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Abstract—Aliasing in the test response compaction is an
important source of fault coverage loss. Methods to avoid the
aliasing generally require modification of the compactor to some
extent. This can lead to a higher compactor complexity and
consequently to higher area overhead, longer signal propagation
delays, etc.

We propose a novel method, the Zero-aliasing ATPG (ZATPG),
which is able to reduce the aliasing without need of designing
new compactors. ZATPG works by augmenting the SAT-based
ATPG process to constrain test pattern generation to produce no
aliasing in the compactor. The method is general enough to be
applicable to any compactor design.

We demonstrate our method on a LFSR-based MISR com-
pactors, using the Single Stuck-At fault model. Our method is
able to find a test with zero aliasing and complete fault coverage
for smaller compactors than conventional, unguided ATPG. Thus,
the area overhead of the compactor can be reduced, while the
complete fault coverage is preserved.

Index Terms—ATPG, response compaction, aliasing, stuck-at
fault, SAT, zero-aliasing, LFSR, MISR.

I. INTRODUCTION

In digital circuit testing, there are several contradicting
considerations. One such consideration is the test length, and
consequently the test application time and cost. On the other
side there is a need to create such a test, that would detect
all of the most likely defects in the circuit which could cause
the circuit to fail. To save the test application time and cost,
additional circuitry dedicated to testing can be added to the
circuit design.

Typical testing environment, as is conceptually depicted in
Figure 1, includes a Test Pattern Generator (TPG), a Circuit
Under Test (CUT), a spatial compactor, a temporal compactor
and a Comparator. The TPG has a role of applying test patterns
to a CUT. It can be implemented in a circuitry entirely or it can
be fed by testing data from an external test equipment (ATE).
The spatial compactor is located at the outputs of the CUT and
is responsible for reduction of the number of signal lines. Its
outputs are fed to the temporal compactor, that is compacting
individual test responses to a single value, the signature.

The reduction of response data volume can lead to aliasing,
when the response of a faulty circuit is mapped to the same
signature as the response of a fault-free circuit. Aliasing is
thus one of sources of test coverage loss.

Aliasing in spatial compaction happens when a fault which
is sensitized on the functional outputs of the CUT is not
sensitized to the outputs of the spatial compactor. An example
is a compactor that combines two signal lines with an AND

gate. If one input is set to value 0, a faulty value on the other
input is masked. It is possible to find a spatial compactor with
zero aliasing for a given test and CUT [1], [2]. It is also
possible to construct the compactor for a given CUT and a
newly generated test [3].

Aliasing in temporal compaction means that after applica-
tion of all test patterns and compaction of all test responses, the
resulting signature is identical to the signature of a fault-free
circuit. One important difference from aliasing in the spatial
compaction is that the aliasing can be introduced at a later
time by a test pattern that is used to test another fault.

Methods to reduce aliasing in temporal compactors include
designing compactors with lower aliasing probability [4], [5]
or manipulating the output response, so it can be checked by
specially designed compactors [6]—[8].

Decreasing the aliasing probability in the compactor has
the drawback of an increase of the compactors complexity.
This can introduce higher area overhead, longer critical paths,
higher energy dissipation, etc.

Manipulating the output response has the drawback of the
need to design a new response compactor. This prevents from
using this method when there is no control over the design of
the compactor.

We propose a method to achieve lower aliasing and thus
higher fault coverage by influencing the test generation in
ATPG. Our method is able to work with existing compactors;
no new compactor design needs to be created.

The paper is structured as follows: Section II gives a
basic overview of the topic and existing methods. Section
III describes our method to solve problems described above.
Section IV documents our experiments and evaluation of our
method. Section V draws a conclusion to the paper.

II. PRELIMINARIES AND RELATED WORK

A. Spatial Compaction

The spatial compactor is a combinational circuit attached
to the CUT outputs to reduce their count, while trying to
propagate all fault syndromes to its outputs.

