
Accurate Inexact Calculations of
Non-Homogeneous Markov Chains

Jan Řeznı́ček, Martin Kohlı́k, Hana Kubátová
Department of Digital Design, Faculty of Information Technology

Czech Technical University in Prague, Technická 9
Prague, Czech Republic

{reznija5, kohlimar, hana.kubatova}@fit.cvut.cz

Abstract—Dependability models allow calculating the rate of
events leading to a hazard state – a situation, where safety of
the modeled dependable system is violated, thus the system may
cause material loss, serious injuries or casualties. Hierarchical
dependability models allow expressing multiple redundancies
made at multiple levels of a system consisting of multiple
cooperating blocks. The hazard rates of the blocks are calculated
independently and, when combined, they are used to calculate the
hazard rate of the whole system. The independent calculations
are significantly faster than the calculation of a single model
composed of all models of the blocks. The paper shows a
method of calculating the hazard rate of the non-homogeneous
Markov chains using different homogeneous probability matrices
for several hundreds small time intervals. This method will
allow us to calculate the hazard rate of the non-homogeneous
Markov chain very accurately compared to methods based on
homogeneous Markov chains.

Index Terms—Fault tolerant systems, Hierarchical systems,
Reliability, Reliability engineering.

I. INTRODUCTION

State-based dependability models (Markov chains, Petri
nets, etc.) are able to model online (self-)repairing capabilities
of the mission-critical systems (hot-swap modular systems, re-
configurable FPGAs, etc.) easily, but the disadvantage of these
models is state-explosion leading to difficulties in construction,
and consequently leading to the inability to compute realistic
values of dependability characteristics.

The method presented in [1] is focused on simplification
of state-based dependability models and methods for easier
dependability parameters computations. These models are used
to create hierarchical dependability model of a system, and
consequently they allow dependability parameters of large and
complex systems to be calculated without the state-explosion
issues.

In this paper, we want to introduce a method capable to
calculate hazard (failure) rate of a system modeled by a
non-homogeneous Markov chain. Such method allows us to
build hierarchical dependability models without simplifications
and inaccuracies meant in [1].

The proposed method is demonstrated on a case study
containing multiple (up to 9) identical dependable blocks
configured as an N-modular redundant system (NMR). Models
of the internal block redundancy used in the study systems are
used as dependability models of railway/subway interlocking
equipment used in Czech Republic. The case study is used to

calculate the total hazard rate of the system and to demonstrate
the dependencies of time-consumption and accuracy on the
parameters of the proposed method.

The paper is organized as follows: Section II provides
the theoretical background and introduces Markov chains.
Section III describes the proposed method. The results are
shown in Section IV and Section V concludes the paper.

II. THEORETICAL BACKGROUND

The proposed method is used to calculate the samples
of failure distribution function using non-homogeneous dis-
crete Markov chains (MCs), thus both homogeneous and
non-homogeneous MCs are introduced in this section. The
first part of this section also contains a formula allowing a
conversion from a continuous MC to a discrete one (because
the majority of the models of the dependable systems are based
on continuous time, but our method is designated for discrete
MCs only). The calculation of failure distribution function
and its discrete samples is summarized in the last part of this
section.

A. Time-Homogeneous Markov Chains

Electronic reliability design handbook MIL-HDBK-338B
[2] introduces time-homogeneous MC as follows:

Markov modeling processes are stochastic processes using
random variables to describe the states of the process, tran-
sition probabilities for changes of state and time or event
parameters for measuring the process. A stochastic process
is said to be a Markov property if the conditional probability
of any future event, given any past events and the present
state, is independent of the past events and depends only on
the present state of the process.

There are two main types of the time-homogeneous Markov
chains:
• Continuous Time Markov Chain is defined as the

transition rate matrix Q, where the element qij defines
the rate of transition from state i to state j. Each element
is constant in homogeneous case, thus the probability of
the transition is pij(t) = 1− e−qijt. The elements qii are
chosen such that each row of the transition rate matrix
sums to zero.

• Discrete Time Markov Chain is defined as the prob-
ability matrix P , where the element pij defines the

probability of transition from state i to state j. The
probability does not depend on time in homogeneous
case. The elements pii are chosen such that each row
of the probability rate matrix sums to one.

