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Abstract. This paper discusses the feasibility and efficiency of a native 

XOR-based logic synthesis. Particularly, a natively XOR-supporting rewriting 

algorithm is presented. It is based on a novel data structure – the XOR-And-

Inverter Graph. Major problems that appeared by extending the And-Inverter 

Graph rewriting to support XORs are discussed. The algorithm was implemented 

in a logic synthesis and optimization package ABC and compared to standard 

And-Inverter-Graph based rewriting. Its benefits are shown by experiments. 

Keywords: logic synthesis, AIG, XAIG, rewriting, XOR. 

1 Introduction 

Gate-level logic synthesis and optimization recently experiences renewed interest, 

mostly due to emergence of new physical structures implementing “non-standard” 

logic functions simply [1]. In a strong contrast to this, standard synthesis processes 

efficiently used for many decades, which are typically based on simple nodes (2-input 

ANDs, NORs, inverters) do not seem to be efficient anymore and new paradigms and 

algorithms based on them must be looked for. Examples of such novel paradigms are 

Majority-based [2] or XOR-Majority-based [3] approaches. 

The second motivation for research of new synthesis paradigms is the observed lack 

of efficiency of standard synthesis, especially for XOR-intensive circuits [4, 5]. Such 

circuits appear ever more frequently in industrial designs, since they are parts of fault-

tolerant [6] and secure [7] devices. 

Since the rewriting logic optimization algorithm [8] represents one of the simplest 

ways to efficiently exploit the above-mentioned structures, it is now being used at the 

first place for demonstrating their feasibility and effectiveness. 

The rewriting algorithm [8] takes a logic network as input (no matter what elements 

it is composed of), extracts small parts of it, and replaces them with functionally equiv-

alent optimum implementations. This is repeated, until the whole network is traversed. 

Two issues must be resolved to accomplish this: 1) generation of the optimum replace-

ment structures, 2) controlling the overall rewriting process. 

In this extended abstract, we present an XOR-AND-Inverter Graph (XAIG) structure 

as an extension of a standard AND-Inverter Graph (AIG) [9, 10] enabling to represent 

XOR gates explicitly. Next, we introduce a rewriting algorithm based on this structure. 
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The two above issues become more complicated in XIAG rewriting, since in contrast 

to AIG, XAIG is an heterogeneous structure, where XOR can be decomposed to mul-

tiple AND nodes (with inverted edges provided). Moreover, there are multiple ways 

of doing this decomposition. Next, AND and XOR nodes may be assigned different 

implementation costs. Therefore, there are multiple alternatives of generating the opti-

mum replacement structures. 

The rewriting control is more complicated too. Since XOR nodes may be alterna-

tively “dissolved” into several AND nodes in the rewriting process when looking for 

replacements, this issue will be discussed too. 

The presented XAIG-based rewriting algorithm is compared to the standard AIG-

based rewriting [8], both as stand-alone processes and when incorporated in a more 

complex iterative synthesis process (LUT mapping). The results indicate superiority 

of the XAIG-based rewriting, especially when used in combination with AIG rewriting. 

The main ideas presented in this extended abstract were published in [11]. Here we 

just summarize the most important observations and emphasize the discussion. 

2 The State-of-the-Art 

The original rewriting process for simple AIG structures has been proposed already 

in 2006 [8]. Since that time, no big research on this topic existed, until recent years. 

New paradigms of logic synthesis emerged, accompanied by new structures. The most 

striking new paradigm is majority-based synthesis with Majority-Inverter-Graphs 

(MIGs) introduced [2] in 2015. This idea has been further extended to XOR-Majority-

Graphs (XMGs) [3]. The efficiency of these structures has been demonstrated on the 

rewriting algorithm. The authors have shown benefits over a standard AIG-based opti-

mization when targeted to new technologies (where the majority function can be im-

plemented “simply) and also for standard cells or LUT mapping, where the compact 

majority function can be advantageously used by the mapper. 

In the ABC system [12], a facility implementing Boolean networks with AND, XOR 

and MUX nodes together with negated edges, was recently established. The XAIG 

structure has also been proposed in [13, 14], but here it is used just for technology 

mapping purposes, not primarily for logic synthesis. 