Parity trees (XOR trees) have a property of always sensitiz-
ing a fault through one input, irrespective of the logic value
on the other input. This makes it a particularly popular design
of space compactors [2], [9]. All faults that are sensitized
on an odd number of outputs are propagated through the
compactor and thus they are covered. It is shown in [10] that
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most of faults (at least in benchmark circuits) can be odd-
sensitized and the compactor can be augmented to propagate
the remaining even-sensitized faults by inserting additional
observation points to the CUT and using multiplexers in the
parity tree. Another approach to designing a zero-aliasing
space compactor is partitioning of the CUT’s primary outputs
(POs) to multiple parity trees, so that a fault is always odd-
sensitized in at least one parity tree [2].

It is also possible to design zero-aliasing space compactors
using other elementary gates than XOR gates. In [3], a space
compactor is iteratively constructed by checking for aliasing
in a precomputed test and employing an ATPG to try to find
a new test pattern for the aliased fault. This method is further
extended by allowing XOR gates and eliminating the need for
an ATPG in [1].

B. Temporal Compaction

The temporal compaction, similarly as the spatial com-
paction, is a method of reducing the volume of test response
data that needs to be checked against correct response. While
the spatial compaction reduces the size of responses to indi-
vidual test patterns, the temporal compaction is reducing the
volume of response data during the entire test. This is achieved
by combining responses from several consecutive test patterns
in a sequential circuit, to produce one or several combined
responses, the signature.

The aliasing in this kind of compactor is harder to suppress
and reason about, partly because of more degrees of freedom

input(2) input(1) input(0)
D Q D Q D Q
signature(2) signature(1) signature(0)
Fig. 3. Example of a LFSR-based MISR with characteristic polynomial
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in both response compaction and test generation. A plethora
of temporal compactor designs was published, one example
of a popular design is the Multiple-Input Signature Register
(MISR) and the Linear Feedback Shift Register (LFSR). The
LFSR and LFSR-based MISRs are simple circuits and when
correctly used, they provide a long period and low aliasing
probability. An example of LFSR-based MISR is in Figure 3.

The probability of aliasing in the LFSR-based MISR with
a primitive polynomial is 27", that is under the assumption
of random input values. Test patterns and especially test
responses are however not random. The aliasing probability
depends on the CUT and the test, and it can be significantly
higher [4].

Lowering the aliasing probability in the compactor can be
made by exerting a partial control over the test sequence
to produce periodic [6] or alternating [7] output responses.
These responses can be efficiently checked by a simple circuit.
This method, however, requires a design and usage of an
appropriate compactor.

A method to achieve zero-aliasing compaction for single-
output circuits [8] is by augmenting a LFSR to produce a
periodic quotient. The periodicity of the quotient is checked
in addition to computing the signature as the reminder of
polynomial division in the LFSR.

In all these methods, the test generation is independent of
the response compaction. In some methods, the test sequence
is manipulated to achieve reduced or zero aliasing.

In this paper we propose a novel method to decrease or
eliminate aliasing by constraining the process of finding a test
sequence for a given circuit and response compactor. That is,
by eliminating the aliasing directly in the ATPG during the
test patterns generation.

C. Automated Test Pattern Generator

1) Structural ATPGs: Traditionally, the problem of test
generation is solved by structural ATPGs that are based on
the D-algorithm [11], such as PODEM [12], FAN [13], and
SOCRATES [14].

These algorithms are generally efficient for most faults,
there is however a class of faults that are hard for structural
ATPGs. Finding a test pattern for these faults is usually given
up after reaching a backtracking limit. Other problematic class
of faults are redundant (undetectable) faults. Proving that a
fault is redundant is also computationally expensive.
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2) SAT ATPG: The Boolean satisfiability-based ATPG
(SAT-ATPG) works by applying the Tseitin transformation
[15] to transform structural description of a circuit to a
representation in a Conjunctive Normal Form (CNF). This
allows to create a conceptual circuit illustrated in Figure 4.
This conceptual circuit is composed of a fault-free circuit and
a duplicated circuit with a tested fault modeled. The fault
is detected when the output of a faulty circuit differs from
the output of the fault-free circuit. That is expressed in the
conceptual circuit by combining the respective outputs with
a XOR gate. We then search for such values at the primary
inputs (PIs), for which the output signal has logical value 1.
This is done by solving the transformed CNF description by
a SAT solver.