These two types of MCs can be mutually converted. We use
continuous time MC to discrete time MC conversion in our
method. This conversion is based on the following equation:

P = I +
1

delta
Q (1)

where Q is the transition rate matrix, P is the probability
matrix, I is the identity matrix, and delta is a parameter
affecting the accuracy of the conversion (the larger delta is,
the more accurate is the conversion).

Our method requires the evolution of the state probabilities
over time to be calculated. This evolution can be described by
the Chapman-Kolmogorov equation [3]:

P (t+ ∆t) = P (t)P (∆t) (2)

B. Non-Homogeneous Markov Chains

Both discrete time MCs and continuous time MCs can be
defined using variable matrix elements. Such MCs are called
non-homogeneous Markov Chains.

Most methods used to calculate the state probabilities and
their evolution of over time cannot be used in this case, but
there are methods able to estimate the non-homogeneous MC
by a homogeneous one. Two estimations are introduced in [4],
[5]: Reduction to the homogeneous process and Constant rate
matrix between different times.

Both methods will lead to inaccurate solutions, but the
second method can be modified to use several hundreds time
intervals, thus a very small error can be achieved.

We use the second method based on dividing the time
interval, where the evolution of the state probabilities is
calculated, to several “slices”. Each time-slice has a constant
probability/transition matrix, ie. the MC is homogeneous in
this time-slice.

Another method presented in [6] is focused on continuous
time MCs with non-exponentially distributed parameters. The
method is based on extending the MC – a single transition
is split to several stages (intermediate states and transitions),
thus a non-exponential distribution can be achieved. There are
two main disadvantages of this method: New states have to
be added to the MC and the method supports a limited set of
distributions only.

C. Markov Chains and Cumulative (Failure) Distribution
Function

A state i of a Markov chain is called absorbing if it
is impossible to leave this state. Therefore, the state i is
absorbing if the following condition is met:

pii = 1 and pij = 0 for i 6= j (3)

The evolution of the absorbing state probabilities over time
forms the series of the samples of the cumulative (failure)
distribution function F (t) defined as the probability in a

random trial that the random variable is not greater than t,
or

F (t) =

∫ t

−∞
f(t) dt (4)

III. PROPOSED METHOD DESCRIPTION

The proposed method has two main parts:

1) Calculate the failure distribution function of
non-homogeneous model.

2) Calculate the hazard rate for each time-slice (interval
between two consequential samples) calculated in the
previous part.

A. Calculation of the Failure Distribution Function of
Non-homogeneous Model

The proposed method is based on the second approach
introduced in Section II-B – it uses constant rate matrices
between different times. The number of time-slices and their
size can be controlled by method’s parameters.

In our case, we will calculate several hundreds of dis-
crete samples of the failure distribution function using
Chapman-Kolmogorov (C-K) equation (2) shown in Sec-
tion II-B. The samples has to cover the entire lifetime of the
system – typical lifetime range is ca. [1, 106) [hours], thus we
use logarithmic scale in this paper.

The correct uniform distribution of the samples should
be based on a geometric progression in our case, but the
C-K equation leads to an arithmetic progression (it adds a
constant time-slice size ∆t). Using C-K equation to calculate
samples distributed geometrically would lead to extremely
slow calculations, thus we use mixed distribution in this paper.

The mixed distribution is based on geometric progression
on a global scale – we split the lifetime of the system to
intervals [2n, 2n+1) [hours], but an arithmetic progression is
used inside these intervals. The number of the samples inside
[2n, 2n+1) [hours] is denoted as s parameter in this paper.

For example: Let the first sample be 1 [hour] and
s = 4. Therefore the samples are as follows: {1,
1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 5, 6, . . . 1024, 1280, 1536, 1792,
2048, . . . }. We can use C-K equation easily in this case, we
just need to double the difference between the consequential
samples (time-slice size ∆t) each time we meet value
2n [hours].

The flowchart of the method is shown in Figure 1. The
description of the method follows.

Convert transition rate matrix Q(0) to probability matrix
P (dt0):

The conversion is based on equation (1) shown in Sec-
tion II-A. The larger the delta value is, the more accurate
is the conversion (more details about the result’s accuracy can
be found in Section IV).

