
XOR-Based Synthesis: Does it Pay off?

Ivo Halecek, Petr Fiser, Jan Schmidt

Czech Technical University in Prague

Faculty of Information Technology, Department of Digital Design

Prague, Czech Republic

{halecivo, fiserp, schmidt}@fit.cvut.cz

Abstract. This paper discusses the feasibility and efficiency of a native

XOR-based logic synthesis. Particularly, a natively XOR-supporting rewriting

algorithm is presented. It is based on a novel data structure – the XOR-And-

Inverter Graph. Major problems that appeared by extending the And-Inverter

Graph rewriting to support XORs are discussed. The algorithm was implemented

in a logic synthesis and optimization package ABC and compared to standard

And-Inverter-Graph based rewriting. Its benefits are shown by experiments.

Keywords: logic synthesis, AIG, XAIG, rewriting, XOR.

1 Introduction

Gate-level logic synthesis and optimization recently experiences renewed interest,

mostly due to emergence of new physical structures implementing “non-standard”

logic functions simply [1]. In a strong contrast to this, standard synthesis processes

efficiently used for many decades, which are typically based on simple nodes (2-input

ANDs, NORs, inverters) do not seem to be efficient anymore and new paradigms and

algorithms based on them must be looked for. Examples of such novel paradigms are

Majority-based [2] or XOR-Majority-based [3] approaches.

The second motivation for research of new synthesis paradigms is the observed lack

of efficiency of standard synthesis, especially for XOR-intensive circuits [4, 5]. Such

circuits appear ever more frequently in industrial designs, since they are parts of fault-

tolerant [6] and secure [7] devices.

Since the rewriting logic optimization algorithm [8] represents one of the simplest

ways to efficiently exploit the above-mentioned structures, it is now being used at the

first place for demonstrating their feasibility and effectiveness.

The rewriting algorithm [8] takes a logic network as input (no matter what elements

it is composed of), extracts small parts of it, and replaces them with functionally equiv-

alent optimum implementations. This is repeated, until the whole network is traversed.

Two issues must be resolved to accomplish this: 1) generation of the optimum replace-

ment structures, 2) controlling the overall rewriting process.

In this extended abstract, we present an XOR-AND-Inverter Graph (XAIG) structure

as an extension of a standard AND-Inverter Graph (AIG) [9, 10] enabling to represent

XOR gates explicitly. Next, we introduce a rewriting algorithm based on this structure.

mailto:halecivo,%20fiserp,%20schmidt%7d@fit.cvut.cz

The two above issues become more complicated in XIAG rewriting, since in contrast

to AIG, XAIG is an heterogeneous structure, where XOR can be decomposed to mul-

tiple AND nodes (with inverted edges provided). Moreover, there are multiple ways

of doing this decomposition. Next, AND and XOR nodes may be assigned different

implementation costs. Therefore, there are multiple alternatives of generating the opti-

mum replacement structures.

The rewriting control is more complicated too. Since XOR nodes may be alterna-

tively “dissolved” into several AND nodes in the rewriting process when looking for

replacements, this issue will be discussed too.

The presented XAIG-based rewriting algorithm is compared to the standard AIG-

based rewriting [8], both as stand-alone processes and when incorporated in a more

complex iterative synthesis process (LUT mapping). The results indicate superiority

of the XAIG-based rewriting, especially when used in combination with AIG rewriting.

The main ideas presented in this extended abstract were published in [11]. Here we

just summarize the most important observations and emphasize the discussion.

2 The State-of-the-Art

The original rewriting process for simple AIG structures has been proposed already

in 2006 [8]. Since that time, no big research on this topic existed, until recent years.

New paradigms of logic synthesis emerged, accompanied by new structures. The most

striking new paradigm is majority-based synthesis with Majority-Inverter-Graphs

(MIGs) introduced [2] in 2015. This idea has been further extended to XOR-Majority-

Graphs (XMGs) [3]. The efficiency of these structures has been demonstrated on the

rewriting algorithm. The authors have shown benefits over a standard AIG-based opti-

mization when targeted to new technologies (where the majority function can be im-

plemented “simply) and also for standard cells or LUT mapping, where the compact

majority function can be advantageously used by the mapper.

In the ABC system [12], a facility implementing Boolean networks with AND, XOR

and MUX nodes together with negated edges, was recently established. The XAIG

structure has also been proposed in [13, 14], but here it is used just for technology

mapping purposes, not primarily for logic synthesis.

