
On XAIG Rewriting
Ivo Háleček, Petr Fišer, Jan Schmidt

Faculty of Information Technology
Czech Technical University in Prague

Prague, Czech Republic
Email: {halecivo, fiserp, schmidt}@fit.cvut.cz

Abstract—This paper presents a rewriting algorithm based on
XOR-AND-Inverter Graphs (XAIGs). Such logic representation
allows for synthesis algorithms work with XOR gates in a native
way. Basic support for XAIGs has already been implemented
in the ABC9 package GIA manager, where AND, XOR, and
MUX nodes are allowed. However, the rewriting algorithm was
missing in ABC9, hence we have re-implemented the original,
AIG-based algorithm, and included it in the ABC9 package.
For our purposes, we have restricted the nodes set to AND and
XOR gates only. The presented XAIG-based rewriting algorithm
is compared with the standard AIG-based rewriting algorithm.
Since more node types bring some new decisions the rewriting
algorithm has to make, we have implemented different rewriting
mechanisms and compared them. The results indicate that XAIG
based rewriting can lead to different circuits than the original
rewriting and although AIG based rewriting produces slightly
smaller circuits in most cases, some circuits are better handled
with XAIG based rewriting, which points to future research
and improvements. The XAIG based rewriting was also able
to find significantly more XORs than ABC9 structural hashing
and rewriting.

I. INTRODUCTION

Even though the process of logic synthesis and optimization
seemed to be an already efficiently resolved problem in past
decades, recently there appeared several brand new approaches
to it, mostly based on novel data structures used for represent-
ing functions and networks.

Already a traditional network representation, And-Inverter-
Graphs (AIGs), have been proposed in 2000’s [1], [2], [3].
Here a Boolean network (circuit) is represented as a directed
acyclic graph (DAG) of 2-input AND nodes, with possibly
inverted edges. Numerous algorithms based on AIGs have
been developed and implemented in an academic state-of-the-
art logic synthesis tool ABC [4]. Most probably, AIGs are (or
soon will be) incorporated in commercial tools as well [5].
The authors of these algorithms and tools rightfully claim,
that they are scalable [6].

For many years it seemed that AIGs are the ultimate solution
to a network representation. However, new and more complex
representations emerged recently. Particularly, ABC9 package
with a new AIG manager called GIA has been added to ABC
by its authors, introducing a possibility to use XOR or MUX
nodes in addition to standard AND nodes. This package is
however poorly documented and most of synthesis algorithms
do not use the GIA manager.

Next, Majority-Inverter-Graphs (MIGs) [7] have been pro-
posed as an alternative to AIGs. Here the two-input AND

nodes were replaced by three-input majority functions. MIGs
are generalizations of the original structures, thus they are no
less scalable. The primary motivation behind introducing these
representations was in “emerging technologies” [8]. MIGs
were then extended to support XOR gates as well, forming
XOR-Majority Graphs (XMGs) [9]. These structures directly
reflect the behavior of possibly new technological primitives,
thus developing algorithms based on these structures may open
new ways of future logic synthesis [8].

Apart from the motivation in emerging technologies, the
motivation for introducing more complex structures is in inef-
ficiency of logic synthesis. It has been observed that “standard”
structures (network of Sums-of-Products like in SIS [10],
AIGs) and algorithms based on them do not efficiently cope
with XOR gates [11]. Particularly, most algorithms are based
on AND and OR gates and heavily rely on their properties.
However, XOR gates are somewhat special. They are difficult
to be identified in the former structures (SOP, BDD, AIG) and
most importantly, the algorithms do not treat them explicitly;
typically they are identified in the technology mapping phase
only. Even though there do exist algorithms performing XOR
decomposition [12], [13], [14], no global network processing
algorithm assumes XORs explicitly. This may yield in a lack
of performance of tools, especially for XOR-intensive circuits
[15], [11].

In ABC, bad synthesis performance [15] for XOR-intensive
circuits can be either in algorithms inability to utilize XORs
and considering AIG as a pure network of ANDs and inverters,
or in XOR identification in the network.

Based on ABC internal network representation, we intro-
duce XOR-AND-Inverter Graphs (XAIGs), as an alternative
to standard AIGs. Here the Boolean network is represented
as a DAG of two types of nodes: 2-input ANDs and 2-input
XORs, with possibly inverted edges.

