinity 647

We can see that when the capabilities of the random
number generator are limited, the number of generated
implicants grows slower and the solution quality drops as well.
For RF = 1 the iterative process is not working at all, since
equal implicants are generated in each iteration.

But even for RF = 2 the implicant generation rate starts
to follow the saturation curve and for RF = 3 the rate nears the
rate of RF = infinity. For RF > 10 there is no noticeable
difference from the fully randomized algorithm. Regarding the
result quality, RF = 1 definitely lacks here. For RF > 1 there
are only slight differences in quality.

The above observations can be backed up by the fact that
in CD-search there are usually only few “equal” choices
to decide between. A histogram and a pie-chart of the
distributions of the number of choices (for our example circuit,
fully randomized algorithm run, and 200 iterations) are shown
in Figure 5. In 40% of cases there is only one option to choose
from. There are 2 choices in less than 20% of cases, and the
distribution curve sinks exponentially. The average number
of choices was 3.35.

0 5 10 15 20 25 30
0

20000

40000

60000

80000

100000

120000

140000

2
19%

3
12%

4
8%

5
5%

1
40%

> 5
16%

Fr
eq

ue
nc

y

Choices
Figure 5. Numbers of choices

From a theoretical point of view, the maximum number
of possible choices in every step equals to the number
of different function’s literals, i.e., twice the number of input
variables, which is 40 in our case. However, the maximum
of choices encountered in our example was 31 only.

Concluded, BOOM needs not too much of randomness
for its successful run. Even for functions with a higher number
of variables, the number of possible decisions cannot reach
millions. Let us note here that perfect random number
generator is considered; even though we claim that generating
only 2n different random numbers (where n is the number
of input variables) is sufficient, the real random number
generator must obviously have much more than 2n internal
states.

B. Randomized Multi-Level Resynthesis
In [34] we have proposed a multi-level resynthesis method,

where the network is iteratively processed by parts, in contrast
to resynthesizing the network as whole (as proposed by authors
of ABC, see Subsection II.B). The pseudo-code of the basic
algorithm is shown in Figure 6. The network is iteratively
refined by extracting a “window” in the network and
resynthesizing it by ABC. Generally, the window is a
connected part of the network of a user-specified size. The
limit case, where the window size equals to the whole network
size, equals to the suggested iterative process in ABC.

Resynthesize(Network N) {
do {

W = Extract_Window(N);
W’ = resynthesize_by_ABC(W);
N’ = (N-W) ∪ W’;
if (cost(N’) ≤ cost(N)) N = N’;

} while (!stop());
}

Figure 6. Resynthesis by parts algorithm

There were several window extraction strategies proposed
[34]. In this paper we will present only one representative: the
Radius extraction. First, a pivot node (gate) is selected
randomly in the network. Then nodes reachable in a given
distance (radius) from the pivot are moved to the window. In
particular, transitive fan-in and fan-out nodes of the pivot are
selected, up to a given radius.

Even though the idea of resynthesis by parts could seem
to be obviously less efficient than resynthesis of the whole
circuit (e.g., global information of the circuit structure is
missing during the resynthesis), it is not. Most probably the
only reason for the efficiency is the introduction
of randomness; randomness will help the iterative optimization
process escape from a local optimum. An illustrative example
is shown in Figure 7. for the IWLS’93 benchmark “e64” [41].
The circuit was iteratively resynthesized by ABC as whole (see
the “100% resynthesis” curve) and by the iterative resynthesis
by parts, using Radius extraction, radius 5 (see the RF = inf.”
curve). We have used the ABC “choice” script followed
by “map” [21] as the resynthesis procedure. The curves were
obtained by averaging 20 resynthesis runs.

It can be seen that the repeated resynthesis of 100% of the
circuit quickly converged to a local minimum. Conversely, the
randomized resynthesis method converges slower, but quickly
reaches much better results. Such a behavior was observed
for a vast majority of examined circuits [34].