Calculate probability matrices P (tstart/s) and P (tstart)

Begin

Convert transition rate matrix Q(0)
to probability matrix P(dt

0
)

Calculate probability matrices P(t
start/s

) and P(t
start

)

P(t
current

) := P(t
start

)

P(Δt
sample

) := P(t
start/s

)

t
current

 := t
start

Δt
sample

 := t
start/s

Q
last

 := Q(0)

FDFSample := getFDFSample(P(t
current

))

Append FDFSample to Samples

P(Δt
sample

) := P(Δt
sample

) . P(Δt
sample

)

Δt
sample

 := 2 Δt
sample

t
current

 < t
end

Return

P(t
current

) := P(t
current

) . P(Δt
sample

)

t
current

 := t
current

 + Δt
sample

SoftEndEnabled &&
(FDFSample > 1 - epsilon)

t
current

 == 2n

Q(t
current

) != Q
last

Q
last

 := Q(t
current

)

Convert transition rate matrix Q(t
current

)

to probability matrix P(dt
current

) and calculate

new probability matrix P(Δt
sample

)

-

+

+

-

+

-

-

 +

Fig. 1. Flowchart of calculation of failure distribution function of
non-homogeneous model.

Both matrices are calculated from P (dt0) using a matrix
power:

P (tstart/s) = P (dt0)tstart · delta/s (5)
P (tstart) = P (tstart/s)

s (6)

Both tstart and s are parameters of the proposed method.
tstart is the time, where the first sample of the failure
distribution function F (t) is stored. We assume that the start of
F (t) function is not interesting in most cases, ie. no one needs
a detailed information about failure probability during the first
hour (or first ten, or first hundred hours, etc.) of operation.

The s parameter has been already introduced – it determines
the number of the time-slices (samples stored) in interval
[2n, 2n+1) [hours]. The higher the value of s is, the more
often the F (t) is sampled and the calculation’s execution time
is increased.

getFDFSample(P (tcurrent)) function

This function calculates the value of the failure distribution
function F (tcurrent) as the sum of the probabilities of the
absorbing states.

getFDFSample =
∑

j∈AbsorbingStates

p1j (7)

assuming the first state is the initial state of the Markov
chain (p1(0) = 1).

The calculated sample is stored to the array of samples
(Samples).

SoftEndEnabled&&(FDFSample > 1− epsilon) block

We assume that the end of F (t) function is not interesting
in most cases, ie. no one needs a detailed information about
failure probability when it exceeds 99% (or 99.9%, etc.). This
“soft” end of calculation can be parametrized using epsilon
value or disabled completely.

Adjusting of the size of the interval between consequential
samples

The size of the interval between consequential samples
must be adjusted (doubled) in order to keep the mixed
geometric-arithmetic progression of the samples. This adjust-
ment is made when the current time tcurrent meets value 2n,
where n ∈ N.

Q(tcurrent) 6= Qlast block

The main feature of non-homogeneous Markov chain is
the possibility to change the rates of the events over time. If
such change is detected, new P (dtcurrent) and P (∆tsample)
matrices has to be calculated using (1) and (5) respectively.

tcurrent < tend block

The “hard” end of the calculation is determined by tend
parameter – the calculation will end here no matter to the
value of F (t) function.

Parameters summary

The summary of meaning of all parameters of the method
is shown in Figure 2. The plot shows an example failure
distribution function F (t) = 1− e(−10−5 · t) and the following
parameter setting:

• tstart = 27 = 128 [hours]
• tend = 222

.
= 4× 106 [hours]

• s = 4 [−]
• SoftEndEnabled = false
• epsilon = 10−3 [−] (disabled by SoftEndEnabled)

100 1000 104 105 106 107
t [hours]

0.2

0.4

0.6

0.8

1.0

Failure distribution

function F(t) [-]

tstart tend

Interval [210,211)

s samples

Interval [215,216)

s samples

epsilon

("soft" end limit)
First sample after

"soft" end limit

Fig. 2. Summary of meaning of all parameters on illustrative example of
failure distribution function.

As you can see, the samples are stored in interval
[tstart, tend] only. Each interval [2n, 2n+1) contains the same
number of samples (s). “Soft” end is not used in this example,
it would disable the calculation of the samples beyond the
marked one.

The result of this part is an array containing samples of
failure distribution function that can be used to calculate the
hazard rate.

