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Abstract—Most of presently used academic logic synthesis tools, 
including SIS and ABC, are fully deterministic. Up to the 
knowledge of the authors, this holds for all available commercial 
tools as well. This means that no random decisions are made; the 
algorithms fully rely on deterministic heuristics. In this paper we 
present several hints of insufficiency of such an approach and 
show examples of perspective randomized logic synthesis 
algorithms. Judging from our experiments, these algorithms have 
a higher potential of performing better than the deterministic 
ones. Further we study how much randomness is actually needed 
for the algorithms to perform well. We show that some 
algorithms require only a small amount of randomness, while 
still taking full advantage of their randomized nature. On the 
other hand, some algorithms require a very high level 
of randomness to perform well. We propose reasons for this 
behavior and show a way of computing the necessary measure 
of randomness required. 

Keywords-logic synthesis, minimization, randomized 
algorithms, derandomization, Espresso, ABC 

I.  INTRODUCTION 
Basic principles of most of viable logic synthesis 

algorithms have been established already in early 1960’s, both 
for two-level (PLA) minimization [1], [2] and multi-level logic 
synthesis [3], [4], [5], [6], [7]. These basic algorithms suffer 
from low scalability for large designs. This drawback has been 
partially overcome by introducing binary decision diagrams 
(BDDs) [8], [9]. New, BDD-based algorithms were proposed 
[10], [11], [12]. However, even though BDDs represent logic 
functions implicitly, their size may easily blow up 
exponentially as well [8], [9]. 

In two-level minimization, the basic Quine-McCluskey 
algorithm [1], [2] has been replaced by Espresso [13], which 
became a well-established standard since 1980’s.  

These logic synthesis algorithms were implemented 
in academic tools MIS [14], SIS [15], and MVSIS [16] 
by Berkeley Logic Synthesis and Verification Group.  

Recently, the research shifted towards a different internal 
network representation: the And-Inverter Graphs (AIGs) [17]. 
These are more scalable than standard tabular (PLA) circuit 
nodes representations and new, more flexible synthesis and 
mapping algorithms may be applied upon these structures [17], 
[18], [19], [20]. A synthesis tool ABC [21] implementing these 
algorithms came as a successor of SIS and MVSIS and its 
development still continues. 

Because of high complexities of present designs, using 
exact algorithms (for two-level minimization, multi-level 
optimization, resynthesis, etc.) is not feasible. Therefore, 
approximate heuristic algorithms must be used in practice, 
to reduce the search space. Even though the employed 
heuristics usually produce solutions of a sufficient quality, they 
do not guarantee an optimum and mostly do not even guarantee 
a maximum relative error. 

All of the mentioned algorithms and logic synthesis 
systems (SIS, ABC) are fully deterministic; no random choices 
are made in the synthesis process. This brings a benefit 
of reproducibility of the result – two runs of the algorithm 
using the same data will produce equal results. However, the 
determinism also involves inability of reaching different, 
possibly much better results. 

The logic optimization can be treated as a general 
combinatorial problem. In general, most of algorithms used 
in logic synthesis are of a local search nature. Here moves 
in the state space are usually driven by a deterministic heuristic 
function. For example, when checking for tautology (which is a 
co-NP-hard problem) in Espresso [13], the variable splitting 
decision is made on the most binate variable. It has been shown 
experimentally, that such an approach is “good”. However, 
such a conclusion definitely cannot be generalized for any 
tautology-checking problem instance. 

Moreover, a granularity of the heuristic function may 
become of concern as well. This means, it may happen that 
there will appear two or more equally valued possibilities for 
moves in the state space. Mostly this happens in cases where 
the knowledge of the state space is limited, the heuristic 
function cannot be evaluated precisely enough, or simply there 
are several equivalent moves. In the Espresso tautology 
checking example, it may happen that two or more variables 
that are most and equally binate will appear. Then there is no 
clue which one to select, so the first one found is chosen. 
However, the decision on one variable may significantly affect 
the algorithm run. 