Note that XAIGs represent an orthogonal approach to
Majority-Inverter-Graphs (MIGs) [7]. The majority function
(as well as AND) is monotonic, while XOR is not monotonic.
Therefore, XAIGs do cover all relevant classes of NPN equiv-
alence [16], [11]. The newly introduced XMGs [9] should have
the same property.

To address the issue of algorithms inability to work with
XORs natively, we present an XAIGs-based rewriting algo-
rithm [3]. We have implemented it as a command in the
ABC9 tool [4]. The experimental results show that XAIG-
based rewriting can lead to finding additional XORs in a

network as well as it can help mappers to reduce the area
or delay, although it does not provide ultimate solution for all
circuits.

The paper is organized as follows: after the Introduction
and some preliminaries in Section II, the proposed XAIG
structure is described in Section III, with implementation
issues presented in Section IV. The newly introduced rewriting
algorithm based on the XAIG structure is presented in Section
V. Section VI contains experimental results. Section VII
concludes the paper.

II. PRELIMINARIES

And-Inverter Graphs (AIGs) [1], [2], [3], are directed
acyclic graphs with one or more roots, where nodes are two-
input AND gates and edges represent connections between
them. Edges may be inverted, meaning that the respective
subgraph is negated. This can be understood as an inverter
presence on the connection. AIGs are constructed from pri-
mary inputs to primary outputs, assigning to each node a
unique ID in increasing order. This ensures parent nodes to
have higher IDs than their children. The node with lower ID
is always the left child of its parent. Apart from that, upon node
creation, a hash is calculated from hashes of its children. If a
node with the same hash is already present in the graph, this
existing node is used by the reference instead of creating a new
node. This process is called structural hashing (“strashing”)
[1] and ensures that there will be no structurally equivalent
subgraphs in an AIG.

Structural hashing still does not discover functionally equiv-
alent subgraphs with different structures. ABC provides func-
tionally reduced AIGs, FRAIGs [17]. If this approach (col-
loquially called “fraiging”) is used in addition to structural
hashing, also functional hashing of small subgraphs is per-
formed.

A cut of a node N is a set of nodes (called leaves), for
which it holds that every path from primary inputs to the node
N leads through at least one leaf. A cut is K-feasible if the
number of leaves does not exceed K.

III. THE XAIG STRUCTURE

We propose an extension of AIGs in this paper, the XOR-
AND-Inverter graphs (XAIGs). XAIG is a directed acyclic
graph, where nodes are two-input ANDs or XORs, while edges
can be inverted. Basically, XAIGs represent a special case of
AND/XOR/MUX Graphs, which are already implemented in
the ABC9 package. As seen in Figure 1, XOR is described
by at least 3 AND nodes in AIG, which can make it more
difficult for algorithms to utilize it. In XAIGs, as well as
in AND/XOR/MUX Graphs, XOR is represented as a single
node.

A. XAIG Properties

XAIGs are a generalized form of AIGs; every AIG can be
considered as an XAIG with no XOR nodes. Therefore, XAIG
(just like AIG) can implement any logic function.

XAIG is structurally hashed in the same way as AIG,
with different hashing function for XOR nodes. The fraiging
technique is applicable also for XAIGs.

IV. IMPLEMENTATION OF XAIGS IN ABC

The ABC9 package features a new manager for AIG ma-
nipulation, called GIA manager. It has a possibility to use
XOR and MUX nodes in addition to standard AND nodes.
Therefore, we used this package and GIA as a manager for
XAIGs. A network can be converted between the managers
by the command &get to convert it from the original AIG
manager to GIA and &put to convert it back.