Like in the previous Subsection, we have investigated the
influence of the random factor on the process. Convergence
curves for the “e64” [41] circuit are shown in Figure 7. as well.
Here we see that for RF = 1 the process is rather insufficient
and quickly converges to a local minimum, which is even
worse than that of 100% resynthesis. However, even for RF = 2
the convergence curve nears the RF = inf. one, for RF = 100
the curves blend (not shown in the Figure).

All the data was obtained by averaging results of 20
independent runs, to make the results precise.

The necessary measure of randomness can be derived
analytically as well. The random choice occurs in the pivot
selection procedure. Here the number of choices equals to the
number of the network gates. Thus, the number of the initial
network gates is the upper bound of the number of different
values the random number generator needs to produce.

0 1000 2000 3000 4000 5000
0

100

200

300

400

500

600

RF = 5
RF = 3

RF = inf.

RF = 2

RF = 1

100% resynthesis

G
at

es

Iteration

Figure 7. Resynthesis by parts – derandomized

C. FC-Min: Probabilistic Two-Level Minimization
In [33] we have presented a two-level minimizer primarily

targeted to multi-output functions. Basically, group implicants
are generated directly from the PLA description [13] of the
function, by looking for a rectangle cover [43], [7] of the
matrix defining output values of the multi-output function.
In particular, rectangles comprising of maximum of ‘1’ are
looked for. A randomized greedy heuristic is employed to solve
this NP-hard problem. First, a matrix row having most of 1’s is
selected as a starting point. Then rows maximizing the size
of the rectangle are gradually appended, until its size cannot be
further increased. Implicants are then derived as supercubes
of terms included in the rectangle. The more rows the rectangle
has, the higher is the dimension of its respective term, since
supercubes of more terms are produced. As a consequence,
rectangles spanning many rows more likely induce terms that
intersect the function’s off-set, therefore they cannot be parts
of the solution, so they are discarded and a different rectangle
is looked for. One way to overcome this problem is a
probabilistic execution of the rectangle generation process:
in each step, the rectangle generation is stopped with a
probability given by a parameter called the depth factor (DF).
The higher DF is, the more likely will the algorithm continue
increasing the number of rows. The pseudo-code of the
rectangle generation algorithm is shown in Figure 8. The input
to the algorithm is the output matrix of the PLA, the output is
one rectangle covering some of the matrix ‘1’s. The
randomized termination condition is visualized in bold.

FindRectangle(O) { //O is the output matrix (m, p)
R = ∅; // empty row set
C = ∪{0, ..., m}; // set of all columns
do {

v = row_with_maximum_x_for(0 ≤ i < p)
where x = (|R|+1)*|C ∩ O[i]| - |R|*|C|;

// potential increase of covered ‘1’s
if (v < 0) break;
 // no further increase possible. Terminate
R = R ∪ {v}; // include v into C
C = C ∩ O[v]; // reduce C

} while (random() < DF);
 // forced random termination
return (R, C);

}
Figure 8. Find rectangle algorithm

Random nature of this algorithm guarantees that the search
will ever stop. Decreased randomness decreases the variety
of implicants generated by FC-Min. When FC-Min is run
iteratively in a BOOM-like way (see Subsection III.A), this
will involve a reduced implicant growth rate. However, since
the algorithm termination condition is continuous (random()
generates real numbers here), much higher level of randomness
is required for a successful algorithm run. This is documented
in Figure 9. The function from Subsection III.A was minimized
(20 inputs, 5 outputs, 200 terms), DF was set to 0.8. The values
were obtained by averaging 20 runs. The growth of the number
of implicants during 1000 iterations, for different RFs is
shown. We can see that even for RF = 100 the implicants
number grows rather slowly, compared to RF = infinity. For
DF = 1 the algorithm got stuck, which is expectable (the
stopping condition is never satisfied).

The solution quality is affected in the same way. RF of at
least 1000 is required, in order to approach the solution of the
fully randomized process. The progress of the solution quality
is depicted in Figure 10.