Basically, there are two ways of solving this problem: 
either a parallelism is involved, or randomized algorithms are 
used. In the case of parallelism used, several heuristic decisions 
are made simultaneously. From the theoretical point a view, the 
problem is solved by a non-deterministic Turing machine, 
which can be simulated on a sequential machine by, e.g., the 
best-first search. Here the number of simultaneously active 
states may grow exponentially, thus the general model cannot 
be implemented for practical problem instances. Here, e.g., 
modifications of the best-first search strategy, like the 



beam-search [22], [23] are used.  Approaches based on genetic 
algorithms partially belong to the category of parallel search 
algorithms as well [27], [28]. 

The disadvantage of such an approach is that some 
perspective parts of the state space may not be explored, due 
to state explosion (i.e., only a strictly limited number of states 
can be stored as candidates for expansion). 

In the case of randomization employed, one of the 
“equivalent” moves is chosen randomly, hoping that a “good 
path” through the state space will be found. In a repeated run 
of the randomized process, different choices will be (hopefully) 
selected. As a result, larger part of the search space is explored, 
at the cost of runtime. 

In the limit case (unlimited space and time resources), these 
two strategies produce equal results. Theoretically, repeatedly 
restarted randomized algorithm fully simulates the 
non-deterministic Turing machine. 

There have been several attempts to use randomized 
algorithms in logic synthesis. The optimization algorithm 
proposed in [24] is deterministic, though it is suggested to be 
run repeatedly, with random initial solutions. The local 
optimum is avoided this way. 

Randomized algorithms based on simulated annealing [25], 
[26] or genetic algorithms [27], [28] were proposed for logic 
synthesis. Since these algorithms are of an incremental nature, 
a tradeoff between the result quality and runtime may be set. 
Any combinatorial problem can be solved in a randomized way 
using these problem-independent metaheuristics, as a universal 
way to trade time for quality. The question is, can problem-
dependent randomized algorithms be designed, with better 
efficiency.  

Recently there has been developed a logic optimization 
method based on a Cartesian Genetic Programming (CGP) 
[29], [30]. This algorithm is able to reach outstandingly good 
results (compared to, e.g., SIS or ABC), at the cost of long 
runtime. Alike in all evolutionary algorithms, randomness is 
the basis of success here. 

In the past we have also proposed several synthesis 
algorithms where randomness is essential for their successful 
execution [32], [33], [34]. Some of these algorithms will be 
briefly reviewed in Section III, for the sake of understanding 
the rest of the paper. 

We present some reasons for using randomized algorithms 
in logic synthesis and show several synthesis processes, where 
randomness becomes beneficial. Randomized and 
de-randomized algorithms are compared to justify our claims. 

The main scientific contribution of this paper is the 
discussion on the required measure of randomness, i.e., the 
quality of the random number generator used. These measures 
are evaluated for different randomized processes. We show that 
some randomized algorithms do not require too high level 
of randomness; for example, we have observed that a random 
number generator producing only two different values is 
sufficient, in order to make a particular algorithm “fully 
randomized”. Conversely, a high level of randomness is 
required for some algorithms, in order to perform well. 

Possible ways of explanation of this phenomenon will be 
presented and a way of computing the upper bound of the 
necessary measure of randomness will be proposed. 

II. MOTIVATION 

A. Design Variety 
As it was said in the introduction, deterministic algorithms 

benefit from reproducibility of the result, but they may suffer 
from “insufficiency” of the heuristics used or inability 
to explore sufficiently large search space due to resources 
limitations. As present circuits become larger, also the variety 
of features in a single design increases. We have shown logic 
synthesis examples (benchmarks), which are “difficult” for 
conventional synthesis processes [35], [36]. The “difficulty” 
of these circuits consists in specificity of design processes that 
have to be conducted in order to reach satisfactory results. 
Heuristics that have been found successful for most of designs 
of 1980’s need not be that successful for present designs. 
Altering these heuristics to adapt to any design is probably 
impossible. Here randomized algorithms could help – the 
performance need not be optimum, however there will be still a 
non-zero chance of reaching the desired solution. The 
CGP-based optimization process is such a case [29], [30]. 