In practice, only a part of the CUT is transcribed to CNF;
we need to consider only the input cones of POs that are in the
output cone of the tested fault. Additionally, only the output
cone of the fault needs to be duplicated, the rest of the circuit
can be shared with the fault-free circuit.

With the advent of modern SAT solvers, such as MiniSAT
[16], that are efficient in solving instances seen in the ATPG
domain, SAT-based ATPGs are not only feasible, but they
provide several advantages over structural ATPGs [17]. The
main advantage is the robustness of SAT solvers, that is,
a SAT-ATPG is able to efficiently find test patterns for all
faults, including faults that are hard for structural ATPGs.
Redundancy of a fault is also proved efficiently.

There are of course disadvantages, the main one being the
performance. SAT-ATPGs are noticeably slower than structural
ATPGs for most of easily tested faults, thus in practice a com-
bination of structural and SAT ATPGs is usually employed.
There is an ongoing work on both SAT solvers and SAT
ATPGs that has a potential to close the gap between structural
and SAT ATPGs [18], [19].

III. PROPOSED METHOD

Conventional SAT-based ATPG searches for a test pattern
without considering further processing of the response to the
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Fig. 5. Conceptual circuit for finding non-aliasing test vector.
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Fig. 6. Example of unrolled temporal compactor from Figure 3

generated pattern. The only requirement is that the tested fault
is detected on combinational outputs of the CUT. Each and
every test pattern and faults that are detected are treated by
their own. There is no notion of test ordering or response
compaction.

A. Augmenting the SAT-ATPG

We augment the ATPG process to generate a test with
zero aliasing in the compaction of test responses. We achieve
that by adding additional constraints to the SAT instance
representing the tested fault that would prevent aliasing. We
do this by expanding the conceptual circuit as portrayed in
Figure 5. We call this method ZATPG.

The expanded conceptual circuit consists of a fault-free
circuit CUTO and a circuit CUT! with the tested fault f; as
described in Figure 4. To this circuit, we then add constraints
preventing aliasing in selected faults fo through f,,. These
constraints take a shape of additional replicas of the CUT,
each with its corresponding fault modeled. The output of these
circuits is then constrained to differ from the value that would
cause the aliasing.

The aliasing happens after application of test pattern that is
being generated. That means that we need to know the future
state of the temporal compactor during test pattern generation.
This state is however dependent on the test pattern.



The method of unrolling can be used to express the future
state of the compactor during the test pattern generation.
We can do that by extracting the combinational part of the
compactor. Simulating the compactor is then part of SAT-
solving during the search for a test pattern. An example of
an unrolled compactor from Figure 3 is depicted in Figure 6.

In the conceptual circuit from Figure 5, this unrolled circuit
is shown as two MISR blocks (note that these are combina-
tional circuits, not actual MISRs). The previous internal state
of the compactor is represented by vectors S/ and S2 for
the fault-free and faulty circuit respectively. Outputs of these
compactors represent the next state (partial signature) for the
fault-free circuit and the circuit with the fault fo. We add a
constraint that the next state of the compactor differs for the
fault-free circuit and the circuit with the fault f, by connecting
the outputs of the combinational part of the compactor by XOR
and setting the output to logical 1.

This extended conceptual circuit can be transformed to the
CNF is the same way as with the conventional SAT-ATPG.
Due to the nature of CNF, there is another way to transform the
conceptual circuit. We can use the CNF from transformation of
classical conceptual circuit and add new parts of the extended
circuit by simply concatenating new clauses to the CNF. This
includes clauses describing circuits CUT2—CUTn, the unrolled
compactor, and constraints forcing the outputs to be non-
zero vectors. The last AND gate in the Figure 5 needs not
to be modeled due to the clauses already being in logical
conjunction.

In practice, only the output cone of each considered fault is
duplicated in the CNF representation, the rest of the circuit,
and thus clauses in the SAT instance, is shared with the fault-
free circuit. It has been shown on a problem of multi-targeted
faults, that SAT solvers are robust enough for this approach
to be feasible [20]. We expect that the SAT solver will be
efficient in finding the constrained test pattern or proving that
no such pattern exists and the aliasing is unavoidable (for fault
f1 in the current step). Not every fault in every step needs to
be constrained against aliasing. Only if we detect aliasing of
the fault fy after simulation of test pattern for the fault f7, we
run ATPG again with the additional constraint. This speeds up
the ATPG if aliasing is not likely to occur.