A. The XIAG File Format

For the need of storing XAIGs in a file with unchanged
structure, we defined the XAIGER file format based on the
AIGER format [18] and implemented its support to ABC9
network reading and writing commands, &r and &w. The
header of XIAG is described as follows:

xaig M I L O A X, where
• M = I + L+A+X ,
• I stands for the number of inputs,
• L stands for the number of latches,
• O stands for the number of outputs,
• A stands for the number of ANDs,
• and X stands for the number of XORs.
The nodes themselves are defined in the same way as in

the original AIGER, XORs are distinguished from ANDs by
having the left child node ID higher than the right one, which
is forbidden in the original AIG. As an example, XOR in the
XAIGER format can be described in the following way:

x a i g 3 2 0 1 0 1
2
4
6
6 2 4

This format seems to be no more necessary, as we found
out that if XAIG is converted to the original AIG manager
with the command &put and then stored to a BLIF file, it can
be later reconstructed by loading and converting back to GIA
by XOR-supporting structural hashing (ABC command &st).
However, one can never be sure that the structural hashing
will reconstruct the original XAIG structure exactly.

B. Recognizing XOR Gates

XOR identification is performed in the ABC9 package by
structural hashing (command &st -m -L 1). While the param-
eter -m enables conversion to “large” gates (XOR, MUX), the
parameter -L sets the reference limit for enabling generation
of MUX nodes. We have implemented a new feature in ABC9,
where setting this limit to 1 disables MUX creation completely.

This procedure identifies XOR gates represented by 3 ANDs
as described in Figure 1. If XOR is dissolved to a flatter
structure (i.e., XOR of another functions expressed as a sum
of products), the &st command is too weak to identify it and

i1

x1 x2

y

i2

o

i1

x1 x2

y

i2

o

i1

x1 x2

y

i2

o

x0

Fig. 1: XOR structures in AIG. Two leftmost structures,
composed from 3 ANDs, can be identified by ABC9 structural
hashing. The rightmost graph represents the simplest XOR
structure not identified by structural hashing in ABC9.

synthesis will be unable to use it, unless it finds it by a different
way, e.g., by a functional checking of a subtree, which we
implemented in our &rewrite command.

V. XAIG-BASED REWRITING ALGORITHM

Listing 1: Rewrite over XAIG network
R e w r i t i n g (ne twork XAIG , node s t a r t N o d e , hash t a b l e

P r e c o m p u t e d S t r u c t u r e s , boo l d isso lveXORs)
{

f o r each node N t o p o l o g i c a l l y o r d e r e d a f t e r
s t a r t N o d e i n t h e ne twork XAIG

{
bestXAIG = NULL; Bes tGa in = −1;
f o r each 4− i n p u t c u t C of node N computed u s i n g

c u t e n u m e r a t i o n {
F = Boolean f u n c t i o n o f N i n t e r m s of t h e

l e a v e s o f C
/ / g e t b e s t c u t i m p l e m e n t a t i o n
b e s t C i r c u i t =

HashTableLookup (P r e c o m p u t e d S t r u c t u r e s , F) ;
/ / g e t XAIG wi th c u t r e p l a c e d by b e s t c i r c u i t
f o r useRealXORs i n (t r u e [, f a l s e i f

d isso lveXORs == t r u e]) {
rwrXAIG = R e p l a c e C u t B y B e s t C i r c u i t (XAIG ,

b e s t C i r c u i t , cu t , useRealXORs) ;
Gain = NodesCost (XAIG) −

NodesCost (rwrXAIG) ;
/ / keep t r a c k o f b e s t p o s s i b l e r e w r i t e

f o r c u r r e n t node
i f (Gain > 0){

i f (bestXAIG = NULL | | Bes tGa in < Gain) {
bestXAIG = rwrXAIG ; Bes tGa in = Gain ;

}
}

}
}
i f (bestXAIG != NULL) {

r e t u r n R e w r i t i n g (bestXAIG , N+1 ,
P r e c o m p u t e d S t r u c t u r e s , d isso lveXORs) ;

}
e l s e {

c o n t i n u e ;
}
r e t u r n XAIG ;

}
}

To demonstrate whether synthesis needs to be capable of a
native work with XOR gates, we introduce an XAIG rewriting

algorithm based on AIG rewriting technique presented in [3].
Rewriting is a technique of replacing AIG subgraphs with k

leaves (k-feasible cuts [19]) by smaller, functionally equivalent
precomputed structures. This algorithm can reduce function-
ally equivalent subgraphs, unlike structural hashing can. An
example of one subgraph replacement can be seen in Figure
2.