B. Iterative Synthesis 
The concept of iterating the logic synthesis process was 

proposed in Espresso [13]. Here the two-level minimization 
process is conducted in two nested loops, where each loop is 
terminated when no improvement is obtained, with respect 
to the previous iteration. Even though techniques to get out 
of the local minimum are employed, the overall strategy 
belongs to the “best-only” search. All Espresso algorithms are 
deterministic, thus for some “well-tailored” benchmarks 
Espresso could fail. 

A kind of an iterative process was proposed in ABC [21], 
for a multi-level synthesis followed by technology mapping. 
Here the authors suggest running the sequence of resynthesis 
and technology mapping commands repeatedly, to reach better 
results. The network is iteratively refined by this way, partially 
respecting demands of the mapper. However, since all ABC 
algorithms are deterministic, such an iterative process will 
quickly get stuck in a local optimum [34]. 

Randomness in the iterative synthesis could introduce new 
structures, that may (or may not) be beneficial. Moreover, a 
higher level of randomness (say, kind of mutations) could 
introduce structures that couldn’t have been produced by a 
deterministic algorithm. Introducing “accidentally bad” 
structures should not matter in the iterative synthesis; they can 
be just thrown off. Or, parts of them could contribute to the 
solution. Chatterjee and Mishchenko proposed the concept 
of “structural choices” [38], which is now implemented 
in ABC. Here the structure of the network is not forgotten after 
one synthesis step, all network structures that ever appeared 
during the synthesis process are accumulated, and later 
exploited in technology mapping.  



C. Sources of Randomness in Deterministic Algorithms 
EDA tools designers sometimes object to randomization 

by claiming that their algorithms cannot be randomized, 
for their very nature. The algorithms always choose the 
(locally) best decision under given circumstances and therefore 
there is no place for random decisions. However, we will show 
that this needs not be true. 

The first source has already been mentioned in the 
introduction. If the “best-only” local heuristic is used, and there 
are multiple “best” moves, the result depends on lexicographic 
order of the moves examined. In the case of the “first 
improvement” heuristic, the situation can be much worse if the 
moves are examined in some fixed lexicographical order; the 
search is biased towards moves located earlier in the order. 
Thus, the sensitivity of results to the (semantically equivalent) 
ordering of input data is an indication of lexicographical bias. 

To present an example, Espresso [13] is sensitive 
to permutation of variables. This means that when the columns 
in the PLA file (which is an input to Espresso) are permuted, 
Espresso returns different results. Of course, the permuted 
PLAs are functionally equivalent, just the ordering of variables 
in the matrix is different (the equivalence was verified by the –
DPLAverify Espresso command). We have processed 138 
PLAs from the MCNC benchmark set [39], each PLA 
10,000 times, while variables of each were randomly permuted. 
As a result, we have observed up to 43% difference in the 
literal count between the minimum and maximum obtained 
minimized PLA. The average difference was 2.1%. Results 
of five of the most striking PLAs are shown in TABLE I. After 
the circuit name, the number of literals of the unmodified 
minimized benchmark circuit is shown (“Orig.”). Then 
minimum, maximum and average literal counts from the 
10,000 permutations (after minimization) are shown. Finally 
the percentage difference between the minimum and maximum 
values is given. The data of all the 138 circuits are summed 
(averaged) in the last table row. 

The results indicate that some essential algorithms 
in Espresso process variables in a lexicographical order. Thus, 
the minimization results may be improved by just properly 
permuting the inputs. For example, results of the original dk48 
and pdc benchmarks are very close to the worst case 
permutation; they can be improved at least by 20%. In the 
extreme cases, the circuit size was increased (Orig. vs. Max). 