B. Calculate the Hazard Rate for Each Time-slice

We assume that the hazard rate is constant in the duration of
the time-slice (ie. between two consequential samples of F (t)).
The formula used on the hazard rate calculation is derived
from the most simple continuous time Markov chain. This MC
contains an initial state S0, an absorbing state S1 and one arc
leading from the initial state to the absorbing one (with rate
λ). The following system of differential equations describes
this MC:

p′S0(t) = −pS0(t)λ (8)
p′S1(t) = pS0(t)λ (9)
pS0(0) = 1 (10)
pS1(0) = 0 (11)

For a homogeneous case, the result F (t) function of this
system is

F (t) = pS1(t) = 1− e(−λ · t) (12)

Now we introduce a point t1, calculate the value of pS0(t1)
and pS1(t1) and use these values as the initial condition of
the system (8)-(11).

After this modification, we receive a non-homogeneous
system made of two homogeneous intervals ([0, t1) and
[t1,∞)). This modification can be used repeatedly to obtain a
non-homogeneous system made of n homogeneous intervals
and the following failure distribution function:

F (t) =

1− e(−λ0 · t) 0 ≤ t < t1

1− e(−λ1 · t+λ1 · t1−λ0 · t1) t1 ≤ t < t2
...

1− e(−λi · t+
∑i

j=1(λj · tj)−
∑i

j=1(λj−1 · tj))

ti ≤ t < ti+1

...
(13)

Both sums in the exponent are constant in the i-th interval
(they do not depend on time t), thus we replaced them with a
single constant denoted as offset .

Fi(t) = 1− e(−λi · t+offset) (14)

Now we take two samples bounding the i-th interval cal-
culated from the previous part stored as pairs {ti, F (ti)} and
{ti+1, F (ti+1)} and simply create a system of two equations:

F (ti) = 1− e(−λi · ti+offset) (15)

F (ti+1) = 1− e(−λi · ti+1+offset) (16)

Assuming ti 6= ti+1 and F (ti) < F (ti+1) < 1, there is
only one solution of this system:

λi =
loge(1− F (ti))− loge(1− F (ti+1)

ti+1 − ti
(17)

Now lets assume a general MC with a sampled Fgeneral(t)
function calculated from the first part of the proposed method.
We want the hazard rate between two consequential samples
to be constant. The only MC with a constant hazard rate is the
simplest MC, thus we reduce the general MC to the simplest
one and use hazard rates λi from (17). The Fsimple(t) and
Fgeneral(t) will not be equal in general, but they will have
the same value for each calculated sample.

This simplification will introduce an inaccuracy to our
solution, but we can use as many samples as we need to obtain
a suitable solution.

IV. RESULTS

A. Case Study Description

The proposed method is demonstrated on a case study
containing multiple (up to 9) identical dependable blocks
configured as an N-modular redundant system (NMR). Models
of the internal block redundancy used in the study systems are
used as dependability models of railway/subway interlocking

equipment used in Czech Republic. The case study is used
to demonstrate the dependencies of time-consumption and
accuracy on the parameters of the proposed method. Wolfram
Mathematica [7] tool is used to perform the calculations.

The dependable blocks used in the case study system use
Two-out-of-two (2oo2) redundancy [8], [9]. Each dependable
block contains two independent copies of functional modules,
thus the safety of the blocks using these redundancies cannot
be violated by a single fault. The detailed description of the
system and its model follows and can be found in [1].

The model shown in Fig. 3 is used to calculate the failure
distribution function F (t) of the 2oo2 block.

Fault_Free

Latent Not_Detected

Safe

2

(1 - c) d

c d

m

 l

g
Hazard

E

Fig. 3. Dependability model of Two-out-of-two block.

Fault Free is the functional/fault-free state of the block.
The fault rate of the first fault is 2λ, because the first fault
can affect any of the two functional modules of the block.

The Latent state is active when the block contains a fault
that has not been detected yet. The rate of the on-line test (the
inverted average delay between fault origin and detection) is
labeled as δ. If the test is performed successfully (a fault is
detected), the block will be locked in the Safe state. The
probability of a successful test is labeled as c.

If the test fails (the fault is present, but not detected), the
block will be in the Not Detected state. The safety of the
block is not violated in this state, but another fault (with a
fault rate λ) affecting the unaffected functional module will
lead to safety violation (HazardE state). The second fault
hit inside already affected functional module cannot cause a
hazard, because the other functional module works correctly.