A. The Basic Rewriting Algorithm

As described in Listing 1, the newly introduced algorithm
&rewrite goes through XAIG nodes in topological order from
defined starting node. For each node, cuts are enumerated
using the algorithm presented in [19], described in Listing 2.
For each node cut, a truth table of the function of its leaves is
calculated by simulation. This truth table is then converted
to a canonical form described by an integer value, which
is stored in a precomputed table for each possible function,
so are the permutations of inputs and negations of inputs
and outputs needed for this conversion (NPN equivalence
classes). Conversion to the canoncial form is done by the same
conversion table already available for the original rewriting.
For every truth table in canonical form, there is a precomputed
“best structure”. The summary cost of all nodes is compared
for the network before and after replacement of a cut by
this structure. Replacement with the highest cost saved is
performed for each node and rewriting continues with the next
node in topological order.

This can not only reduce the number of nodes for a
particular cut, but as all cuts representing the same function
are replaced by the same structure, also new sharing can be
found in whole network, by structural hashing.

Apart from using XOR nodes in addition to AND nodes and
different “best structures”, we expect no significant differences
from the original rewrite algorithm behaviour.

Note that for 4-feasible cuts, there are 216 possible func-
tions, but every possible cut can be converted by permutation
of inputs and negation of inputs and output to one of 222
NPN equivalent classes [3]. Therefore, using 4-feasible cuts
for rewriting is a good compromise between the efficiency of
the algorithm and its memory demands. 4-feasible cuts are
also used in original abc command rewrite.

The total network cost is calculated as a weighted sum of
nodes costs, where for each node type (AND and XOR) a cost
is specified. The cost can be adjusted with respect to expected
target technology. For example, when FPGA (LUT) mapping
is targeted, the same cost for both node types can be set, while
for gate-level library targeted, the cost of 2 for AND and 5 for
XOR node can be set, to reflect different sizes of the gates.
The default cost is 1 for both AND and XOR, and it can be
changed by the &rewrite parameter -c.

B. Rewriting Options

The presence of XOR gates in the rewriting process imposes
additional possibilities of choice. Particularly, XOR gates,
either present in the original XAIG or newly introduced by
cut replacement, may or may not be “dissolved” into three

po0

10

9

4

87

5

3 1 2

po0

7

6

4

5

31 2

6

Fig. 2: XAIG based rewriting example. Circle nodes represent
AND nodes, hexagon a XOR node. Dotted edges are inverted.

6

5 3

1 2

4

3

1 2

4

5

network a network b

Fig. 3: Duplication of AND nodes after cut replacement

AND gates, depending on sharing possibilities. Therefore, we
have implemented an option to dissolve XORs, which leads
the algorithm to perform two replacement alternatives for each
rewriting step. In addition to the standard replacement using 1-
node XORs, XOR nodes are dissolved into three AND nodes
as it would be in the original AIG based rewriting. These
two alternatives are compared and the one with lower total
cost is used. The “dissolving” can happen especially when
a non-fanout-free XOR is being replaced and one or both
inner AND nodes of the XOR function would have to be
duplicated to preserve inputs for nodes outside the cut. Note
that if the alternative without a 1-node XOR is selected, the
algorithm with this option can still produce 1-node XORs in
other rewriting steps.

An example of this situation can be seen in Figure 3. A
XOR function has been found inside the cut (network a), but
one of its inner nodes (3) has an edge which leads outside the
cut. This part of the cut can either be replaced by a XOR node
and the inner AND node (3) must be duplicated to preserve
the input to the node 4 (network b). Other option is to preserve
the XOR representation by 3 ANDs, so the node 3 does not

need to be duplicated. The inner node might still have to be
duplicated in case that the best circuit found for this cut would
have a different structure, where a node with the same function
as the node 3 would not be present elsewhere.

If a flag -f is specified in &rewrite, each cut is checked
for edges leading outside of it before rewriting, and if any is
found, this cut is not considered for rewriting (i.e., only fanout-
free cuts are considered). This option was implemented for
experimental purposes and leads to significantly worse results.