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

4000

DF = inf.
DF = 10,000

DF = 1000

DF = 100

DF = 10

DF = 3

DF = 2Im
pl

ic
an

ts
 in

 p
oo

l

Iteration
Figure 9. Derandomized FC-Min – implicants number growth

0 200 400 600 800 1000
500

600

700

800

900

1000

1100

1200 Randomness factors increasingly:
2
3
5
10
100
1000
infinity

Li
te

ra
ls

Iteration

Figure 10. Derandomized FC-Min – solution quality

In contrast to the algorithms mentioned in the previous
subsections, in the case of FC-Min the minimum required
degree of randomness cannot be analytically computed. In fact,
any loss of randomness involves a loss of efficiency here.

D. Simulated Annealing Based Algorithms
The difficulties in analytical estimation of necessary

randomness factor can be illustrated by the case of simulated
annealing.

The core condition accepting a worsening move can be
written as
accept = (random() < exp(-delta / (maxdelta*T)))

where delta is the difference in cost, maxdelta an
instance-specific upper bound for such difference, and T is the
current temperature. Notice that this formula is already
normalized with respect to the cost function range.

The simulated annealing procedure is known to be robust
with respect to variations in the above formula [44], [45], and
even to approximation of the exponential function [46].
Therefore, we would expect it to work even with a coarse-
grained random generator.

Obviously, the accepting formula is not and cannot be
normalized with respect to temperature, and therefore a
randomness factor adequate for initial high temperature would
be too coarse at the end of annealing. We have to admit that
although we can still characterize the measure of randomness
by a parameter, the actual values may vary during the
computation.

IV. CONCLUSIONS
The contribution of this paper is threefold: first, we have

shown to what extend the result of some deterministic
algorithms (Espresso, ABC) depends on lexicographical
ordering of variables in the source file. Therefore, either more
sophisticated heuristics should be developed, or randomness
could be employed, in order to possibly improve the result
quality. Let us note that the first alternative is very difficult
to be accomplished in general: for example, finding an
optimum BDD variable ordering is NP-hard itself.

Next we have presented several examples of randomized
logic synthesis processes, in opposition to the presently used
fully deterministic ones. Some reasons for randomization were
proposed and backed up by experimental results showing
inefficiency of deterministic algorithms and benefits
of randomization.

Finally, the necessary measure of randomness was
discussed. We have shown that mostly a negligible amount
of randomness is needed for the algorithm to perform well.
However, in some cases, any de-randomization may deteriorate
the solution. Probabilistic processes like FC-Min [33] or, e.g.,
algorithms based on simulated annealing [24] are examples.

We have examined the behavior of the presented heuristics
using many different example circuits. All the conclusions
drawn from the behavior of the example circuits presented
in this paper can be generalized for almost any circuit.

ACKNOWLEDGMENT
This research has been supported by MSMT under research

program MSM6840770014 and by the grant GA102/09/1668.

REFERENCES
[1] W. V. Quine, “The problem of simplifying truth functions”, Amer.

Math. Monthly, 59, No.8, 1952, pp. 521-531
[2] E. J. McCluskey, “Minimization of Boolean functions”, The Bell System

Technical Journal, 35, No. 5, Nov. 1956, pp. 1417-1444
[3] R. L. Ashenhurst, “The decomposition of switching functions”. In

Proceedings of the International Symposium on the Theory of
Switching, Part I 29, pages 74–116, 1957.

[4] H. A. Curtis, “A New Approach to the Design of Switching Circuits”.
Van Nostrand, Princeton, N.J., 1962.

[5] J. P. Roth and R. M. Karp, “Minimization over boolean graphs,” IBM J.
Res. Dev., pp. 227–238, Apr. 1962.

[6] G. D. Hachtel and F. Somenzi: “Logic Synthesis and Verification
Algorithms“, Kluwer Academic Pub, 1996, 564 p.

[7] S. Hassoun and T. Sasao, “Logic Synthesis and Verification“, Boston,
MA, Kluwer Academic Publishers, 2002, 454 p.