Surprisingly, the result quality differs in Espresso-Exact as 
well, by up to 6% of literals (the numbers of SOP terms are, 
of course, equal). 

TABLE I.  INFLUENCE OF VARIABLE ORDERING IN ESPRESSO 

Circuit Orig. Min Max Avg Diff. 
mark1 97 85 149 102.9 43.0%
dk48 115 92 124 106.3 25.8%
pdc 912 727 961 794.0 24.3%
ex5 444 399 463 435.8 13.8%
z5xp1 287 260 295 267.0 11.9%
Sum/Avg. 157,412 156,434 158,599 157,283 2.1% 

 

The average quality difference in the Espresso case is not 
that remarkable. However, we have studied many processes 
in ABC [21] and we have found that most of them are not 
immune to variable ordering in the source file as well. The 
source file (BLIF [40]) describes a logic network. Here the 
names of the network primary input and output variables are 
listed in the file header. When we changed the order of these 
variables in the header (which does not alter the circuit 
function, or the meaning of variables), ABC produced different 
results, sometimes significantly differing in quality. 

We have processed 228 circuits from the IWLS’93 
benchmark set [41]. The experimental setup was the same as 
in the Espresso case: each circuit was processed 10,000-times 
with different variable ordering. We have observed the 
sensitivity on variable ordering even for the most basic ABC 
command for balancing the AIG, “balance”. Even here the 
maximum difference in the resulting circuits’ sizes was more 
than 10% (measured in the number of AIG nodes). 

Finally we have simulated a standard synthesis process: the 
circuits were optimized by the “choice” script and mapped into 
standard cells (“map”). Samples of results are shown 
in TABLE II. The format is retained from TABLE I.  

We can see that for the circuit “squar5” there is more than 
67% difference between “worst” and “best” variable ordering. 
The average difference was more than 11%. 

TABLE II.  INFLUENCE OF VARIABLE ORDERING 

Circuit Orig. Min Max Avg Diff. 
b12 372 184 566 387.6 67.5%
squar5 50 35 90 53.8 61.1%
z4ml 75 60 140 92.3 57.1%
rd53 65 37 73 55.4 49.3%
x4 333 285 445 348.8 36.0%
apex5 1015 946 1248 1093.0 24.2%
Sum/Avg. 135,476 130,664 140,865 135,544 11.0%

 

A similar sensitivity to variable ordering may also be 
observed in the BDD-based decomposition tool BDS [11]. 
Here the default BDD variable ordering is given 
by lexicographic order of input variables in the source BLIF. 

Variable ordering is one of the points where randomness 
can be introduced without affecting principles of the algorithms 
used. There is a chance that different results will be obtained 
when variables will be randomly reordered prior to the 
execution of the algorithm. The overall result quality may be 
improved by repeatedly running the synthesis and picking the 
best result obtained, or in an iterative way described 
in Subsection II.B. 

D. Result Reproducibility 
The main objection of EDA tools designers 

to randomization is the problem of reproducibility of results. 
A randomized algorithm will return different results when run 
repeatedly on the same data. This is not desirable because 
of several aspects:  



1. Unexpected behavior can occur when re-synthesizing 
complex designs.  

2. Design errors will be difficult to locate, assuming the 
synthesis will always produce different solutions. 

3. Small changes in the specification shall produce small 
changes in solution. 

Problems ad 1 and 2 can be easily avoided by fixing the 
random number generator seed via a synthesis parameter 
(together with many other parameters, like, e.g., optimization 
effort). This will not affect the randomized nature of the 
algorithms, and equal results will be obtained whenever 
required. 

For problems ad 3, we must assume that the algorithm will 
be used in a way that will produce nearly-optimum results, 
stabilizing the solution. Of course, cases can be constructed 
where adding a single term turns a large function into 
tautology, etc.  