The arc leading from Latent to HazardE expresses the
probability that a second fault will affect the unaffected
functional module before the test is finished.

The block locked in the Safe state waits until the repair
is finished (repair rate µ). The block is not functional in this
state, but the safety is not violated.

The functionality of the block will be provided by a
backup/emergency method (by a human operator in this case),
when the block is locked in the Safe state. The rate γ
expresses the hazard rate of the backup/emergency method
(a mistake of a human operator). This rate should be included
into the safety analysis if a more complex analysis needs to
be done.

The probability of detection of a fault, the fault rate, and
the block-lock rate of the block form the following parameters
values. The values have been taken from [9].

µ = 24−1 [h−1] – the repair rate
λ = 10−5 [h−1] – the fault rate
δ = 10−1 [h−1] – the block-lock rate
c = 0.6 – the probability of detecting a fault by the
block-lock
γ = 10−3 [h−1] – the backup/emergency method hazard
rate

N-modular Redundancy (NMR) is based on N identical
blocks and a voter. This voter is able to compare all outputs of
the blocks. It uses majority voting to produce a single output.
If less than half of the blocks fail, the voter is able to produce
correct output. If more than half of the blocks fail, the voter
will produce an incorrect output – this situation is considered
as a hazard state. The erroneous blocks cannot be identified,
thus there is no restoration/repair possibility.

The model shown in Fig. 4 is used to calculate the failure
distribution function of a generic NMR system. The NMR
system containing N blocks will contain

⌊
N
2

⌋
transient states.

These states correspond to the blocks that are in the hazard
state. NMR systems consisting of 3 to 9 blocks are used in
this paper.

B. Method Parameters Impact

The 3-MR (TMR) system based on 2oo2 blocks is used
to demonstrate the impact of method parameters. The model
of this system is made as the Cartesian product of the
dependability models of three identical 2oo2 blocks and the
model of the TMR. The model contains 34 states.

Two parameters that determine the trade-off between
method accuracy and time-consumption were introduced in
Section III:

1) delta – this parameter determines the size of the time
interval used in the continuous time MC to discrete time
MC conversion.

2) s – this parameter determines the number of
the time-slices (samples stored) in interval
[2n, 2n+1) [hours].

The other parameters values are as follows:
tstart = 1 [hour] – time, where the first sample of the
failure distribution function F (t) is stored
tend = 220

.
= 106 [hours] – time of the “hard” end

SoftEndEnabled = false

delta parameter impact
Table I shows the impact of the delta parameter. The size

of delta is shown in the first column, the CPU-time1 spent on
conversion from the continuous time MC to discrete time MC
and calculation of the probability matrix P (tstart) (Initializa-
tion time) is shown in the second column. The third column
shows CPU-time spent on the rest of the calculation (Main
loop time). The relative error of the first sample (compared
to the sample taken from delta = 265 setting) is shown in
the third column – this error is the highest of all samples

1Running on Intel Core i5-7300HQ @2.5 GHz, OS: Win10 64-bit, Math-
ematica 11.2.

Fault_Free Fail_1 Hazard
E

... Fail_ ⌊ N2 ⌋
(⌊N2 ⌋+2) λ (⌊N2 ⌋+1) λ(N−1) λN λ

Fig. 4. Dependability model of generic N-modular redundant system.

in this case. The average of the absolute values of relative
errors of all stored samples (compared to the samples taken
from delta = 265 setting) is shown in the last column. The
absolute values are used, since there are both positive and
negative values of relative errors.

The higher is the delta value, the lower is the relative error.
The Initialization time is slightly increasing when the delta
value increases, and the CPU-time spent on the Main loop
remains nearly constant2 (no additional conversion is made
in Main loop, because the values of the parameters remain
constant in this case).