B. Simplification for Linear Compactors

For linear temporal compactors, we can use the superpo-
sition principle to separate their state and input to an error
component and a correct component. We can then use these
components independently.

The output response coming from the CUT can be divided
into two parts, R = R, & R., where R is the response of the
CUT, R, is the response of the fault-free circuit, and R, is
the error difference of the output.

For the compactor we have chosen a LFSR-based MISR
from Figure 3. If we use the superposition principle for the
MISR, we can split the internal state into two states, S =
S. @ S., where S is the state of the MISR, S, is the state
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Fig. 7. Example of the state computation of a linear compactor.
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Fig. 8. Conceptual circuit for finding zero-aliasing test pattern, simplified for
linear compactors.

for the fault-free circuit, and S, is the error difference (error
component) for the faulty circuit.

The next state of MISR is computed as S¢+1) = F(S®)) g
R4+ where F represents the step function of the MISR.
For example, the MISR from Figure 3 has a step function
F((So, S1, 52)) = (50 D 81,52, So).

Due to the linearity of F', where F(a @ b) = F(a) ® F(b),
we can compute the correct and the error states separately as
S£t+1) _ F(Sﬁt)) @R£t+1) and SéHl) _ F(Sét)) @R£t+l)’
respectively. This is illustrated in Figure 7

To compute the signature of the CUT, we only need to
compute the Sél), where [ is the length of the test. Similarly,
to analyze the aliasing, we only need to consider Sél), where
a non-zero vector means that the fault was detected and the
zero vector means that it was not detected.



In our method, in order to prevent aliasing at the end of
the test, we need to prevent aliasing in every test step since
the fault was detected. In other words, we are constraining
the ATPG to not allow SU*1 to be a zero vector if it was a
non-zero vector in the previous step.

We can express the output response that would cause
aliasing as R. = F(Sét)). Note that F(Sét)) = S R,
is zero. We can thus precompute the error response causing
the aliasing after application of the next test pattern.

By using the compactor with the error state in the simula-
tion step, we can omit the unrolled combinational part of the
compactor. The simplified conceptual circuit can be seen in
Figure 8.

C. Algorithm

The main execution loop of our algorithm expressed in a
pseudocode follows:
1: procedure ZATPG(M)
2 P+ ()
3 F,«+ F
4 repeat
5: fault loop:
6 for all f € F do
7 if f ¢ F, then
8
9

continue

: end if
10: C+{}
11: p <+ ATPG(f,C)
12: while a p was generated do
13: F,,Fy<« SIM(P,p)
14: if (|F,| < M)A (|F,| < |Fy|) then
15: P + append(P, p)
16: F,« F,\ Fy
17: F, <~ F,UF,
18: continue fault loop
19: end if
20: C+ CUCONSTR(P,F,)
21: p+ ATPG(f,C)
22: end while
23: end for
24: until P was not updated in last iteration

25: return P
26: end procedure

At the beginning, the list of uncovered faults F,, is initial-
ized by all testable faults F' (line 3). This is because no fault
was detected, when the test patterns sequence P is empty (line
2).

After the initialization, the algorithm works by repeatedly
(lines 4-24) iterating over the list of uncovered faults F3, (lines
6-23, 7).

During the iteration, first, a test pattern p is generated as in
usual ATPG with no additional constraints (lines 10, 11). The
aliasing caused by this pattern is then analyzed by simulation
(line 13). If the number of aliased faults |F,| is lower than

the number of newly detected faults |Fy| and the |F,| is not
higher than parameter M, the pattern p is accepted.

In the case of the above-mentioned condition to accept the
pattern p not being met, the set of aliased faults F}, is analyzed
and a set of constraints C is constructed (line 20) and a
new pattern p is generated with additional constraints. This
is continued until the condition is met or no pattern can be
generated due to additional constraints.

In the case of the test pattern p being accepted, it is
appended at the end of the test patterns sequence P (line 15).
Additionally, detected faults F,; are removed from the list of
undetected faults F;, (line 16). Conversely, aliased faults Fj,
are again added to the list of undetected faults F, (line 17).