In logic optimization scenarios, XORs are rarely represented directly (except 

of XMGs), which could suggest certain algorithmic bias against them. To judge the role 

of XORs, we need a representation where ANDs and XORs would be equally “first 

class citizens”, with balanced roles. The structure must be simple enough to permit ad-

aptation of most base ABC algorithms, and as close as possible to AIGs for fair com-

parison (which unfortunately, excludes XMGs). Also, the difficulties caused by making 

the network heterogeneous should be kept small. Even though both XMGs and ABC 

AND-XOR-MUX-Inverter graphs are generalizations of XAIGs, they are not suitable 

for our purposes; the question we seek an answer for, is whether treating XORs and 

ANDs in a balanced way will improve the performance of logic synthesis. Therefore, 

the set of operators must be restricted to AND and XOR nodes only. After resolving 

this question, we may think about extending the nodes set further, if needed. 



3 AIGs, XAIGs, and XAIG-Based Rewriting 

And-Inverter Graph (AIG) [8, 9] is a directed acyclic graph with one or more roots, 

where nodes are two-input AND gates and edges represent connections between them. 

Edges may be inverted, meaning that the respective subgraph is negated. This can be 

understood as an inverter presence on the connection. 

XOR-And-Inverter Graph (XAIG) is an extension (generalization) of AIG, where 

nodes are two-input ANDs or XORs.  

A two-input XOR gate can be represented in AIG by several structurally different 

ways. The minimum XOR implementation consists of three AND gates, and there are 

two such implementations [11], [13]. Even though it is possible to construct a single 

XOR gate using more AND nodes, such redundant structures will not be assumed here. 

The initial AIG network can be transformed to XAIG by pattern matching. This fea-

ture is already implemented in the ABC9 package, by the command ‘&st -m’. 

 

Rewriting [8, 11] is a technique of replacing AIG (XAIG, in our case) subgraphs 

with K leaves (K-feasible cut cones) by optimum functionally equivalent structures.  

An example of XAIG subgraph replacement can be seen in Fig. 1. 

 

 

Fig. 1. XAIG based rewriting example. The oval nodes represent ANDs, the hexagon an XOR. 

The algorithm goes through XAIG nodes in topological order. For each node, the 

subgraphs (cuts) are enumerated using an algorithm presented in [15]. For each node 

cut, a truth table of the function of its leaves is calculated by simulation and converted 

to a canonical form describing the respective NPN equivalence class [8, 16]. 

For each NPN equivalence class, there are one or more pre-computed optimum struc-

tures stored. Note that for 4-input cuts, there are 216 possible functions, but there are 

only 222 NPN equivalent classes.  

Each node cut cone is then tried for replacement by each pre-computed optimum 

representation. After each temporary replacement, the total network cost is calculated 

(see below). If at least one replacement leads to better total network cost, replacement 

with the best cost reduction is made permanent for the currently processed node. After 

that, the algorithm continues with topologically subsequent node. Possible sharing 

of subgraphs in the XAIG is considered [8, 9], thus, the size-optimality of the replace-

ment structure does not guarantee the optimality of the replacement; different replace-

ment structures may yield XAIGs of different sizes. 



The cost of the network is computed as a weighted sum of nodes cost, where for 

each node type (AND and XOR) a cost is specified. The cost can be adjusted with 

respect to the expected target technology. 

The optimum structures for each NPN-equivalence class are computed using a SAT-

based approach presented in [17]. The XOR cost may be specified here as well, yielding 

different optimum implementations with different properties. Also, different numbers 

of optimum representations are produced depending on the XOR cost. The numbers 

of nodes, XORs and structures counts for different costs are summarized in Table 1.  

Table 1. The statistic on all generated 222 NPN-equivalent 4-input replacement circuits. 

AND:XOR Nodes XORs Count 

 Max. Avg. Max. Avg. Max. Avg. Total 

1:1 7 6.60 5 2.78 7,401 144.86 32,160 

1:2 8 6.38 3 1.41 2,436 42.58 9,453 

1:3 

= no XORs 

10 8.02 3 0.23 3,056 95.45 21,190 

3.1 XOR transformations 

The presence of XOR nodes brings additional possibilities of choice. Particularly, 

XOR gates, either present in the original XAIG or newly introduced by cut replacement, 

may or may not be “dissolved” into one of the two 3-AND structures. These alternatives 

are compared and the one yielding the lowest total network cost is used.  