Listing 2: Cut enumeration algorithm
vo id Ne tworkKFeas ib l eCu t s (Graph g , i n t k) {

f o r each node n of g {
NodeKFeas ib leCu t s (n , k) ;

}
}

c u t s e t NodeKFeas ib leCut s (Node n , i n t k) {
i f (n i s p r i m a r y i n p u t) r e t u r n {{n }} ;
i f (n i s v i s i t e d) r e t u r n NodeReadCutSet (n) ;
mark n as v i s i t e d ;
c u t s e t Se t1 =

NodeKFeas ib leCu t s (NodeReadChild1 (n) , k) ;
c u t s e t Se t2 =

NodeKFeas ib leCu t s (NodeReadChild2 (n) , k) ;
c u t s e t R e s u l t = MergeCutSe t s (Set1 , Set2 , k) U {n } ;
NodeWri teCutSe t (n , R e s u l t) ;
r e t u r n R e s u l t ;

}

c u t s e t MergeCutSe ts (c u t s e t Set1 , c u t s e t Set2 , i n t
k) {

c u t s e t R e s u l t = {} ;
f o r each c u t Cut1 i n Se t1{

f o r each c u t Cut2 i n Se t2{
i f (| Cut1 U Cut2 | <= k) {

R e s u l t = R e s u l t U {Cut1 U Cut2 } ;
}

}
}
r e s u l t R e s u l t ;

}

C. Best logic structures generation

All NPN equivalent classes of cuts mentioned above have
already been enumerated in ABC for the original rewrite al-
gorithm. The XAIG based rewriting algorithm however needs
different “best structures” than the original AIG rewriting, i.e.,
with XOR nodes allowed. For every NPN class, we calculated
this structure by the following sequence of ABC commands:
read truth; st; dch; if; mfs; st; dch; if; mfs; st; st; dch; if; mfs;
st; dch; map; write blif to optimize the initial representation
described by a truth table and map it using a custom library
providing ANDs, XORs, and inverters. ANDs and XORs have
the same cost during the mapping to not prefer any gate. The
final sequence of commands just converts the mapped structure
generated for each NPN class to the XAIGER format to be
used with the &rewrite command: read blif; &get -m; &st -m;
&w.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200 250 300 350

w
ei

gh
te

d
su

m
 o

f
no

de
s

ra
tio

circuit #

cost with/without -f parameter
cost with/without -x parameter

Fig. 4: Comparison of different &rewrite configurations in means of weighed sum of nodes, which was set to 2 for AND and
5 for XOR. Values below 1 indicate a better result with respective parameter enabled.

VI. EXPERIMENTAL RESULTS

The experiments were conducted using circuits from a
mix of benchmark sets: LGSynth‘91 [20], IWLS‘93 [21],
ISCAS‘85 [22], ISCAS‘89 [23], Advanced Synthesis Cook-
book [24], IWLS 2005 [25] and others [26], [27], and [28] -
available from [29].

Altogether, more than 1 400 circuits were processed. How-
ever, for some experiments only their limited subset was used,
due to time-consuming measurements.

A. Evaluation of Rewriting Options

Figure 4 shows the influence of the -x (dissolving XORs)
and -f (allowing fanout-free cuts only) parameters on the total
network cost for the &rewrite algorithm. The histogram has
been generated by sorting the resulting circuits by cost ratio
in increasing order. Values lower than 1 mean better results
without using the respective option. The graph is composed
of vertical lines, one for each circuit, with the length of the
corresponding cost ratio, sorted in ascending order. As for
using fanout-free cuts only (-f), this histogram shows that this
produces much worse results. When dissolving of XOR nodes
is enabled (-x), results are better for the majority of circuits,
although for some circuits this option leads to slightly worse
results. Therefore, the option -x will be used for comparison
with AIG based rewriting, to better demonstrate its strength.

B. Comparison of AIG- and XAIG-Based Rewriting Algo-
rithms

To measure the influence of native XOR nodes on the
rewriting process, we compared XAIG based rewriting to the
original AIG based rewriting by total cost of the network. The
cost of AND nodes was set to 2 and 5 for XOR nodes. The
comparison can be seen in Figure 5. However, this is not an

ultimate comparison of the algorithms as different node costs
would lead to different results.

C. XOR Nodes Introduced by XAIG-Based Rewriting

Table I shows a comparison of the numbers of total nodes
and XOR nodes found by &rewrite with different values
of the nodes cost parameter -c. We also included the same
information for the original circuit and &strashed AIG based
rewriting.