 Therefore, we do not consider the result reproducibility as 
a serious threat. 

III. RANDOMIZED LOGIC SYNTHESIS ALGORITHMS 
In this section we will briefly review some randomized 

algorithms developed in the past and show the importance 
of randomness. In particular, we will compare results obtained 
by the original randomized algorithm and de-randomized ones. 
De-randomization was done by modifying the random number 
generation function, so that it produces only 1, 2, etc. distinct 
values. In further text, the measure of randomness will be 
denoted as RF (randomness factor). For RF = 1, the degraded 
random number generator always produces one value, 
constant 0. For RF = 2, two border values are produced (0, 
MAXINT), etc. For RF = infinity the unmodified random 
number generator is used. 

We will show examples where a high level of randomness 
is essential for a successful algorithm run and examples where 
high randomness, though beneficial, is not essentially 
important. 

All the presented randomized algorithms are of an iterative 
nature – the final result is obtained by iteratively refining an 
intermediate solution. Intermediate solutions are then obtained 
based on random decisions. 

A. Two-Level Minimizer BOOM 
The idea of partially randomized generation of the solution 

is used in a two-level (SOP) minimizer BOOM [31], [32]. The 
minimization is run repeatedly, whereas a new set of implicants 
covering the source function is produced in each iteration. 

In general, BOOM comprises of four consecutive steps: 
CD-search, implicant expansion, implicant reduction, and 
covering problem solution. CD-search (Coverage-Directed 
search) is the vital phase of BOOM. Here implicants are 
generated by reducing a universal hypercube (n-dimensional 
cube, where n is the number of variables) by adding literals one 
by one to it. This is conducted until the term becomes an 
implicant, i.e., stops intersecting the off-set. Then the implicant 

is stored and a next one is generated, until the whole on-set is 
covered. 

We use a simple, but efficient heuristic to select literals 
for addition to the term under construction: the cost function is 
the frequency of appearance of a given literal in the uncovered 
on-set. Literals maximizing this cost function are selected 
into the solution. However, it often happens that the cost is 
equal for several literals. In this case, one of these literals is 
selected randomly. As a result, repeated runs of CD-search 
may produce different results, i.e., different sets of terms 
covering the on-set. 

To introduce even more randomness to the implicant 
generation process, mutations may be present. With a given 
probability, a mutation occurs. Then a literal with any non-zero 
cost is selected, instead of the literal with the maximum cost. 
We have found experimentally, that 2-5% of mutations are 
beneficial. For details see [42].  

The obtained terms are further expanded to prime 
implicants and then reduced to obtain group implicants. These 
two phases are randomized as well; the direction 
of expansion/reduction is chosen randomly.  

The implicant generation phase is iterated for a given 
number of cycles and all produced implicants are stored in one 
common implicant pool and the covering problem using all 
implicants is solved, to find an irredundant cover. Only new 
implicants are recorded in the pool, so that no duplicities occur. 
The basic BOOM algorithm is shown in Figure 1.  

BOOM(F, R) { // F = on-set, R = off-set 
Pool = ∅; 
do { 

Cover = CD-Search(F, R); 
Pool = Pool ∪ Cover; 
Pool = Pool ∪ Expand(Cover, R); 
Pool = Pool ∪ Reduce(Cover, R); 

} while (!stop()); 
Solution = CP_Solve(F, Pool); 
return Solution; 

} 

Figure 1.  BOOM algorithm 
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Figure 2.  Iterative process in BOOM 

The benefit of iterating the process is illustrated in Figure 2.  
A randomly generated function of 20 input variables, 5 output 
variables, 200 care terms and 10% of input don’t cares was 
processed. A random function was chosen in order 
to maximally suppress an influence of any possible singular 
behaviors of industrial benchmark circuits. 