Note that the total network cost is computed considering sharing of XAIG sub-

graphs; one particular replacement structure may introduce new nodes, which are struc-

turally equivalent to other nodes already present in the XAIG. Therefore, the network 

cost can be computed only after the replacement is physically performed and structural 

sharing possibilities determined (structural hashing is done). If such sharing is found 

and it is found to reduce the total network cost, the XOR dissolution is made permanent. 

Otherwise, the XOR is collapsed back to a single node. 

Apart from the basic dissolution, a duplication technique can be used. Here, when a 

structure of multiple nodes is to be replaced by a XOR node, some of the inner nodes 

may be duplicated without negatively affecting the total cost, depending on nodes cost 

configuration. In particular, one or both inner AND nodes of the XOR function may be 

duplicated to preserve inputs for nodes outside the cut. These alternatives are always 

tried when computing the network cost. 

An example of such situation can be seen in Fig. 2. Here, an XOR function has been 

found, however one of the inner nodes has an edge leading outside the cut. This cut can 

therefore be replaced by a XOR node, but the inner node has to be duplicated to pre-

serve this output leading outside of the cut (‘network b’). Other option is to keep the 

representation of the function by three AND nodes, as it is in ‘network a’. The final 

decision will depend on the AND:XOR cost ratio. 

 



 

Fig. 2. Duplication of AND nodes after cut replacement 

4 Experimental Results 

As a comparison of the AIG-based synthesis with the XAIG-based synthesis, we have 

run both rewriting algorithms over a set of more than 700 circuits obtained as a mix 

of different benchmarks: LGSynth’91 [18], IWLS’93 [19], ISCAS’85 [20], ISCAS’89 

[21], ITC’99 [22], EPFL [23], IWLS 2005 [24], and LEKO/LEKU benchmarks [25] – 

all available from [26]. 

4.1 Comparison of AIG and XAIG-Based Rewriting 

A summary comparison of the original AIG rewriting (rewrite) to XAIG rewriting 

(&rewrite) with different AND:XOR cost settings can be seen in Table 2. For each 

XOR cost setting used with XAIG rewriting, optimum replacement structures with the 

same cost setting has been generated. The counts of resulting nodes (total and XOR 

nodes) and circuit levels were measured. Only sums of the respective values over all 

700 circuits are shown here. For details on individual circuits see [11]. 

Table 2. Comparison of the AIG-based rewriting (rewrite) and XAIG-based rewriting (&re-

write) with different AND:XOR cost settings 

Process Nodes XORs Cost Levels 

rewrite 606,851 18,772 635,009 12,877 

&rewrite, AND:XOR cost 1:1 598,802 25,510 598,802 13,035 

&rewrite, AND:XOR cost 1:2 603,772 17,195 620,967 13,096 

&rewrite, AND:XOR cost 1:3 613,691 10,438 634,567 13,281 

The results show that with increasing cost of a XOR node, the algorithm prefers 

AND nodes over XORs and the total number of nodes naturally increases. Although 

these results may seem to be quite obvious, they fully expose the “strength” of having 

native XOR nodes; when XORs are allowed in addition to ANDs, the circuits can be 

implemented using fewer gates.  

The “Cost” is computed as respectively weighted sum of nodes count. The 

AND:XOR cost for the standard AIG-based rewriting was set to 2:5. We see that the 

best results have been obtained for AND:XOR cost 1:1, even in terms of the total cost. 

Surprisingly enough, the original AIG rewriting yielded results with less levels (delay). 



4.2 Overall synthesis process – FPGA mapping 

To demonstrate the influence of XAIG rewriting on the overall synthesis process we 

compared both algorithm variants by the number of LUTs and levels after iterated re-

writing and mapping to FPGA (ABC script ‘rewrite; balance; if; mfs’ iterated 20-times, 

for XAIG-based rewriting, the ‘&rewrite’ command was used instead of ‘rewrite’). 