XAIG based rewriting is able to find more XORs than
&st could find after AIG based rewriting. The number of
XOR nodes revealed decreases with increasing AND:XOR
cost ratio. This also naturally affects the total number of nodes
of the final network – the more XORs have been found, the
less nodes the final network has.

D. The Overall Synthesis Process

Here the XAIG based rewriting was compared to AIG
rewriting in the overall synthesis process. The network opti-
mized by rewriting was mapped to FPGA LUTs and the num-
bers of LUTs and levels were compared. The AIG rewriting
process has been performed by ABC commands rewrite; &lf;
mfs while the XAIG rewriting process by &rewrite; &lf; mfs.
The algorithms performance has been measured over 1434
circuits from the sets mentioned above. Table II shows 10
selected circuits from the set, where &rewrite produced best
results in term of the number of LUTs compared to AIG based
rewriting, and 10 circuits showing the same for the number
of mapped network levels. The number of LUTs has been
decreased by &rewrite in 185 cases, while it was increased
in 471 cases, other circuits ended up with the same number
of LUTs for both algorithms. The level was decreased by
&rewrite in 144 cases, while in 47 cases it was increased.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50 100 150 200 250 300 350

XA
IG

/A
IG

 n
et

w
or

k
co

st
 r

at
io

circuit #

XAIG/AIG network cost after rewrite

Fig. 5: Comparison of AIG-based rewriting with XAIG-based rewriting by the total network cost. The nodes costs were set to
2 for AND and 5 for XOR. Values below 1 indicate a better result for XAIG based rewriting.

TABLE I: Comparison of XORs found by AIG and XAIG based rewriting. XAIG rewriting has been performed with three
different AND:XOR cost ratios. Summary numbers of nodes and XORs for all 335 circuits are shown in the row total. The
last two rows show the number of cases where the final network had more nodes and where more XORs have been found
than in AIG based rewriting with the &st command applied at the end and the number of cases where AIG rewriting resulted
in higher number of the same stats.

original &rewrite 1:1 &rewrite 1:3 &rewrite 2:5 rewrite; &st
name nodes xor nodes xor nodes xor nodes xor nodes xor
c6288 2337 0 960 476 2334 0 1034 433 2249 28
bigkey 5134 5 3934 109 4252 4 4252 4 4140 5
mm30a 1396 60 921 116 1119 2 1035 30 889 58
c1355 510 0 100 107 174 82 104 104 278 56
prom2 3461 27 2904 67 2989 34 2946 46 2887 32
s635 190 0 96 31 162 0 156 2 160 0
i6 402 0 337 28 395 0 395 0 387 0
s5378 1283 23 948 82 986 65 965 72 1066 56
g25 170 50 140 50 178 27 178 27 167 30
ex1010 3250 43 2784 62 2835 41 2805 51 2670 46
mm9a 418 18 278 32 329 2 306 10 268 16
Altera oc hdlc 2478 132 1665 149 1757 117 1680 141 1672 134
Mentor 1 11 2720 3 2073 62 2105 50 2084 56 2113 47
Mentor 1 12 2720 3 2073 62 2105 50 2084 56 2113 47
mm9b 481 19 318 32 385 3 361 11 326 17
total 263450 5289 214989 6632 217966 4588 215846 5629 207579 5345
more than AIG 60 123 33 25 221 56
less than AIG 210 19 254 146 44 102

The results can also be seen in Figure 6. The histogram
has been generated by sorting the results by the ratio of the
number of LUTs and levels after AIG based synthesis to
XAIG based synthesis. Circuits, where XAIG based synthesis
produced better results are situated on the left, while circuits
with worse results on the right.

We can see from these results, that in many cases the XAIG-
based rewriting enabled a more delay-efficient implementation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 200 400 600 800 1000 1200 1400 1600

XA
IG

/A
IG

 r
at

io

circuit #

XAIG/AIG LUTs
XAIG/AIG levels

Fig. 6: Comparison of AIG-based rewriting to XAIG-based rewriting by the number of LUTs and levels. Values below 1
indicate a better result for XAIG-based rewriting.