TABLE I
COMPARISON OF CPU-TIMES AND RELATIVE ERRORS OF THE METHOD

WITH RESPECT TO THE delta PARAMETER.

delta [-] Initialization Main loop Rel. error of Average
time [s] time [s] the first sample [-] rel. error [-]

210 0.047 0.959 −1.11× 10−2 8.17× 10−4

215 0.076 0.976 −3.48× 10−4 2.56× 10−5

220 0.100 0.963 −1.09× 10−5 8.00× 10−7

225 1) 0.131 0.976 −3.40× 10−7 2.50× 10−8

230 0.160 0.962 −1.06× 10−8 7.81× 10−10

235 0.187 0.950 −3.32× 10−10 2.44× 10−11

240 0.220 0.979 −1.04× 10−11 7.63× 10−13

245 0.240 0.960 −3.25× 10−13 2.38× 10−14

250 0.268 0.966 −1.01× 10−14 7.45× 10−16

255 0.290 0.980 −3.17× 10−16 2.33× 10−17

260 0.310 0.945 −9.60× 10−18 7.05× 10−19

265 0.340 0.954 — —

1) Default value used in this paper.

s parameter impact
Table II shows the impact of the s parameter. The size of s

is shown in the first column, the Initialization CPU-time spent
on is shown in the second column. The third column shows
Main loop CPU-time. The values of the samples are equal for
all settings in this case, thus there are no relative errors in this
table.

The Initialization time is nearly constant (the same initial-
ization is made in all cases), but the CPU-time spent on the
Main loop is increasing linearly with respect to the numbers
of samples calculated (s parameter).

C. Time Non-Homogeneity Impact
The results presented in the previous sections were based

on homogeneous case (all rates were constant all the time).

2The measured CPU-times varies by ca. ±10%, when the calculation is
performed repeatedly, due to inaccurate time values provided by Mathematica.

TABLE II
COMPARISON OF CPU-TIMES OF THE METHOD WITH RESPECT

TO THE s PARAMETER.

s [-] Initialization Main loop
time [s] time [s]

21 0.130 0.210

22 0.130 0.330

23 0.130 0.560

24 1) 0.130 0.962
25 0.125 1.840

. . .

210 0.126 57.40

1) Default value used in this paper.

The following case shows the time-consumption and relative
error of the non-homogeneous case. We use the same setting as
presented in the previous case, but we disable the check in the
Q(tcurrent) 6= Qlast block (see the flowchart of the method
shown in Figure 1 in Section III). This modification forces
the method to calculate new P (dtcurrent) and P (∆tsample)
matrices in each time-slice. The results should be equal to the
homogeneous case and the time-consumption will be similar
to a general non-homogeneous case.

Table III shows the impact of this modification. The type
of the method is shown in the first column, the CPU-time
spent on Initialization is shown in the second column. The
third column shows Main loop CPU-time. The average of
the absolute values of relative errors of all stored samples
(compared to the samples taken from homogeneous case) is
shown in the last column.

TABLE III
COMPARISON OF CPU-TIMES OF HOMOGENEOUS AND

NON-HOMOGENEOUS CASE.

Case type Initialization Main loop Average
time [s] time [s] rel. error [-]

Homogeneous 0.130 1.030 —

Non-Homogeneous 0.141 17.83 7.20× 10−8

The plot shown in Fig. 5 shows the relative errors of all
samples between the homogeneous and the non-homogeneous
case. The horizontal axis represents the time of operation
measured in hours, the vertical axis represents the size of the
relative error.

As you can see, the maximal value of the relative error of
non-homogeneous case is ca. 10−7. The Initialization times
are nearly equal in both cases, but the Main loop time has

10 100 1000 10
4

10
5

10
6
t [hours]

-3.×10-7

-2.×10-7

-1.×10-7

1.×10-7

2.×10-7

3.×10-7
Relative error [-]

Fig. 5. Relative errors of all samples between homogeneous and
non-homogeneous case.

increased ca. 20 times due to calculation of new P (dtcurrent)
and P (∆tsample) matrices in each time-slice.

D. Comparison to Analytical Solution

We use the NMR model to compare the presented method to
the analytical solution in this section. The failure distribution
function of the NMR system can be calculated using the
following equation

FNMR(t) = 1−
N∑
i=M

(
N

i

)
F (t)N−i(1− F (t))i (18)

where F (t) is the failure distribution function of the single
block (F (t) = 1 − e(−λ · t) and λ = 10−5 in this case), N is
(odd) number of blocks used in the system, and M is number
of blocks required to be operational (N+1

2 in this case).
Table IV shows the relative errors between the presented

method and the analytical solutions. The first column shows
the number of the NMR blocks, the second column shows
the relative error of the first sample of the proposed method
(compared to the sample taken from the analytical solution).
The average of the absolute values of relative errors of all
stored samples is shown in the last column.