In logic optimization scenarios, XORs are rarely represented directly (except

of XMGs), which could suggest certain algorithmic bias against them. To judge the role

of XORs, we need a representation where ANDs and XORs would be equally “first

class citizens”, with balanced roles. The structure must be simple enough to permit ad-

aptation of most base ABC algorithms, and as close as possible to AIGs for fair com-

parison (which unfortunately, excludes XMGs). Also, the difficulties caused by making

the network heterogeneous should be kept small. Even though both XMGs and ABC

AND-XOR-MUX-Inverter graphs are generalizations of XAIGs, they are not suitable

for our purposes; the question we seek an answer for, is whether treating XORs and

ANDs in a balanced way will improve the performance of logic synthesis. Therefore,

the set of operators must be restricted to AND and XOR nodes only. After resolving

this question, we may think about extending the nodes set further, if needed.

3 AIGs, XAIGs, and XAIG-Based Rewriting

And-Inverter Graph (AIG) [8, 9] is a directed acyclic graph with one or more roots,

where nodes are two-input AND gates and edges represent connections between them.

Edges may be inverted, meaning that the respective subgraph is negated. This can be

understood as an inverter presence on the connection.

XOR-And-Inverter Graph (XAIG) is an extension (generalization) of AIG, where

nodes are two-input ANDs or XORs.

A two-input XOR gate can be represented in AIG by several structurally different

ways. The minimum XOR implementation consists of three AND gates, and there are

two such implementations [11], [13]. Even though it is possible to construct a single

XOR gate using more AND nodes, such redundant structures will not be assumed here.

The initial AIG network can be transformed to XAIG by pattern matching. This fea-

ture is already implemented in the ABC9 package, by the command ‘&st -m’.

Rewriting [8, 11] is a technique of replacing AIG (XAIG, in our case) subgraphs

with K leaves (K-feasible cut cones) by optimum functionally equivalent structures.

An example of XAIG subgraph replacement can be seen in Fig. 1.

Fig. 1. XAIG based rewriting example. The oval nodes represent ANDs, the hexagon an XOR.

The algorithm goes through XAIG nodes in topological order. For each node, the

subgraphs (cuts) are enumerated using an algorithm presented in [15]. For each node

cut, a truth table of the function of its leaves is calculated by simulation and converted

to a canonical form describing the respective NPN equivalence class [8, 16].

For each NPN equivalence class, there are one or more pre-computed optimum struc-

tures stored. Note that for 4-input cuts, there are 216 possible functions, but there are

only 222 NPN equivalent classes.

Each node cut cone is then tried for replacement by each pre-computed optimum

representation. After each temporary replacement, the total network cost is calculated

(see below). If at least one replacement leads to better total network cost, replacement

with the best cost reduction is made permanent for the currently processed node. After

that, the algorithm continues with topologically subsequent node. Possible sharing

of subgraphs in the XAIG is considered [8, 9], thus, the size-optimality of the replace-

ment structure does not guarantee the optimality of the replacement; different replace-

ment structures may yield XAIGs of different sizes.

The cost of the network is computed as a weighted sum of nodes cost, where for

each node type (AND and XOR) a cost is specified. The cost can be adjusted with

respect to the expected target technology.

The optimum structures for each NPN-equivalence class are computed using a SAT-

based approach presented in [17]. The XOR cost may be specified here as well, yielding

different optimum implementations with different properties. Also, different numbers

of optimum representations are produced depending on the XOR cost. The numbers

of nodes, XORs and structures counts for different costs are summarized in Table 1.

Table 1. The statistic on all generated 222 NPN-equivalent 4-input replacement circuits.

AND:XOR Nodes XORs Count

 Max. Avg. Max. Avg. Max. Avg. Total

1:1 7 6.60 5 2.78 7,401 144.86 32,160

1:2 8 6.38 3 1.41 2,436 42.58 9,453

1:3

= no XORs

10 8.02 3 0.23 3,056 95.45 21,190

3.1 XOR transformations

The presence of XOR nodes brings additional possibilities of choice. Particularly,

XOR gates, either present in the original XAIG or newly introduced by cut replacement,

may or may not be “dissolved” into one of the two 3-AND structures. These alternatives

are compared and the one yielding the lowest total network cost is used.

Note that the total network cost is computed considering sharing of XAIG sub-

graphs; one particular replacement structure may introduce new nodes, which are struc-

turally equivalent to other nodes already present in the XAIG. Therefore, the network

cost can be computed only after the replacement is physically performed and structural

sharing possibilities determined (structural hashing is done). If such sharing is found

and it is found to reduce the total network cost, the XOR dissolution is made permanent.