TABLE II: XAIG vs. AIG based rewriting compared after LUT mapping. 10 circuits where XAIG based rewriting produced
best results in terms of the number of LUTs compared to AIG rewriting are shown, as well as 10 circuits with worst XAIG
based rewriting results.

rewrite; &lf; mfs &rewrite; &lf; mfs XAIG : AIG ratio
name LUTs levels LUTs levels LUTs levels
uoft raytracer [26] 9 2 6 2 0.67 1.00
bbtas [27] 10 2 7 2 0.70 1.00
six three comp [24] 13 3 10 3 0.77 1.00
mux [21] 27 6 21 5 0.78 0.83
cordic [20] 29 5 23 4 0.79 0.80
life [28] 30 5 24 5 0.80 1.00
majority [21] 5 2 4 2 0.80 1.00
cordic [21] 471 9 392 9 0.83 1.00
term1 [20] 79 6 67 6 0.85 1.00
prio encode [24] 7 2 6 2 0.86 1.00
cht [21] 51 3 46 2 0.90 0.67
soft ecc ram 64bit [24] 61 3 62 2 1.02 0.67
mult16 [30] 131 18 144 13 1.10 0.72
sct [20] 28 4 29 3 1.04 0.75
s400 [21] 45 4 50 3 1.11 0.75
s444 [21] 44 4 50 3 1.14 0.75
s4863 [23] 24 4 28 3 1.17 0.75
lal [21] 27 4 34 3 1.26 0.75
cordic [20] 29 5 23 4 0.79 0.80
vga driver [24] 121 5 122 4 1.01 0.80

VII. CONCLUSION

We have implemented an XAIG based rewriting algorithm
in the framework of logic synthesis and optimization tool
ABC. This variant of rewriting algorithm was compared to the
original AIG-based rewriting already implemented in ABC.
The results indicate that the new algorithm is stronger in
XOR identification than XOR-aware structural hashing, al-
ready implemented as a command &st in ABC. The XAIG
based rewriting can also be beneficial in many cases in terms
of delay-efficiency when used in synthesis process.

XOR nodes in XAIG based synthesis bring new decisions,
which need to be done, for example whether to create a XOR
node even at expense of adding additional AND nodes. XOR
can also have different, target technology dependent, cost than
AND, i.e. it might be beneficial to have multiple AND nodes
instead of one XOR node in the network. These decisions are
configurable through &rewrite parameters and their influence
to the final network structure has been examined.

While the XAIG based rewriting does not bring an ulti-
mately better process than the original AIG based rewriting,
the results point out an interesting area of future research
on rewriting efficiency. Our future work will be focused on
extension of &rewrite to use more than one “best structure”
per cut function, as well as “best structures” generator based
on exact synthesis.

ACKNOWLEDGMENT

This research has been partially supported by the grant
GA16-05179S of the Czech Grant Agency, Fault-Tolerant
and Attack-Resistant Architectures Based on Programmable
Devices: Research of Interplay and Common Features (2016-
2018) and by the grant SGS17/213/OHK3/3T/18.

Access to computing and storage facilities owned by parties
and projects contributing to the National Grid Infrastructure
MetaCentrum, provided under the programme ”Projects of
Large Research, Development, and Innovations Infrastruc-
tures” (CESNET LM2015042), is greatly appreciated.

REFERENCES

[1] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai, “Robust Boolean
reasoning for equivalence checking and functional property verification,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 21, no. 12, pp. 1377–1394, 2001.

[2] P. Bjesse and A. Borlv, “DAG-aware circuit compression for formal
verification,” in IEEE/ACM International Conference on Computer-
Aided Design, 2004, pp. 42–49.

[3] K. Brayton, Robert, A. Mishchenko, and S. Chatterjee, “DAG-aware
AIG rewriting: a fresh look at combinational logic synthesis,” in 43rd
ACM/IEEE Design Automation Conference. ACM, 2006, pp. 532–535.

[4] A. Mishchenko et al., “ABC: A system for sequen-
tial synthesis and verification,” 2012. [Online]. Available:
http://www.eecs.berkeley.edu/˜alanmi/abc

[5] R. Brayton and A. Mishchenko, “ABC: an academic industrial-strength
verification tool,” in Proceedings of the 22nd International Conference
on Computer Aided Verification (CAV’10). Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 24–40.

