
Are XORs in logic synthesis really necessary?
Ino Háleček, Petr Fišer, Jan Schmidt

Faculty of Information Technology
Czech Technical University in Prague

Prague, Czech Republic
Email: {halecivo, fiserp, schmidt}@fit.cvut.cz

Abstract—This paper follows recent research on insufficient
synthesis performance for XOR-intensive circuits, and introduces
a novel logic representation with a native support of XOR gates,
the XOR-AND-Inverter Graphs (XAIG). A rewriting algorithm
over XAIG has been implemented in the logic synthesis and
optimization package ABC, as the first step towards a complete
synthesis process. The results show that XAIG based rewriting
can help to discover XORs and improves the area of a mapped
network in some cases.

I. INTRODUCTION

Even though the process of logic synthesis and optimization
seemed to be an already efficiently resolved problem in past
decades, recently there appeared several brand new approaches
to it, mostly based on novel data structures used for represent-
ing functions and networks.

Originally, when the very first logic synthesis EDA tools
emerged, the ultimate function representation was a sum-
of-products (SOP) [1], [2]. Two-level SOP minimizers have
been proposed as tools [2], [3], [4]. Subsequently, multi-
level optimization algorithms and tools based on the SOP
representation of network nodes have been devised [5], [6],
[7], [8].

As a simpler alternative to general SOP nodes, network
representation based on NOR gates has been used in many
algorithms [9]. However, such a representation just offered a
simple way of algorithms implementation, without having any
significant impact to theory.

A big breakthrough in a function representation was the
introduction of Binary Decision Diagrams (BDDs) [10], [11].
Synthesis and optimization algorithms were adapted to this
structure, making them perform much better [12], [13], [14],
[15].

Even though these representations have been used for many
decades both in academic and professional synthesis tools [7],
[8], they suffer from one problem: they are not scalable. Even
though a network of any size can be constructed of SOP nodes,
the scalability of nodes is limited. Also the size of BDDs
may grow exponentially with the number of inputs, which is
unfortunately the case of many contemporary designs.

For this reason, a very efficient network representation, the
And-Inverter-Graph (AIG), has been proposed in 2000’s [16],
[17], [18]. Here a Boolean network (circuit) is represented
as a directed acyclic graph (DAG) of 2-input AND nodes,
with possibly inverted edges. Numerous algorithms based on
AIGs have been developed and implemented in an academic

state-of-the-art logic synthesis tool ABC [19]. Most probably,
AIGs are (or soon will be) incorporated in commercial tools as
well [20]. The authors of these algorithms and tools rightfully
claim, that they are scalable [21].

For many years it seemed that AIGs are the ultimate solution
to a network representation. However, new and more com-
plex representations emerged recently. Bi-conditional BDDs
(BBDDs) based on equivalence functions have been proposed
as an alternative to BDDs. Here, simple multiplexers having
one control input were replaced by equivalence functions with
two controlling inputs [22]. Majority-Inverter-Graphs (MIGs)
[23] have been proposed as an alternative to AIGs. Here the
two-input AND nodes were replaced by three-input majority
functions. Both are generalizations of the original structures,
thus they are no less scalable. The primary motivation behind
introducing these representations was in “emerging technolo-
gies” [24].

It has been observed that the above mentioned structures
and algorithms based on them do not efficiently cope with
XOR gates [25]. Particularly, most algorithms are based on
AND and OR gates and heavily rely on their properties.
However, XOR gates are somewhat special. They are difficult
to be identified in the former structures (SOP, BDD, AIG) and
most importantly, the algorithms do not treat them explicitly;
typically they are identified in the technology mapping phase
only. Even though there do exist algorithms performing XOR
decomposition [14], [26], [27], no global network processing
algorithm assumes XORs explicitly. This may yield in a lack
of performance of tools, especially for XOR-intensive circuits
[28], [25].

In ABC, bad synthesis performance [28] for XOR-intensive
circuits can be either in algorithms inability to utilize XORs
and considering AIG as a pure network of ANDs and inverters,
or in XOR identification in the network.

Recently, ABC9 package with a new AIG manager called
GIA has been added to ABC by its authors, introducing a
possibility to use XOR or MUX nodes in addition to standard
AND nodes. This package is however poorly documented and
most of synthesis algorithms do not use the GIA manager.
These structures directly reflect the behavior of possibly new
technological primitives, thus developing algorithms based on
these structures may open new ways of future logic synthesis
[24].

Based on this internal network representation, we introduce
XOR-AND-Inverter Graphs (XAIGs), as an alternative to

standard AIGs. Here the Boolean network is represented as a
DAG of two types of nodes: 2-input ANDs and 2-input XORs,
with possibly inverted edges.

Note that XAIGs represent an orthogonal approach to
Majority-Inverter-Graphs (MIGs) [23]. The majority function
(as well as AND) is monotonic, while XOR is not monotonic.
Therefore, XAIGs do cover all relevant classes of NPN
equivalence [29], [25].

To address the issue of algorithms inability to work with
XORs natively, we present an XAIGs-based rewriting algo-
rithm [18]. We have implemented it as a command in the
ABC9 tool [19]. The experimental results show that XAIG-
based rewriting can lead to finding additional XORs in a
network as well as it can help mappers to reduce the area
or delay, although it does not provide ultimate solution for all
circuits.

The paper is organized as follows: after the Introduction
and some preliminaries in Section II, the proposed XAIG
structure is described in Section III, with implementation
issues presented in Section IV. The newly introduced rewriting
algorithm based on the XAIG structure is presented in Section
V. Section VI contains experimental results. Section VII
concludes the paper.