The algorithm stops when no new pattern was generated for
all remaining uncovered faults (line 24).

The algorithm makes use of following procedures:

1) SIM: The procedure SIM simulates the compactor error
state for every fault after application of a partial test sequence
P, that was generated up to this point, and the new test pattern
p. We are caching the error state of all faults after the test
sequence P. For each pattern p, only one simulation step needs
to be performed.

This procedure identifies faults that are newly detected by
p and those that are aliased. Detection of a fault is indicated
by changing the error state of the fault from the zero vector
to a non-zero vector after application of p. Conversely, the
aliasing of a fault is detected by changing its error state from
a non-zero vector to the zero vector. The sets F, and F,; of
aliased and detected faults are then returned.

2) ATPG: The procedure ATPG generates a test pattern for
a fault f and a set of constraints C. It creates a conceptual
circuit for detecting the fault f while preventing aliasing
of faults described in C. This conceptual circuit is then
transformed to a CNF description and solved by a SAT solver.

To prevent aliasing, for each fault f, from C, its output
cone is duplicated, as it is for fault f. In contrast to fault f,
however, the difference of its outputs from the CUT is not
constrained to be non-zero, but to be different from the vector
described in C' that would cause aliasing.

Generated test pattern, if any, is then returned.

3) CONSTR: The procedure CONSTR computes constraints
which prevent aliasing of given faults.

For example, to prevent aliasing of fault fs, constraints are
computed in the following way. First, the compactor with the
error component of partial signature is simulated under as-
sumption that no aliasing occurred (input vector is zero). From
the resulting state (partial signature), the error component of
the response that would cause aliasing is computed.

This response is then added to the CNF representation of
the conceptual circuit from Figure 8 as a response to fault fo
that is not allowed, for it would cause aliasing to occur in
the compactor. This is done by appending a single clause Cs
with inverted variables, that forces the error component of the
response to be different.



IV. EXPERIMENTS
A. Experimental setup

In our experiments, we are using benchmark circuits from
ISCAS’85 [21] and some circuits from ITC 99 [22].

For each circuit, we consider several sizes s of the tempo-
ral compactor, LFSR-based MISR. The MISR always has a
primitive characteristic polynomial.

As a spatial compactor, we are using a parity tree (XOR
tree) design, with multiple outputs. The number of spatial
compactor outputs matches the width of the MISR (s). The
spatial compactor is constructed as s disjoint XOR trees,
while zero aliasing is guaranteed by simulation and possible
restructuring in case of aliasing occurrence.

For each circuit, we append the spatial compactor to its
outputs and then work with this combination as if it was one
circuit. This means that the number of testable faults in one
circuit varies due to the additional faults in the compactor.

In the experiment, we compare the aliasing and fault cover-
age achieved by a conventional ATPG with aliasing and fault
coverage obtained by our method (ZATPG). By a conventional
ATPG, we mean an ATPG that does not take the compactor
into account during test generation.

We only consider faults that are testable, meaning we do
not include redundant faults in any of our aliasing or coverage
percentages. The coverage of 100% can thus be achieved for
every circuit.

For both ZATPG and conventional ATPG [23] we use the
SAT-based ATPG which uses MiniSAT [16] as a SAT-solver.

B. Experimental results

1) Fault coverage: A summary of the fault coverage
achieved by conventional ATPG and by ZATPG is shown in
Table I. The columns “ZATPG” show the coverage achieved
by our algorithm, whereas the columns “ATPG” show the
coverage of a test generated by an ATPG that does not consider
the compactor. The coverage is a percentage of faults that are
detected after the compaction. These are the measurements for
acceptable aliasing parameter M set to co.

The achieved results are comparable, but our ZATPG per-
forms slightly worse for compactors of small size. As the
size of the compactor increases, ZATPG is catching up and
overtakes ATPG in terms of coverage.

Worse performance at small compactors is caused by the
fact that the ZATPG stops generating new patterns, when no
improvement in coverage can be made, even if there is no
pattern for some remaining faults. ATPG, on the other hand,
generates test patterns for all faults without considering the
compactor; the loss of coverage is then caused only by aliasing
in the MISR.