The graph shows the progress of the minimization, in terms 
of the total number of implicants in the pool and the solution 
quality (CP was solved after each iteration, for the example 
purposes). The solution quality, in terms of total sum-of-
products literals is depicted by the bold line (and the right 
y-axis). We can observe that the number of implicants follows 
the saturation curve, while the solution improves in the 
progress. The deterministic result obtained by Espresso [13] is 
shown as a horizontal hairline. It can be seen that even though 
rather inferior solutions are produced in the early iterations, 
BOOM overcomes Espresso in the solution quality in the 
144-th iteration. This result may be generalized for any circuit. 
In cases where Espresso does not produce exact results, BOOM 
is able to obtain them for a possible cost of runtime. 

The importance of randomness in the minimization process 
is illustrated in Figure 3. Here BOOM was de-randomized, as 
described in the beginning of this Section and the progress 
of the implicants number growth was traced. The final result 
quality obtained after 1000 iterations for different RFs is shown 
in TABLE III. and the progress of the result quality during 
1000 iterations is visualized by Figure 4. The values were 
obtained by averaging 5 BOOM runs (for each RF value). 
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Figure 3.  Derandomized BOOM – implicant growth 
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TABLE III.  DERANDOMIZED BOOM – RESULT QUALITY 

RF Literals 
1 1695 
2 669 
3 650 
10 648 
100 649 
infinity 647 

We can see that when the capabilities of the random 
number generator are limited, the number of generated 
implicants grows slower and the solution quality drops as well. 
For RF = 1 the iterative process is not working at all, since 
equal implicants are generated in each iteration.  

But even for RF = 2 the implicant generation rate starts 
to follow the saturation curve and for RF = 3 the rate nears the 
rate of RF = infinity. For RF > 10 there is no noticeable 
difference from the fully randomized algorithm. Regarding the 
result quality, RF = 1 definitely lacks here. For RF > 1 there 
are only slight differences in quality. 

The above observations can be backed up by the fact that 
in CD-search there are usually only few “equal” choices 
to decide between. A histogram and a pie-chart of the 
distributions of the number of choices (for our example circuit, 
fully randomized algorithm run, and 200 iterations) are shown 
in Figure 5. In 40% of cases there is only one option to choose 
from. There are 2 choices in less than 20% of cases, and the 
distribution curve sinks exponentially. The average number 
of choices was 3.35. 
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From a theoretical point of view, the maximum number 
of possible choices in every step equals to the number 
of different function’s literals, i.e., twice the number of input 
variables, which is 40 in our case. However, the maximum 
of choices encountered in our example was 31 only. 

Concluded, BOOM needs not too much of randomness 
for its successful run. Even for functions with a higher number 
of variables, the number of possible decisions cannot reach 
millions. Let us note here that perfect random number 
generator is considered; even though we claim that generating 
only 2n different random numbers (where n is the number 
of input variables) is sufficient, the real random number 
generator must obviously have much more than 2n internal 
states. 



B. Randomized Multi-Level Resynthesis 
In [34] we have proposed a multi-level resynthesis method, 

where the network is iteratively processed by parts, in contrast 
to resynthesizing the network as whole (as proposed by authors 
of ABC, see Subsection II.B). The pseudo-code of the basic 
algorithm is shown in Figure 6. The network is iteratively 
refined by extracting a “window” in the network and 
resynthesizing it by ABC. Generally, the window is a 
connected part of the network of a user-specified size. The 
limit case, where the window size equals to the whole network 
size, equals to the suggested iterative process in ABC. 

Resynthesize(Network N) { 
do { 

W = Extract_Window(N); 
W’ = resynthesize_by_ABC(W); 
N’ = (N-W) ∪ W’; 
if (cost(N’) ≤ cost(N)) N = N’; 

} while (!stop()); 
} 

Figure 6.  Resynthesis by parts algorithm 

There were several window extraction strategies proposed 
[34]. In this paper we will present only one representative: the 
Radius extraction. First, a pivot node (gate) is selected 
randomly in the network. Then nodes reachable in a given 
distance (radius) from the pivot are moved to the window. In 
particular, transitive fan-in and fan-out nodes of the pivot are 
selected, up to a given radius. 