Otherwise, the XOR is collapsed back to a single node.

Apart from the basic dissolution, a duplication technique can be used. Here, when a

structure of multiple nodes is to be replaced by a XOR node, some of the inner nodes

may be duplicated without negatively affecting the total cost, depending on nodes cost

configuration. In particular, one or both inner AND nodes of the XOR function may be

duplicated to preserve inputs for nodes outside the cut. These alternatives are always

tried when computing the network cost.

An example of such situation can be seen in Fig. 2. Here, an XOR function has been

found, however one of the inner nodes has an edge leading outside the cut. This cut can

therefore be replaced by a XOR node, but the inner node has to be duplicated to pre-

serve this output leading outside of the cut (‘network b’). Other option is to keep the

representation of the function by three AND nodes, as it is in ‘network a’. The final

decision will depend on the AND:XOR cost ratio.

Fig. 2. Duplication of AND nodes after cut replacement

4 Experimental Results

As a comparison of the AIG-based synthesis with the XAIG-based synthesis, we have

run both rewriting algorithms over a set of more than 700 circuits obtained as a mix

of different benchmarks: LGSynth’91 [18], IWLS’93 [19], ISCAS’85 [20], ISCAS’89

[21], ITC’99 [22], EPFL [23], IWLS 2005 [24], and LEKO/LEKU benchmarks [25] –

all available from [26].

4.1 Comparison of AIG and XAIG-Based Rewriting

A summary comparison of the original AIG rewriting (rewrite) to XAIG rewriting

(&rewrite) with different AND:XOR cost settings can be seen in Table 2. For each

XOR cost setting used with XAIG rewriting, optimum replacement structures with the

same cost setting has been generated. The counts of resulting nodes (total and XOR

nodes) and circuit levels were measured. Only sums of the respective values over all

700 circuits are shown here. For details on individual circuits see [11].

Table 2. Comparison of the AIG-based rewriting (rewrite) and XAIG-based rewriting (&re-

write) with different AND:XOR cost settings

Process Nodes XORs Cost Levels

rewrite 606,851 18,772 635,009 12,877

&rewrite, AND:XOR cost 1:1 598,802 25,510 598,802 13,035

&rewrite, AND:XOR cost 1:2 603,772 17,195 620,967 13,096

&rewrite, AND:XOR cost 1:3 613,691 10,438 634,567 13,281

The results show that with increasing cost of a XOR node, the algorithm prefers

AND nodes over XORs and the total number of nodes naturally increases. Although

these results may seem to be quite obvious, they fully expose the “strength” of having

native XOR nodes; when XORs are allowed in addition to ANDs, the circuits can be

implemented using fewer gates.

The “Cost” is computed as respectively weighted sum of nodes count. The

AND:XOR cost for the standard AIG-based rewriting was set to 2:5. We see that the

best results have been obtained for AND:XOR cost 1:1, even in terms of the total cost.

Surprisingly enough, the original AIG rewriting yielded results with less levels (delay).

4.2 Overall synthesis process – FPGA mapping

To demonstrate the influence of XAIG rewriting on the overall synthesis process we

compared both algorithm variants by the number of LUTs and levels after iterated re-

writing and mapping to FPGA (ABC script ‘rewrite; balance; if; mfs’ iterated 20-times,

for XAIG-based rewriting, the ‘&rewrite’ command was used instead of ‘rewrite’).

In order to see the role of the XOR cost in the LUT mapping process (where, indeed,

different costs hardly make sense), we have performed this experiment using three dif-

ferent XOR costs as well.

The results are shown in Table 3. Only 13 largest circuits are shown there, with

summary values for all 700 circuits shown in the last row. We can see that the XOR

cost equal to 1 produced the best results again, in terms of the area (LUTs count). Par-

ticularly, better results than the AIG rewriting were obtained in 290 cases (43%), worse

results in 146 cases (21%), out of 682. The original AIG-based rewriting procedure

produced the best results only rarely. This result just confirms the conjecture that XAIG

rewriting with the XOR cost set equal to the AND cost yields best results, emphasizing

the importance of XOR nodes.

Note that in this experiment, the influence of algorithmic noise [27, 28] has been

suppressed by averaging results from at least 40 runs with randomly permuted inputs

and outputs. Therefore, even though the improvement is negligible, it is systematic.