In order to see the role of the XOR cost in the LUT mapping process (where, indeed, 

different costs hardly make sense), we have performed this experiment using three dif-

ferent XOR costs as well. 

The results are shown in Table 3. Only 13 largest circuits are shown there, with 

summary values for all 700 circuits shown in the last row. We can see that the XOR 

cost equal to 1 produced the best results again, in terms of the area (LUTs count). Par-

ticularly, better results than the AIG rewriting were obtained in 290 cases (43%), worse 

results in 146 cases (21%), out of 682. The original AIG-based rewriting procedure 

produced the best results only rarely. This result just confirms the conjecture that XAIG 

rewriting with the XOR cost set equal to the AND cost yields best results, emphasizing 

the importance of XOR nodes. 

Note that in this experiment, the influence of algorithmic noise [27, 28] has been 

suppressed by averaging results from at least 40 runs with randomly permuted inputs 

and outputs. Therefore, even though the improvement is negligible, it is systematic. 

In other words, generally we cannot lose when &rewrite is used instead of &rewrite. 

Table 3. Comparison of the AIG-based rewriting (rewrite) and XAIG-based rewriting (&re-

write) with different AND:XOR cost settings – LUT mapping 
 

rewrite &rewrite 1:1 &rewrite 1:2 &rewrite 1:3 

name LUTs Lvl. LUTs Lvl. LUTs Lvl. LUTs Lvl. 

arbiter [23] 4,053 30 4,053 30 4,053 30 4,053 30 

apex2 [19] 1,696 7 1,690 7 1,679 7 1,679 7 

bigkey [19] 1,695 3 1,789 3 1,898 3 1,901 3 

too_large [19] 1,475 8 1,504 8 1,377 9 1,377 9 

mainpla [18] 1,419 10 1,394 10 1,403 10 1,391 10 

dsip [19] 1,360 3 909 3 908 3 908 3 

misex3 [19] 1,358 6 1,296 7 1,285 7 1,285 7 

bar [23] 1,349 6 1,349 6 1,349 6 1,349 6 

des [19] 1,347 6 1,289 7 1,349 6 1,331 6 

xparc [18] 1,316 11 1,319 11 1,319 11 1,330 11 

spi [24] 1,252 10 1,237 10 1,246 10 1,254 10 

wb_dma [24] 1,246 8 1,230 11 1,231 11 1,233 11 

apex4 [19] 1,137 6 1,083 7 1,090 7 1,100 7 

Total 126,258 3,619 124,066 3,700 124,789 3,673 125,016 3,676 



4.3 Combined synthesis procedure 

From the above experiments it is apparent that sometimes a better solution was found 

by the XAIG-based rewriting, sometimes worse, and this cannot be attributed to the 

algorithmic noise (since it has been eliminated). Thus, generally speaking, XAIG-based 

rewriting may bring benefits for some circuits, while for some circuits it does not help.  

When keeping this in mind, we can suggest an improved synthesis procedure, that 

always produces equal or better results than the original AIG rewriting based one: to run 

both synthesis procedures simultaneously (e.g., by employing two CPU cores) and pick 

the better result. However, we will show that even this is not necessary; half of the 

number of iterations is usually sufficient to obtain better results in most of cases. This 

can be explained by the fact, that the iterative process (rewrite-based or &rewrite-

based) quickly gets stuck in a local optimum and does not further improve much with 

later iterations. The results in Table 4, for 13 biggest circuits. Here results of the re-

write-based process run iteratively 40-times are compared to 20 iterations of both with 

the better result taken (a choice is made). Thus, the total run times of both complete 

processes were approximately equal. Since the 1:1 AND:XOR cost ratio setting led 

to best results in the previous experiment, only this option was used here. The initial 

theory was confirmed — the combined process gave better results in most of cases. 

Altogether, there were only 10 circuits for which the combined process gave slightly 

worse results. These were mostly the biggest circuits that needed more iterations to con-

verge. These circuits are seen in the upper part of the table. 