Even though the idea of resynthesis by parts could seem 
to be obviously less efficient than resynthesis of the whole 
circuit (e.g., global information of the circuit structure is 
missing during the resynthesis), it is not. Most probably the 
only reason for the efficiency is the introduction 
of randomness; randomness will help the iterative optimization 
process escape from a local optimum. An illustrative example 
is shown in Figure 7. for the IWLS’93 benchmark “e64” [41]. 
The circuit was iteratively resynthesized by ABC as whole (see 
the “100% resynthesis” curve) and by the iterative resynthesis 
by parts, using Radius extraction, radius 5 (see the RF = inf.” 
curve). We have used the ABC “choice” script followed 
by “map” [21] as the resynthesis procedure. The curves were 
obtained by averaging 20 resynthesis runs. 

It can be seen that the repeated resynthesis of 100% of the 
circuit quickly converged to a local minimum. Conversely, the 
randomized resynthesis method converges slower, but quickly 
reaches much better results. Such a behavior was observed 
for a vast majority of examined circuits [34]. 

Like in the previous Subsection, we have investigated the 
influence of the random factor on the process. Convergence 
curves for the “e64” [41] circuit are shown in Figure 7. as well. 
Here we see that for RF = 1 the process is rather insufficient 
and quickly converges to a local minimum, which is even 
worse than that of 100% resynthesis. However, even for RF = 2 
the convergence curve nears the RF = inf. one, for RF = 100 
the curves blend (not shown in the Figure). 

All the data was obtained by averaging results of 20 
independent runs, to make the results precise. 

The necessary measure of randomness can be derived 
analytically as well. The random choice occurs in the pivot 
selection procedure. Here the number of choices equals to the 
number of the network gates. Thus, the number of the initial 
network gates is the upper bound of the number of different 
values the random number generator needs to produce. 
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Figure 7.  Resynthesis by parts – derandomized 

C. FC-Min: Probabilistic Two-Level Minimization 
In [33] we have presented a two-level minimizer primarily 

targeted to multi-output functions. Basically, group implicants 
are generated directly from the PLA description [13] of the 
function, by looking for a rectangle cover [43], [7] of the 
matrix defining output values of the multi-output function. 
In particular, rectangles comprising of maximum of ‘1’ are 
looked for. A randomized greedy heuristic is employed to solve 
this NP-hard problem. First, a matrix row having most of 1’s is 
selected as a starting point. Then rows maximizing the size 
of the rectangle are gradually appended, until its size cannot be 
further increased. Implicants are then derived as supercubes 
of terms included in the rectangle. The more rows the rectangle 
has, the higher is the dimension of its respective term, since 
supercubes of more terms are produced. As a consequence, 
rectangles spanning many rows more likely induce terms that 
intersect the function’s off-set, therefore they cannot be parts 
of the solution, so they are discarded and a different rectangle 
is looked for. One way to overcome this problem is a 
probabilistic execution of the rectangle generation process: 
in each step, the rectangle generation is stopped with a 
probability given by a parameter called the depth factor (DF). 
The higher DF is, the more likely will the algorithm continue 
increasing the number of rows. The pseudo-code of the 
rectangle generation algorithm is shown in Figure 8. The input 
to the algorithm is the output matrix of the PLA, the output is 
one rectangle covering some of the matrix ‘1’s. The 
randomized termination condition is visualized in bold. 