TABLE IV
COMPARISON OF RELATIVE ERRORS OF PRESENTED METHOD AND

ANALYTICAL SOLUTION.

NMR Rel. error of Average
blocks the first sample [-] rel. error [-]

3-MR −2.98× 10−8 1.69× 10−8

5-MR −8.94× 10−8 4.92× 10−8

7-MR −1.79× 10−7 9.76× 10−8

9-MR −2.98× 10−7 1.62× 10−7

The plot shown in Fig. 6 shows the relative errors of the
samples between the presented method and the analytical
solution. The horizontal axis represents the time of operation
measured in hours, the vertical axis represents the size of
the relative error. Please note that only each third sample is

shown – the plot would be hard to read when all samples were
present.

The maximal value of the relative error is slowly increasing
with increasing number of the blocks, but it remains very low
in all presented cases (ca. 10−7).

xx
xxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx
xxxxx

xx
xx
xx
xxxxxxxx

++
+++

+++++++++++++++++++
++++++++

++++
++

++
+
++
++++++++

**

**
*
*
*
**

3-MR + 7-MR

x 5-MR * 9-MR

10 100 1000 10
4

10
5

10
6
t [hours]

-4.×10-7

-3.×10-7

-2.×10-7

-1.×10-7

0

1.×10-7
Relative error [-]

Fig. 6. Relative errors of samples between presented method and analytical
solution.

E. Application on Hierarchical Model
The hierarchical dependability model of the NMR system

based on 2oo2 blocks is used in this case. The model of a
2oo2 block is created, the samples of the F (t) function are
calculated, and the hazard (failure) rate result is taken as the
fault rate (λ) of the NMR model.

The results of the hierarchical approach are compared to
the results of the exact model (the model generated by the
Cartesian product of the dependability models of the 2oo2
blocks and the model of the NMR).

Table V shows the comparison of the CPU-times and the
relative errors of the hierarchical and the exact solutions.
The first column shows the number of the 2oo2 blocks, the
second column shows the CPU-time spent on exact model
solution (sum of Initialization and Main loop CPU-times).
The CPU-time spent on hierarchical method (Initialization and
Main loop CPU-times for the 2oo2 model and the same times
spent on the NMR model) is shown in the third column. The
relative error of the first sample (compared to the sample taken
from the exact case) is shown in the third column. The average
of the absolute values of relative errors of all stored samples
is shown in the last column.

TABLE V
COMPARISON OF CPU-TIMES OF EXACT AND HIERARCHICAL CASE.

NMR Exact Hierarchical Rel. error of Average
blocks time [s] time [s] the first sample [-] rel. error [-]

n03 1.160 0.091 1.77× 10−7 2.94× 10−8

n05 37.23 0.130 5.31× 10−7 8.67× 10−8

n07 627.5 0.169 1.06× 10−6 1.73× 10−7

n09 5,938 0.225 1.77× 10−6 2.85× 10−7

The plot shown in Fig. 7 shows the relative errors of the
samples between the exact and the hierarchical case. The

horizontal axis represents the time of operation measured in
hours, the vertical axis represents the size of the relative error.
Please note that only each third sample is shown – the plot
would be hard to read when all samples were present.

x

x

x

x
xx

xxx
xxxxxxx

xxxxx
xxxxxxxxxxxxxxxxxxxxx

xx
xx
xxxxxxxx

+

+

+

++

+++

++++
+
++
++++

++++
++++++++++++++++

+++
+
+
+
++++++++

*

*

**

*
**

**
**
*
*

n03 + n07

x n05 * n09

10 100 1000 10
4

10
5

10
6
t [hours]

-4.×10-7

-2.×10-7

0

2.×10-7

4.×10-7

6.×10-7

8.×10-7
Relative error [-]

Fig. 7. Relative errors of samples between exact and hierarchical case.

The CPU-time spent on solving the exact model solution
grows rapidly with increasing number of the blocks, but the
CPU-time spent on hierarchical method is below 1 second in
all presented cases.