[8] S. B. Akers, “Binary decision diagrams”, IEEE Transactions on
Computers, vol. C-27, No. 6, June 1978, pp. 509-516

[9] R. E. Bryant, “Graph based algorithms for Boolean function
manipulation“, IEEE Trans. on Computers, vol. 35, No. 8, August 1986,
pp. 677-691

[10] K. Karplus, “Using if-then-else DAG’s for multi-level logic
minimization,” Univ. California, Santa Cruz, UCSC-CRL-88-29, 1988

[11] C. Yang and M. Ciesielski, “BDS: A BDD-Based Logic Optimization
System”, IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, vol. 21, no. 7, pp. 866-876, 2002

[12] O. Coudert and J.C. Madre, “Implicit and Incremental Computation of
Primes and Essential Primes of Boolean functions”, Proc. of 29th DAC,
Anaheim CA, USA, June 1992, pp. 36-39

[13] R. K. Brayton et al., “Logic minimization algorithms for VLSI
synthesis”, Boston, MA, Kluwer Academic Publishers, 1984, 192 pp.

[14] R. K. Brayton, Richard Rudell, Alberto Sangiovanni-Vincentelli, and
Albert R.Wang, “MIS: A Multiple-Level Logic Optimization System”.
IEEE Trans. on Computer-Aided Design, pp. 1062–1081, Nov. 1987.

[15] E.M. Sentovich et al., “SIS: A System for Sequential Circuit Synthesis”,
Electronics Research Laboratory Memorandum No. UCB/ERL M92/41,
University of California, Berkeley, CA 94720, 1992

[16] M. Gao, Jie-Hong Jiang, Y. Jiang, Y. Li, S. Sinha, and R.K. Brayton,
“MVSIS”, In the Notes of the International Workshop on Logic
Synthesis, Tahoe City, June 2001

[17] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG
rewriting: a fresh look at combinational logic synthesis”. In 43th Design
Automation Conference, San Francisco, CA, USA, 2006, pp. 532-535.

[18] A. Mishchenko, S. Chatterjee, and R. Brayton, “Improvements to
technology mapping for LUT-based FPGAs”. IEEE Trans. on
Computer-Aided Design, Vol. 26(2), Feb 2007, pp. 240-253.

[19] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, “Combinational
and sequential mapping with priority cuts”, Proc. ICCAD'07, pp. 354-
361.

[20] A. Mishchenko, R. K. Brayton, and S. Chatterjee, “Boolean factoring
and decomposition of logic networks”, Proc. ICCAD'08, pp. 38-44.

[21] Berkeley Logic Synthesis and Verification Group, “ABC: A System for
Sequential Synthesis and Verification”. [Online].

[22] W. Zhang, “State-space search: Algorithms, complexity, extensions, and
applications”, Springer: New York, 1999

[23] L. Jozwiak, “Advanced AI Search Techniques in Modern Digital Circuit
Synthesis”. Artif. Intell. Rev. 20, 3-4 (December 2003), 269-318.

[24] D. Brand, “Hill climbing with reduced search space”, IEEE International
Conference on Computer-Aided Design, 7-10 Nov., 1988 (ICCAD-88),
pp. 294-297.

[25] J.M. Sanchez and J. Lanchares, “Multilevel logic synthesis using
algorithms based on natural processes”, 20th International Conference
on Microelectronics, 12-14 Sep 1995, pp. 823-828.