FindRectangle(O) { //O is the output matrix (m, p) 
R = ∅; // empty row set 
C = ∪{0, ..., m}; // set of all columns 
do { 

v = row_with_maximum_x_for(0 ≤ i < p) 
where x = (|R|+1)*|C ∩ O[i]| - |R|*|C|; 

// potential increase of covered ‘1’s 
if ( v < 0 ) break; 
 // no further increase possible. Terminate 
R = R ∪ {v}; // include v into C 
C = C ∩ O[v]; // reduce C 

} while (random() < DF); 
 // forced random termination 
return (R, C); 

} 
Figure 8.  Find rectangle algorithm 

Random nature of this algorithm guarantees that the search 
will ever stop. Decreased randomness decreases the variety 
of implicants generated by FC-Min. When FC-Min is run 
iteratively in a BOOM-like way (see Subsection III.A), this 
will involve a reduced implicant growth rate. However, since 
the algorithm termination condition is continuous (random() 
generates real numbers here), much higher level of randomness 
is required for a successful algorithm run. This is documented 
in Figure 9. The function from Subsection III.A was minimized 
(20 inputs, 5 outputs, 200 terms), DF was set to 0.8. The values 
were obtained by averaging 20 runs. The growth of the number 
of implicants during 1000 iterations, for different RFs is 
shown. We can see that even for RF = 100 the implicants 
number grows rather slowly, compared to RF = infinity. For 
DF = 1 the algorithm got stuck, which is expectable (the 
stopping condition is never satisfied). 

The solution quality is affected in the same way. RF of at 
least 1000 is required, in order to approach the solution of the 
fully randomized process. The progress of the solution quality 
is depicted in Figure 10.  
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Figure 10.  Derandomized FC-Min – solution quality 

In contrast to the algorithms mentioned in the previous 
subsections, in the case of FC-Min the minimum required 
degree of randomness cannot be analytically computed. In fact, 
any loss of randomness involves a loss of efficiency here. 

D. Simulated Annealing Based Algorithms 
The difficulties in analytical estimation of necessary 

randomness factor can be illustrated by the case of simulated 
annealing.  

The core condition accepting a worsening move can be 
written as 
accept = (random() < exp(-delta / (maxdelta*T))) 

where delta is the difference in cost, maxdelta an 
instance-specific upper bound for such difference, and T is the 
current temperature. Notice that this formula is already 
normalized with respect to the cost function range.  

The simulated annealing procedure is known to be robust 
with respect to variations in the above formula [44], [45], and 
even to approximation of the exponential function [46]. 
Therefore, we would expect it to work even with a coarse-
grained random generator. 

Obviously, the accepting formula is not and cannot be 
normalized with respect to temperature, and therefore a 
randomness factor adequate for initial high temperature would 
be too coarse at the end of annealing. We have to admit that 
although we can still characterize the measure of randomness 
by a parameter, the actual values may vary during the 
computation. 

IV. CONCLUSIONS 
The contribution of this paper is threefold: first, we have 

shown to what extend the result of some deterministic 
algorithms (Espresso, ABC) depends on lexicographical 
ordering of variables in the source file. Therefore, either more 
sophisticated heuristics should be developed, or randomness 
could be employed, in order to possibly improve the result 
quality. Let us note that the first alternative is very difficult 
to be accomplished in general: for example, finding an 
optimum BDD variable ordering is NP-hard itself. 

Next we have presented several examples of randomized 
logic synthesis processes, in opposition to the presently used 
fully deterministic ones. Some reasons for randomization were 
proposed and backed up by experimental results showing 
inefficiency of deterministic algorithms and benefits 
of randomization. 

Finally, the necessary measure of randomness was 
discussed. We have shown that mostly a negligible amount 
of randomness is needed for the algorithm to perform well. 
However, in some cases, any de-randomization may deteriorate 
the solution. Probabilistic processes like FC-Min [33] or, e.g., 
algorithms based on simulated annealing [24] are examples. 

We have examined the behavior of the presented heuristics 
using many different example circuits. All the conclusions 
drawn from the behavior of the example circuits presented 
in this paper can be generalized for almost any circuit. 
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