2) Aliasing: The targeted aliasing for ZATPG is zero,
but as can be seen from Table II, this cannot always be
achieved. The Table shows how the choice of the parameter
M influences the results. The column “aliasing” shows the
aliasing in the compactor, the column “coverage” shows the
total test coverage, including aliasing. The ZATPG was not

able to find any test vector that would cause zero aliasing. We
amended this by relaxing the requirement for zero-aliasing.
This relaxation is controlled by the parameter M, which limits
how many faults can be aliased by a new vector, but only if
more new faults are covered.

3) Robustness: The coverage achieved by ZATPG is de-
pendent on the order of faults selection. We have examined
the robustness of ZATPG on selected circuits by changing the
ordering of faults with random permutations. The ordering of
faults changes the order in which faults are selected for test
pattern generation (line 7 of algorithm). It does not change the
manner of test pattern generation itself.

Distributions of coverage for circuits ¢2670 and c1355 [21]
are in Figure 9, these were computed for the smallest MISR
size where default fault ordering leads to the complete fault
coverage. For the circuit c1355, 2007 measurements were
made and for the circuit ¢2670, 1003 measurements were
made. The parameter M = oo was used for both circuits.

We can see that the algorithm is not robust but there is a
clear trend towards a complete fault coverage in the circuit
c1355, in the circuit ¢2670 this trend is not so clear. For these
circuits, 6.8 % and 5.5 % of orderings, respectively, lead to
a complete fault coverage. This result suggests that it might
be possible to achieve complete fault coverage in smaller
compactors if we were able to find a better fault selection
strategy.

4) Compactor size: The size of the smallest MISR for
which a complete fault coverage was found is in Table III.
Column “ATPG” shows the needed size of a MISR for which
conventional ATPG found a complete (and zero-aliasing) test.
The column “ZATPG” shows the needed size for our algorithm
to achieve complete fault coverage.

The search for the smallest MISR with zero aliasing and
complete coverage was done by testing all sizes of the com-
pactor from the smallest up to the size where the aliasing is
naught. This is needed due to the small robustness of both
ATPGs.

Our algorithm needs a significantly smaller compactor,
because it is guided towards zero aliasing. The conventional
ATPG, on the other hand, produces a test for all faults without
heeding the compactor and the aliasing is then a result of the
aliasing probability in the compactor.

5) Algorithm computation time: The comparison of the
computation time of the ZATPG and a conventional SAT-
ATPG can be seen from Table III. The computation time was
measured for the MISR sizes, where each algorithm achieved
zero aliasing.

Figure 10 illustrates the dependence of the ZATPG compu-
tation time on the MISR size. Is is apparent, that the compu-
tation time sharply rises as the MISR size decreases. This is
due to the high aliasing probability in the small compactors,
which leads to high amount of ATPG re-runs with additional
constraints. Indeed, the computation time for the larger MISR
sizes is closing the gap between ZATPG and a conventional
SAT-ATPG. This gap is never really closed, however, as



TABLE I
FAULT COVERAGE FOR CONVENTIONAL AND AUGMENTED ATPG

MISR size 2 3 4 5 6 7 8
atpg zatpg atpg zatpg atpg zatpg atpg zatpg atpg zatpg atpg zatpg atpg zatpg
circuit | faults %] | [%] o] | [%] %] | [%] (%] | [%] %] | [%] %] | [%] %] | [%]
b04 2846 78.71 79.20 91.10 | 87.80 94.65 | 95.11 97.99 | 97.89 98.80 | 99.68 99.54 | 99.96 99.86 | 99.96
bll 2382 78.30 | 75.99 89.37 | 92.02 94.58 | 96.09 98.02 | 98.86 98.78 | 99.71 99.41 99.96 99.87 100
c499 970 82.37 | 70.10 90.70 | 86.78 95.65 | 77.23 97.82 | 90.87 98.86 | 96.57 98.85 | 99.90 99.79 100
c880 1582 79.33 | 83.19 90.95 | 92.34 93.79 | 98.86 97.65 100 98.48 100 99.30 100 99.24 100