In other words, generally we cannot lose when &rewrite is used instead of &rewrite.

Table 3. Comparison of the AIG-based rewriting (rewrite) and XAIG-based rewriting (&re-

write) with different AND:XOR cost settings – LUT mapping

rewrite &rewrite 1:1 &rewrite 1:2 &rewrite 1:3

name LUTs Lvl. LUTs Lvl. LUTs Lvl. LUTs Lvl.

arbiter [23] 4,053 30 4,053 30 4,053 30 4,053 30

apex2 [19] 1,696 7 1,690 7 1,679 7 1,679 7

bigkey [19] 1,695 3 1,789 3 1,898 3 1,901 3

too_large [19] 1,475 8 1,504 8 1,377 9 1,377 9

mainpla [18] 1,419 10 1,394 10 1,403 10 1,391 10

dsip [19] 1,360 3 909 3 908 3 908 3

misex3 [19] 1,358 6 1,296 7 1,285 7 1,285 7

bar [23] 1,349 6 1,349 6 1,349 6 1,349 6

des [19] 1,347 6 1,289 7 1,349 6 1,331 6

xparc [18] 1,316 11 1,319 11 1,319 11 1,330 11

spi [24] 1,252 10 1,237 10 1,246 10 1,254 10

wb_dma [24] 1,246 8 1,230 11 1,231 11 1,233 11

apex4 [19] 1,137 6 1,083 7 1,090 7 1,100 7

Total 126,258 3,619 124,066 3,700 124,789 3,673 125,016 3,676

4.3 Combined synthesis procedure

From the above experiments it is apparent that sometimes a better solution was found

by the XAIG-based rewriting, sometimes worse, and this cannot be attributed to the

algorithmic noise (since it has been eliminated). Thus, generally speaking, XAIG-based

rewriting may bring benefits for some circuits, while for some circuits it does not help.

When keeping this in mind, we can suggest an improved synthesis procedure, that

always produces equal or better results than the original AIG rewriting based one: to run

both synthesis procedures simultaneously (e.g., by employing two CPU cores) and pick

the better result. However, we will show that even this is not necessary; half of the

number of iterations is usually sufficient to obtain better results in most of cases. This

can be explained by the fact, that the iterative process (rewrite-based or &rewrite-

based) quickly gets stuck in a local optimum and does not further improve much with

later iterations. The results in Table 4, for 13 biggest circuits. Here results of the re-

write-based process run iteratively 40-times are compared to 20 iterations of both with

the better result taken (a choice is made). Thus, the total run times of both complete

processes were approximately equal. Since the 1:1 AND:XOR cost ratio setting led

to best results in the previous experiment, only this option was used here. The initial

theory was confirmed — the combined process gave better results in most of cases.

Altogether, there were only 10 circuits for which the combined process gave slightly

worse results. These were mostly the biggest circuits that needed more iterations to con-

verge. These circuits are seen in the upper part of the table.

Table 4. Comparison of the AIG-based rewriting (rewrite), XAIG-based rewriting (&rewrite)

and the combined procedure

40x rewrite 40x &rewrite 1:1 combined

name LUTs Lvl. LUTs Lvl. LUTs Lvl.

arbiter [23] 4,053 30 4,053 30 4,053 30

apex2 [19] 1,607 7 1,621 7 1,690 7

bigkey [19] 1,583 3 1,789 3 1,695 3

too_large [19] 1,371 8 1,397 8 1,475 8

mainpla [18] 1,419 10 1,394 10 1,394 10

dsip [19] 1,360 3 909 3 909 3

misex3 [19] 1,252 6 1,206 7 1,296 6

bar [23] 1,349 6 1,349 6 1,349 6

des [19] 1,334 6 1,289 7 1,289 6

xparc [18] 1,316 11 1,319 11 1,316 11

spi [24] 1,252 10 1,237 10 1,237 10

wb_dma [24] 1,246 8 1,230 11 1,230 8

apex4 [19] 1,137 6 1,083 7 1,083 6

Total 112,080 3,357 110,379 3,432 110,108 3,335

5 Conclusions and Discussion

A novel circuit representation structure – the XOR-AND-Inverter Graph (XAIG) has

been proposed in this paper, together with a rewriting algorithm based on this represen-

tation.

The algorithm was implemented in the framework of logic synthesis and optimiza-

tion tool ABC. The XAIG-based rewriting algorithm was compared to the original

AIG-based rewriting already implemented in ABC. The results indicate that the new

algorithm is stronger in XOR identification and in reducing the number of nodes.