[26] A. Kuehlmann, P. Färm, and E. Dubrova, “Logic optimization using
rule-based randomized search”, 05 Asia and South Pacific Design
Automation Conference, Shanghai, China, 2005, pp. 998-1001

[27] R. Vemuri, “Genetic synthesis: performance-driven logic synthesis using
genetic evolution”, First Great Lakes Symposium on VLSI,
1-2 Mar, 1991, pp. 312-317

[28] K. Ohmori and T. Kasai, “Logic synthesis using a genetic algorithm”,
IEEE International Conference on Intelligent Processing Systems,
Beijing, China, 1997, pp. 137-142

[29] Z. Vasicek and L. Sekanina: “Formal Verification of Candidate
Solutions for Post-Synthesis Evolutionary Optimization in Evolvable
Hardware”, Genetic Programming and Evolvable Machines, March
2011, pp. 1-23

[30] P. Fišer, J. Schmidt, Z. Vašíček, and L. Sekanina, “On Logic Synthesis
of Conventionally Hard to Synthesize Circuits Using Genetic
Programming”, Proc. 13th IEEE Symposium on Design and Diagnostics
of Electronic Systems, Vienna (Austria), 14.-16.4.2010, pp. 346-351.

[31] J. Hlavička and P. Fišer, “BOOM, a Heuristic Boolean Minimizer”,
Proc. International Conference on Computer-Aided Design, ICCAD
2001, San Jose, California (USA), 4.-8.11.2001, pp. 439-442

[32] P. Fišer and J. Hlavička, “BOOM - A Heuristic Boolean Minimizer”,
Computers and Informatics, Vol. 22, 2003, No. 1, pp. 19-51.

[33] P. Fišer, J. Hlavička, and H. Kubátová, “FC-Min: A Fast Multi-Output
Boolean Minimizer“, Proc. 29th Euromicro Symposium on Digital
Systems Design (DSD'03), Antalya (TR), 1.-6.9.2003, pp. 451-454.

[34] P. Fišer and J. Schmidt, “It Is Better to Run Iterative Resynthesis on
Parts of the Circuit”, Proc. 19th of International Workshop on Logic and
Synthesis 2010, Irvine, California (USA), 18.-20.6.2010, pp. 17-24.

[35] P. Fišer and J. Schmidt, “The Observed Role of Structure in Logic
Synthesis Examples”, Proc. 18th of International Workshop on Logic
and Synthesis 2009, Berkeley, CA, USA, 31.7. - 2.8.2009, pp. 210-213.

[36] P. Fišer, J. Schmidt, “New Ways of Generating Large Realistic
Benchmarks for Testing Synthesis Tools”, Proc. 9th Int. Workshop on
Boolean Problems, Freiberg, Germany, 16.-17.9.2010, pp. 157-164.

[37] J. A. Darringer et al., “Logic synthesis through local transformations”,
IBM Journal of Res. and Devel., vol. 25, no. 4, pp. 272-280, July, 1981.

[38] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,
“Reducing structural bias in technology mapping”, IEEE Trans. on
Computer-Aided Design, Vol. 25(12), Dec. 2006, pp. 2894-2903.

[39] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide”,
Technical Report 1991-IWLS-UG-Saeyang, MCNC, Research Triangle
Park, NC, January 1991.

[40] Berkeley Logic Interchange Format (BLIF), University of California,
Brekeley, 2005.

[41] K. McElvain, “LGSynth93 Benchmark Set: Version 4.0“, Mentor
Graphics, May 1993.

[42] P. Fišer and J. Hlavička, “On the Use of Mutations in Boolean
Minimization“, Proc. Euromicro Symposium on Digital Systems Design
(DSD‘01), Warsaw (Poland), 4.-6.9.2001, pp. 300-305

[43] M. R. Garey and D. S. Johnson, Computers and Intractability: “A Guide
to the Theory of NP-Completeness”. San Francisco, CA: Freeman, 1979.

[44] F. A. Ogbu and D. K. Smith, “The application of the simulated
annealing algorithm to the solution of n/m/Cmax flowshop problem“.
Computers & Ops. Res. 17, 243-253, 1990.

[45] A. J. Vakharia and Y-L. Chang, “A simulated annealing approach to
scheduling a manufacturing cell.“ NRL, 37, 559-577, 1990.

[46] D. S. Johnson, C. R. Aragon, L. A. McGeoch, C. Scheron,
“Optimization by simulated annealing: an experimental evaluation:
part I, graph partitioning“. Ops. Res., 37, 865-892, 1989