Table 4. Comparison of the AIG-based rewriting (rewrite), XAIG-based rewriting (&rewrite) 

and the combined procedure 
 

40x rewrite 40x &rewrite 1:1 combined 

name LUTs Lvl. LUTs Lvl. LUTs Lvl. 

arbiter [23] 4,053 30 4,053 30 4,053 30 

apex2 [19] 1,607 7 1,621 7 1,690 7 

bigkey [19] 1,583 3 1,789 3 1,695 3 

too_large [19] 1,371 8 1,397 8 1,475 8 

mainpla [18] 1,419 10 1,394 10 1,394 10 

dsip [19] 1,360 3 909 3 909 3 

misex3 [19] 1,252 6 1,206 7 1,296 6 

bar [23] 1,349 6 1,349 6 1,349 6 

des [19] 1,334 6 1,289 7 1,289 6 

xparc [18] 1,316 11 1,319 11 1,316 11 

spi [24] 1,252 10 1,237 10 1,237 10 

wb_dma [24] 1,246 8 1,230 11 1,230 8 

apex4 [19] 1,137 6 1,083 7 1,083 6 

Total 112,080 3,357 110,379 3,432 110,108 3,335 



 

5 Conclusions and Discussion 

A novel circuit representation structure – the XOR-AND-Inverter Graph (XAIG) has 

been proposed in this paper, together with a rewriting algorithm based on this represen-

tation. 

The algorithm was implemented in the framework of logic synthesis and optimiza-

tion tool ABC. The XAIG-based rewriting algorithm was compared to the original 

AIG-based rewriting already implemented in ABC. The results indicate that the new 

algorithm is stronger in XOR identification and in reducing the number of nodes. 

The impact of the XAIG-based rewriting process to a complete synthesis, particu-

larly FPGA LUT mapping, was studied. When compared with the standard AIG-based 

rewriting process, better results were obtained in most cases. 

The XOR nodes cost can be freely adjusted both in the optimum replacement struc-

tures generation and in the rewriting algorithm. However, we have found experimen-

tally that the AND:XOR ratio 1:1 option produces best results universally, as the cost 

of the results improves with the amount of XORs in replacements. This in part confirms 

our conjecture about the XOR importance. Moreover, as shown in [11], it permits to use 

the replacements generated for the AND:XOR ratio 1:1 universally, even for standard 

cells mapping, where the XOR cost is higher than the AND cost. This phenomenon can 

be explained by the fact that the mapping process may benefit from the XOR presence, 

no matter what the XOR cost in the target library is. Moreover, the number of optimum 

replacement structures is for the AND:XOR ratio significantly higher than for other 

ratios. Thus, this allows more freedom in the rewriting process (see Table 1).  

AIGs are, as mentioned earlier, a logically complete system. Nodes of any newly 

introduced type can be therefore replaced by subgraphs with AND nodes only. In our 

case, there are two distinct 3-AND subgraphs replacing an XOR. This has several con-

sequences. The two representations can be interpreted in the sense an XOR in XAIG 

implicitly representing two different AND-based structures. This is especially im-

portant for the number of replacement structures produced, and subsequently for the 

rewriting run-time. Particularly, if all AND-XOR structures were explicitly generated 

as replacement circuits, their number will be exponential with the number of XORs 

(2#XORs). However, by representing XOR implicitly by one node, the rewriting time 

complexity is linear with their number, as XORs are processed one-by-one, without 

any dependence of previously made decisions on their dissolving. 

However, there is one drawback involved. The rewriting algorithms are based on cut 

generation [15], which is a purely structural procedure. When “macro” XOR nodes are 

introduced, less cuts can be constructed and considered for replacement, leading to pos-

sibly worse results, as shown in the experimental section.  

Summarized, the newly proposed XAIG-based rewriting algorithm offers a possibil-

ity of discovering new XOR structures in a network, compared to the state-of-the-art. 

These XORs may be utilized in further network processing algorithms. Discovery 

of new XORs also yields better synthesis results in a number of cases, mostly in XOR-



intensive circuits, while for the rest of circuits, comparable results are obtained. A com-

bined procedure with superior results was demonstrated. Therefore, we can conclude 

that efficient and balanced handling with XORs in synthesis is useful for improving 

synthesis results. 
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