The impact of the XAIG-based rewriting process to a complete synthesis, particu-

larly FPGA LUT mapping, was studied. When compared with the standard AIG-based

rewriting process, better results were obtained in most cases.

The XOR nodes cost can be freely adjusted both in the optimum replacement struc-

tures generation and in the rewriting algorithm. However, we have found experimen-

tally that the AND:XOR ratio 1:1 option produces best results universally, as the cost

of the results improves with the amount of XORs in replacements. This in part confirms

our conjecture about the XOR importance. Moreover, as shown in [11], it permits to use

the replacements generated for the AND:XOR ratio 1:1 universally, even for standard

cells mapping, where the XOR cost is higher than the AND cost. This phenomenon can

be explained by the fact that the mapping process may benefit from the XOR presence,

no matter what the XOR cost in the target library is. Moreover, the number of optimum

replacement structures is for the AND:XOR ratio significantly higher than for other

ratios. Thus, this allows more freedom in the rewriting process (see Table 1).

AIGs are, as mentioned earlier, a logically complete system. Nodes of any newly

introduced type can be therefore replaced by subgraphs with AND nodes only. In our

case, there are two distinct 3-AND subgraphs replacing an XOR. This has several con-

sequences. The two representations can be interpreted in the sense an XOR in XAIG

implicitly representing two different AND-based structures. This is especially im-

portant for the number of replacement structures produced, and subsequently for the

rewriting run-time. Particularly, if all AND-XOR structures were explicitly generated

as replacement circuits, their number will be exponential with the number of XORs

(2#XORs). However, by representing XOR implicitly by one node, the rewriting time

complexity is linear with their number, as XORs are processed one-by-one, without

any dependence of previously made decisions on their dissolving.

However, there is one drawback involved. The rewriting algorithms are based on cut

generation [15], which is a purely structural procedure. When “macro” XOR nodes are

introduced, less cuts can be constructed and considered for replacement, leading to pos-

sibly worse results, as shown in the experimental section.

Summarized, the newly proposed XAIG-based rewriting algorithm offers a possibil-

ity of discovering new XOR structures in a network, compared to the state-of-the-art.

These XORs may be utilized in further network processing algorithms. Discovery

of new XORs also yields better synthesis results in a number of cases, mostly in XOR-

intensive circuits, while for the rest of circuits, comparable results are obtained. A com-

bined procedure with superior results was demonstrated. Therefore, we can conclude

that efficient and balanced handling with XORs in synthesis is useful for improving

synthesis results.

Acknowledgments

This research has been partially supported by the grant GA16-05179S of the Czech

Grant Agency, “Fault-Tolerant and Attack-Resistant Architectures Based on Program-

mable Devices: Research of Interplay and Common Features” (2016-2018) and by the

grant SGS17/213/OHK3/3T/18.

Computational resources were provided by the CESNET LM2015042 and the

CERIT Scientific Cloud LM2015085, provided under the programme “Projects of

Large Research, Development, and Innovations Infrastructures”.

The authors acknowledge the support of the OP VVV funded project

CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics”.

Last, but not the least, numerous thanks to Alan Mishchenko, for his valuable com-

ments and discussions with him.

References

1. Amaru, L. et al.: New Logic Synthesis as Nanotechnology Enabler. Proceedings of the IEEE,

vol. 103, no. 11, Nov. 2015, pp. 2168-2195 (2015).

2. Amaru, L., Gaillardon, P.-E., De Micheli, G.: Boolean logic optimization in majority-in-

verter graphs. In: 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6

(2015).

3. Haaswijk, W., Soeken, M., Amaru, L., Gaillardon, P.-E., De Micheli, G., A Novel Basis for

Logic Rewriting. Tech. rep. Integrated Systems Laboratory, EPFL, Lausanne, Switzerland

(2017).

4. Fišer, P. Schmidt, J.: Small but Nasty Logic Synthesis Examples. In: 8th International Work-

shop on Boolean Problems (IWSBP), pp. 183–189 (2008).

5. Fišer, P. Schmidt, J.: The Observed Role of Structure in Logic Synthesis Examples. In: Proc.

of the International Workshop on Logic and Synthesis (IWLS), pp.210–213 (2009).

6. Pradhan, D. K.: Fault-tolerant computer system design, Prentice Hall, New Jersey, 550 p.

(1995).