[6] K. Brayton, Robert and A. Mishchenko, “Scalable logic synthesis using
a simple circuit structure,” in International Workshop on Logic and
Synthesis, 2006, pp. 15–22.

[7] L. Amaru, P.-E. Gaillardon, and G. De Micheli, “Boolean logic opti-
mization in majority-inverter graphs,” in 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC), June 2015, pp. 1–6.

[8] L. Amaru, P.-E. Gaillardon, S. Mitra, and G. De Micheli, “New logic
synthesis as nanotechnology enabler,” Proceedings of the IEEE, vol. 103,
no. 11, pp. 2168–2195, Nov 2015.

[9] “A novel basis for logic rewriting,” Integrated Systems Laboratory,
EPFL, Lausanne, Switzerland, Tech. Rep., 2017.

[10] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“SIS: a system for sequential circuit synthesis,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/ERL M92/41, 1992.

[11] J. Schmidt and P. Fiser, “The case for a balanced decomposition
process,” in 12th Euromicro Conference on Digital System Design,
Architectures, Methods and Tools, Aug 2009, pp. 601–604.

[12] C. Yang and M. Ciesielski, “BDS: a BDD-based logic optimization
system,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 21, no. 7, pp. 866–876, August 2002.

[13] A. Mishchenko and M. Perkowski, “Fast heuristic minimization of
exclusive-sums-of-products,” in International Workshop on Reed-Muller
expansions in circuit design, 2001, pp. 242–249.

[14] A. Mishchenko, M. Perkowski, and B. Steinbach, “An algorithm for
bi-decomposition of logic functions,” in 38th ACM/IEEE Design Au-
tomation Conference, 2001, pp. 103–108.

[15] P. Fiser and J. Schmidt, “Small but nasty logic synthesis examples,” in
8th. Int. Workshop on Boolean Problems (IWSBP), 2008, pp. 183–189.

[16] Z. Huang, L. Wang, Y. Nasikovskiy, and A. Mishchenko, “Fast Boolean
matching based on NPN classification,” in International Conference on
Field-Programmable Technology (FPT), Dec 2013, pp. 310–313.

[17] A. Mishchenko, S. Chatterjee, R. Jiang, and K. Brayton, Robert,
“FRAIGs: A unifying representation for logic synthesis and verification,”
Berkeley University, Tech. Rep.

[18] A. Biere, “AIGER,” http://fmv.jku.at/aiger/, 2007.
[19] A. Mishchenko, S. Chatterjee, K. Brayton, Robert, X. Wang, and

T. Kam, “Technology mapping with Boolean matching, supergates and
choices,” ERL Technical Report, EECS Dept., UC Berkeley, Tech. Rep.,
03 2005.

[20] S. Yang, “Logic synthesis and optimization benchmarks user guide:
Version 3.0,” MCNC Technical Report, Tech. Rep., Jan. 1991.

[21] K. McElvain, “IWLS’93 Benchmark Set: Version 4.0,” Tech. Rep., May
1993.

[22] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortran,” in IEEE
International Symposium Circuits and Systems (ISCAS’85). IEEE Press,
Piscataway, N.J., 1985, pp. 677–692.

[23] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in IEEE International Symposium on
Circuits and Systems (ISCAS’89), May 1989, pp. 1929–1934 vol.3.

[24] Altera, “Advanced synthesis cookbook,” Tech. Rep., Jul. 2011.
[25] C. Albrecht, “IWLS 2005 benchmarks,” Tech. Rep., Jun. 2005.
[26] ——, “Altera’s quartus university interface program (quip),” Tech. Rep.,

Jun. 2005.
[27] S. Yang, “Logic synthesis and optimization benchmarks user guide:

Version 3.0,” MCNC Technical Report, Tech. Rep., 1989.
[28] “Berkeley pla test set results,” Tech. Rep., Jun. 1986.
[29] P. Fiser and J. Schmidt, “A comprehensive set of logic

synthesis and optimization examples,” in 12th. Int. Workshop on
Boolean Problems (IWSBP), 2016, pp. 151–158. [Online]. Available:
http://ddd.fit.cvut.cz/prj/Benchmarks/

[30] V. Chickermane, J. Lee, and J. H. Pate, “A comparative study of design
for testability methods using high-level and gate-level descriptions.”