c1355 2618 79.76 | 75.63 90.56 | 86.05 95.45 | 92.85 97.01 | 97.09 99.27 100 99.65 | 99.73 99.77 100
c1908 2581 78.61 | 72.99 92.25 | 84.41 96.39 | 89.99 98.29 | 94.95 99.03 | 98.33 99.69 | 99.88 99.65 | 99.96
c2670 3613 7991 | 73.04 92.69 | 90.78 94.54 | 93.85 98.11 | 98.45 98.61 | 98.00 99.83 100 99.53 100
c5315 7964 a 89.45 | 90.29 94.75 | 95.01 97.01 | 98.52 98.53 | 99.90 99.57 | 99.82 99.90 100
c7552 | 10921 a 90.62 | 88.42 94.85 | 92.97 97.55 | 96.35 98.28 | 98.94 99.32 | 99.95 99.65 100

2 Empty cells indicate that no zero-aliasing spatial compactor was available.

TABLE II
ALIASING IN AUGMENTED ATPG
M 3 5 10 50 ) ATPG
MISR aliasing | coverage aliasing | coverage aliasing | coverage aliasing | coverage aliasing | coverage coverage
circuit size || [%] (%] [%] (%] [%] [%] [%] [%] (%] [%] [%]
c499 6 0.31 95.01 0.21 99.06 0.10 99.90 0.00 96.57 0.00 96.57 99.38
c880 5 0.13 98.98 0.51 97.72 0.00 100 0.00 100 0.00 100 97.78
cl1355 6 0.04 92.87 0.15 93.72 0.19 97.16 0.00 100 0.00 100 98.51
c2670 6 0.08 94.09 0.08 96.50 0.00 100 0.36 98.00 0.36 98.00 99.06
c7552 7 0.00 99.67 0.00 99.83 0.00 99.86 0.00 99.95 0.00 99.95 99.51
TABLE III
MINIMAL SIZE OF MISR WITH ZERO-ALIASING TEST
c1355
MISR size run time [s]
[ circuit [ faults [[ ATPG | ZATPG [| ATPG | ZATPG
8 - b04 2846 I 9 17 73
- bll 2788 10 8 12 41
3 n c499 970 12 8 3 5
5 g | c880 1582 12 5 3 16
g © cI355 | 2618 10 6 6 53
C - c1908 2581 12 9 10 39
s | ¢2670 3613 12 7 77 297
« c5315 7964 14 8 283 1299
o - : : ‘ - ‘ ¢7522 | 10921 12 8 280 2452
0.92 0.94 0.96 0.98 1.00
Coverage
c2670
n
— O
— n O
g - I
) - c
g g = 8] .
g - o S
- _ & [a\}
1 n
B ﬁ =
_ o A " = ® m = ®m = =
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Fig. 9. Robustness of ZATPG: test coverage for random fault ordering. Fig. 10. Runtime of the ZATPG algorithm depending on the MISR size for

the ¢7552 benchmark circuit.



ZATPG is necessarily running more fault simulations of the
CUT.

V. CONCLUSION

A modified SAT-based ATPG process, ZATPG for finding
a test with zero aliasing in any given temporal compactor is
presented. A simplified process for linear space compactors is
also presented and its properties are shown on the example of
a LFSR-based MISR.

Our algorithm generated a test with comparable coverage
to that of a conventional ATPG. The coverage of ZATPG
is slightly lower for MISRs of small size. That being said,
the coverage rises with the size of MISR faster than with
conventional ATPG.

For benchmark circuits, we achieved complete fault cover-
age with a MISR of smaller size than the conventional ATPG.
This is due to ZATPG being guided towards zero-aliasing,
whereas in the the test produced by other ATPG it is a product
of aliasing probability in the compactor.

The coverage of ZATPG for MISRs depends on the order
in which faults are processed. In this respect, ZATPG is not
robust. It does however overtake this disadvantage with an
increasing compactor size.

Our further work would include creating a heuristics for
faults selection, or fault ordering. Another heuristics would be
deciding which faults can be aliased and which should not be.
Together, these heuristics could improve ZATPG’s robustness.

This algorithm could also greatly benefit from modern SAT-
ATPG techniques, such as dynamic clause learning [19] and
dynamic clause activation [18].
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