7. Announcing the Advanced Encryption Standard (AES). Federal Information Processing

Standards Publication no. 19 (Nov. 2001).

8. Brayton, R.K., Mishchenko, A., Chatterjee, S.: DAG-aware AIG rewriting: a fresh look at

combinational logic synthesis. In: 43rd ACM/IEEE Design Automation Conference, ACM,

pp. 532–535 (2006).

9. Kuehlmann, A. Paruthi, V., Krohm, F., Ganai, M.: Robust Boolean reasoning for equiva-

lence checking and functional property verification, IEEE Trans. Computer Aided Design

of Integrated Circuits and Systems, 21 (12), pp. 1377–1394 (2001).

10. Biere, A.: AIGER, http://fmv.jku.at/aiger/ (2007).

11. Háleček, I., Fišer, P., Schmidt, J.: Towards AND/XOR Balanced Synthesis: Logic Circuits

Rewriting with XOR. Microelectronics Reliability, Elsevier, vol. 81, pp. 274-286 (2018).

http://fmv.jku.at/aiger/

12. Mishchenko, A. et al.: ABC: a system for sequential synthesis and verification,

http://www.eecs.berkeley.edu/~alanmi/abc (2012).

13. J. M. Matos et al., “Mapping circuits with simple cells from xor-and-inverter graphs,” in

Proc. of Int’l Workshop on Logic and Synthesis (2015).

14. J. M. Matos, J. Carrabina, A. I. Reis, "Efficiently Mapping VLSI Circuits with Simple

Cells", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

(2018).

15. Mishchenko, A. et al.: Technology mapping with Boolean matching, supergates and choices.

ERL Technical Report, EECS Dept., UC Berkeley, Tech. Rep., 03 (2005).

16. Huang, Z., Wang, L., Nasikovskiy, Y., Mishchenko, A.: Fast Boolean matching based

on NPN classification, International Conference on Field-Programmable Technology (FPT),

pp. 310–313 (2013).

17. Háleček, I., Fišer, P., Schmidt, J.: SAT-Based Generation of Optimum Function Implemen-

tations with XOR Gates. In: 20th Euromicro Conference on Digital System Design, Archi-

tectures, Methods and Tools, pp. 163–170 (2017).

18. Yang, S.: Logic Synthesis and Optimization Benchmarks User Guide: Version 3.0, MCNC

Technical Report, Jan 1991.

19. McElvain, K.: IWLS’93 Benchmark Set: Version 4.0, Tech. rep. (May 1993).

20. Brglez, F., Fujiwara, H.: A Neutral Netlist of 10 Combinational Benchmark Circuits and a

Target Translator in Fortran. In: IEEE International Symposium Circuits and Systems

(ISCAS’85), pp. 677–692 (1985).

21. Brglez, F. Bryan, D. Kozminski, K.: Combinational profiles of sequential benchmark cir-

cuits, IEEE International Symposium on Circuits and Systems, vol.3, pp. 1929–1934 (1989).

22. Corno, F. Reorda, M., Squillero, G.: RT-level ITC’99 benchmarks and first ATPG results,

IEEE Des. Test Comput. 17 (3) pp. 44–53 (2000).

23. Amaru, L.: The EPFL Combinational Benchmark Suite, Tech. rep. Integrated Systems La-

boratory, EPFL, Lausanne, Switzerland (2016).

24. Albrecht, C., IWLS 2005 Benchmarks, Tech. rep. (Jun. 2005).

25. Cong, J. Minkovich, K.: Optimality Study of Logic Synthesis for LUT-Based FPGAs, 14th

International ACM Symposium on Field-Programmable Gate Arrays, pp. 33–40 (2006).

26. Fišer, P., Schmidt, J.: A Comprehensive Set of Logic Synthesis and Optimization Examples,

In: 12th International Workshop on Boolean Problems (IWSBP), pp. 151–158 (2016).

http://ddd.fit.cvut.cz/prj/Benchmarks/

27. Schmidt, J., Fišer, P., Balcárek, J.: On Robustness of EDA Tools, Euromicro Conference on

Digital System Design Architectures, Methods and Tools, pp. 427–434 (2014).

28. Shum, W., Anderson, H.J., Analyzing and predicting the impact of CAD algorithm noise on

FPGA speed performance and power, International ACM Symposium on Field-Programma-

ble Gate Arrays, pp. 107–110 (2012).

http://www.eecs.berkeley.edu/~alanmi/abc
http://ddd.fit.cvut.cz/prj/Benchmarks/

