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Abstract—This paper shows a method of calculating the hazard
rate of the non-homogeneous Markov chains using different
homogeneous probability matrices for several hundreds small
time intervals. The proposed method is applied on hierarchical
dependability models allowing independent calculations of the
hazard rates of multiple cooperating blocks of the system.
The independent calculations are significantly faster than the
calculation of a single model composed of all models of the blocks
and the proposed method is very accurate compared to methods
based on homogeneous Markov chains.

Index Terms—Fault tolerant systems, Hierarchical systems,
Reliability.

I. INTRODUCTION

In this paper, we want to introduce a method capable to
calculate hazard (failure) rate of a system modeled by a
non-homogeneous Markov chain. Such method allows us to
build hierarchical dependability models without simplifications
and inaccuracies meant in [1].

The proposed method is demonstrated on a case study
containing multiple (up to 9) identical dependable blocks
configured as an N-modular redundant system (NMR). Models
of the internal block redundancy used in the study systems are
used as dependability models of railway/subway interlocking
equipment used in Czech Republic. The case study is used to
calculate the total hazard rate of the system and to demonstrate
the dependencies of time-consumption and accuracy of the
proposed method.

The paper is organized as follows: Section II introduces
Markov chains. Section III describes the proposed method.
The results are shown in Section IV and Section V concludes
the paper.

II. MARKOV CHAINS TYPES AND CONVERSIONS

There are two main types of the Markov chains: Continuous
Time Markov Chain and Discrete Time Markov Chain.
They are defined as the transition rate matrix Q and probability
matrix P respectively, where the elements define the rate
(probability) of transition from state i to state j.

These two types of MCs can be mutually converted. We use
discrete time MC to continuous time MC conversion in our
method that is based on the following equation:
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where delta is a parameter determining how small the time
interval will be and p( 1

delta ) is the probability of the event
during the interval (0, 1

delta ) measured in hours. The smaller
the interval, the more accurate is the conversion.

Our method requires the evolution of the state probabilities
over time to be calculated. This evolution can be described by
the Chapman-Kolmogorov equation [2]:

P (t+ ∆t) = P (t)P (∆t) (2)

Most methods used to calculate the state probabilities
and their evolution of over time can be used in homoge-
neous case only, but there are methods able to estimate the
non-homogeneous MC by a homogeneous one. Two estima-
tions are introduced in [3]: Reduction to the homogeneous
process and Constant rate matrix between different times.

Both methods will lead to inaccurate solutions, but we
use the second method modified to use several hundreds
intervals, thus a very small error can be achieved. Each interval
(time-slice) has a constant probability/transition matrix, ie. the
MC is homogeneous in this time-slice.

III. PROPOSED METHOD DESCRIPTION

The proposed method has two main parts:
1) Calculate the failure distribution function of

non-homogeneous model.
In our case, we will calculate several hundreds
of discrete samples of this function using
Chapman-Kolmogorov equation (2) shown in Section II.

2) Calculate the hazard rate for each time-slice (interval
between two consequential samples) calculated in the
previous part.

A. Calculation of the failure distribution function of
non-homogeneous model

The flowchart of the method is shown in Figure 1.
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Fig. 1. Flowchart of calculation of failure distribution function of
non-homogeneous model.

B. Calculate the hazard rate for each time-slice

We assume that the hazard rate is constant in the duration
of the time-slice (ie. between two consequential samples of
F (t)). This assumption will introduce an inaccuracy to our
solution, but we can use as many samples as we need to obtain
a suitable solution.

Now we take two samples bounding the i-th interval cal-
culated from the previous part stored as pairs {ti, F (ti)} and
{ti+1, F (ti+1)} and simply create a system of two equations:

F (ti) = 1− e(−λi . ti+offset) (3)

F (ti+1) = 1− e(−λi . ti+1+offset) (4)

where offset is a constant that will be eliminated in the next
step.

Assuming ti 6= ti+1 and F (ti) < F (ti+1) < 1, there is
only one solution of this system:

λi =
loge(1− F (ti))− loge(1− F (ti+1)

ti+1 − ti
(5)

IV. RESULTS

The proposed method is demonstrated on a case study
containing multiple (up to 9) identical dependable blocks
(Two-out-of-two – 2oo2) configured as an N-modular redun-
dant system (NMR). Models of the internal block redundancy
used in the study systems are used as dependability models
of railway/subway interlocking equipment used in Czech Re-
public [4].

The model of a 2oo2 block is created, the samples of the
F (t) function are calculated, and the hazard (failure) rate result
(λ) is taken as the hazard rate of the NMR model.

Table I shows the comparison of the CPU-times and the
relative errors of the hierarchical and the exact (the model
generated by the Cartesian product of the dependability models
of the 2oo2 blocks and the model of the NMR) solutions. The
first column shows the number of the 2oo2 blocks, the second
column shows the CPU-time1 spent on exact model solution.
The CPU-time spent on hierarchical method (CPU-times spent
on the 2oo2 model and the NMR model) is shown in the third
column. The relative error of the first sample (compared to
the sample taken from the exact case) is shown in the third
column. The average of the absolute values of relative errors
of all stored samples is shown in the last column.

TABLE I
COMPARISON OF CPU-TIMES OF EXACT AND HIERARCHICAL CASE.

NMR Exact Hierarchical Rel. error of Average
blocks time [s] time [s] the first sample [-] rel. error [-]

n03 1.160 0.091 1.77× 10−7 2.94× 10−8

n05 37.23 0.130 5.31× 10−7 8.67× 10−8

n07 627.5 0.169 1.06× 10−6 1.73× 10−7

n09 5,938 0.225 1.77× 10−6 2.85× 10−7

V. CONCLUSIONS

This paper presents a method able to calculate the samples
of failure distribution function F (t) from a non-homogeneous
Markov chain used to calculate a hazard (failure) rate λ of
a hierarchical Markov chain. The method allows accurate
calculations even in the case of large complex systems, where
the results of classical models are practically unreachable due
to state explosion.

The method is significantly faster than a common
non-hierarchical approach based on a complex
Cartesian-product homogeneous model (up to ca. 10,000
times in the presented case studies based on dependable
blocks configured as N-modular redundant system) and very
accurate (the average relative error between proposed and
common method is ca. 10−6 in the presented studies).
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