The maximal value of the relative error is slowly increasing
with increasing number of the blocks, but it remains very low
in all presented cases (ca. 10−7).

V. CONCLUSIONS

This paper presents a method able to calculate the samples
of failure distribution function F (t) from a non-homogeneous
Markov chain. The proposed method is very accurate (the
average relative error between the samples of failure distri-
bution function F (t) is ca. 10−8 using default parameters in
the presented case studies), but it is slower (ca. 20 times in
the tested case study) than the common method intended for
homogeneous case.

The trade-off between relative error and the calculation time
can be controlled by the method’s parameters. The default
parameter’s setting leads to relative error ca. 10−8, but the
relative error can be decreased and the execution time will be
increased by ca. 5 % (in homogeneous case) per an order of
magnitude of the relative error.

The proposed method can be used to calculate a hazard
(failure) rate λ of a hierarchical Markov chain. The method
allows accurate calculations even in the case of large complex
systems, where the results of classical models are practically
unreachable due to state explosion. The calculation time of
the classical models increases exponentially with respect to
the number of dependable blocks (the Cartesian product of
all models has to be made in such case), but the proposed
method allows us to use the hierarchical Markov chain with
small relative error and calculate each model of dependable
block independently.

The samples of the non-homogeneous hazard (failure) rate
of the dependable block are calculated using the samples of
failure distribution function F (t) and a simple equation. The

samples of the non-homogeneous hazard (failure) rate can be
used as the parameter of the top-level model.

Our method is significantly faster than a common
non-hierarchical approach based on a complex
Cartesian-product homogeneous model – up to ca. 10,000
times in the presented case studies based on dependable
blocks configured as N-modular redundant system. Moreover,
the proposed method is very accurate – the average relative
error between hierarchical and classical solution based on
Cartesian-product model is ca. 10−6 in the presented studies.

The speedup of the proposed method is most noticeable
when the hierarchical model of the system can be constructed
(the system is based on dependable blocks), but the method
can be used to calculate a general non-homogeneous Markov
chain. In the general case, the method will be slower than a
common homogeneous approach, but it will be able to handle
non-homogeneous parameters.

ACKNOWLEDGMENT

This research has been partially supported by the
projects GA16-05179S, “Fault-Tolerant and Attack-Resistant
Architectures Based on Programmable Devices: Research
of Interplay and Common Features”, OP VVV funded
project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Cen-
ter for Informatics”, and Czech Technical University grant
SGS17/213/OHK3/3T/18.

REFERENCES

[1] M. Kohlı́k, “Hierarchical Dependability Models Based on Markov
Chains”, Dissertation thesis, Czech Technical University in Prague, 2015.
Available from: https://ddd.fit.cvut.cz/PhD/PhDThesis Kohlik.pdf

[2] “Electronic Reliability Design Handbook – MIL-HDBK-338B”, US De-
partment of Defense, 1998.
Available from: http://www.weibull.com/mil std/mil hdbk 338b.pdf

[3] Eric W. Weisstein, “Chapman-Kolmogorov Equation”,
From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.
com/Chapman-KolmogorovEquation.html

[4] R. Ocaña-Rilola, “Two Methods To Estimate Homogenous Markov Pro-
cesses”, Journal of Modern Applied Statistical Methods: Vol. 1, Iss. 1,
Article 17, 2002.

[5] R. Ocaña-Rilola, “Non-homogeneous Markov Processes for Biomedical
Data Analysis”, Biometrical Journal: Vol. 47, Iss. 3, 2005.

[6] V. Vais, S. Racek, “Experimental evaluation of regular events occurrence
in continuous-time markov models”, In Proceedings of the Eleventh Inter-
national Conference on Informatics, Košice, Slovakia, 2011, pp. 143–146.

[7] Wolfram. Mathematica. 2019
Available from: http://www.wolfram.com/mathematica/

[8] R. Dobiáš, H. Kubátová, “The Common 2oo2 Safety Model for Sig-
nalling and Interlocking Equipments”, In Electronic Circuits and Systems
Conference, Slovak Univ. of Technology, 2005, pp. 81–84.

[9] R. Dobiáš, H. Kubátová, “FPGA based design of the railway’s interlock-
ing equipments”, In Digital System Design, 2004. DSD 2004. Euromicro
Symposium on, Aug 2004, pp. 467–473.