II. PRELIMINARIES

And-Inverter Graphs (AIGs) [16], [17], [18], are directed
acyclic graphs with one or more roots, where nodes are two-
input AND gates and edges represent connections between
them. Edges may be inverted, meaning that the respective
subgraph is negated. This can be understood as an inverter
presence on the connection. AIGs are constructed from pri-
mary inputs to primary outputs, assigning to each node a
unique ID in increasing order. This ensures parent nodes to
have higher ID than their children. The node with lower ID is
always the left child of its parent. Apart from that, upon node
creation, a hash is calculated from hashes of its children. If a
node with the same hash is already present in the graph, this
existing node is used by the reference instead of creating a new
node. This process is called structural hashing (“strashing”)
[16] and ensures that there will be no structurally equivalent
subgraphs in an AIG.

Structural hashing still does not discover functionally equiv-
alent subgraphs with different structures. ABC provides func-
tionally reduced AIGs, FRAIGs [30]. If this approach (collo-
quially called “fraiging”) is used in addition to structural hash-
ing, also functional hasing of small subgraphs is performed.

A cut of a node N is a set of nodes (called leaves), for
which it holds that every path from primary inputs to the node
N leads through at least one leaf. A cut is K-feasible if the
number of leaves does not exceed K.

III. THE XAIG STRUCTURE

XAIG is a directed acyclic graph, where nodes are two-
input ANDs or XORs, while edges can be inverted. As seen
in Figure 1, XOR is described by at least 3 AND nodes in AIG,
which can make it more difficult for algorithms to utilize it.
In XAIGs, XOR is represented as a single node.

0

9

8

4

67

5

3 1 2

0

7

4

5

31 2

Fig. 1: Logic function Y = ¬(¬(x1 ∨ x2) ⊕ x3) ∧ ¬x4 in
AIG and XAIG. Circle nodes represent AND nodes, hexagon
a XOR node. Dotted edges are inverted.

A. XAIG Properties

XAIGs are a generalized form of AIGs; every AIG can be
considered as an XAIG with no XOR nodes. Therefore, XAIG
(just like AIG) can implement any logic function.

XAIG is structurally hashed in the same way as AIG,
with different hashing function for XOR nodes. The fraiging
technique is applicable also for XAIGs.

IV. IMPLEMENTATION OF XAIGS IN ABC
The ABC9 package features a new manager for AIG manip-

ulation, called GIA manager. It has a possibility to use nodes
of type XOR and MUX in addition to standard AND nodes.
Therefore, we used this package and GIA as a manager for
XAIG. A network can be converted between managers by the
command &get to convert it from the original AIG manager
to GIA and &put to convert it back.

A. The XIAG File Format

For the need of storing XAIGs in a file with unchanged
structure, we defined the XAIGER file format based on the
AIGER format [31] and implemented its support to ABC9
network reading and writing commands, &r and &w. The
header of XIAG is described as follows:

xaig M I L O A X, where
• M = I + L+A+X ,
• I stands for the number of inputs,
• L stands for the number of latches,
• A stands for the number of ands,
• and X stands for the number of XORs.
The nodes themselves are defined in the same way as in

the original AIGER, XORs are distinguished from ANDs by
having the left child node ID higher than the right one, which
is forbidden in the original AIG. As an example, XOR in the
XAIGER format can be described in the following way:

x a i g 3 2 0 1 0 1
2
4
6
6 2 4

i1

x1 x2

y

i2

o

i1

x1 x2

y

i2

o

i1

x1 x2

y

i2

o

x0

Fig. 2: XOR structures in AIG. Two leftmost structures,
composed from 3 ANDs can be identified by ABC9 structural
hashing. The rightmost graph represents the simplest XOR
structure not identified by structural hashing in ABC9.

po0

10

9

4

87

5

3 1 2

po0

7

6

4

5

31 2

6

Fig. 3: XAIG based rewriting example.

This format seems to be no more necessary, as we found
out that if XAIG is converted to the original AIG manager
with the command &put and then stored to a BLIF file, it can
be later reconstructed by loading and converting back to GIA
by XOR-supporting structural hashing (ABC command &st).
However, one can never be sure that the structural hashing
will reconstruct the original XAIG structure exactly.

B. Recognizing XOR Gates

XOR identification is performed in the ABC9 package by
structural hashing (command &st -m -L 1). While the param-
eter -m enables conversion to “large” gates (XOR, MUX), the
parameter -L sets the reference limit for enabling generation
of MUX nodes. We have implemented a new feature in ABC9,
where setting this limit to 1 disables MUX creation completely.

This procedure identifies XOR gates represented by 3 ANDs
as described in Figure 2. If XOR is dissolved to a flatter
structure (i.e. XOR of another functions expressed as a sum
of products), the &st command is too weak to identify it and
synthesis will be unable to use it, unless it finds it by a different
way, for example by a functional checking of a subtree, which
we implemented in our &rewrite command.

V. XAIG-BASED REWRITING ALGORITHM

To demonstrate whether synthesis needs to be capable of a
native work with XOR gates, we introduce an XAIG rewriting
algorithm based on AIG rewriting technique presented in [18].

Listing 1: Rewrite over XAIG network
R e w r i t i n g (ne twork XAIG , node s t a r t N o d e , hash t a b l e

P r e c o m p u t e d S t r u c t u r e s , boo l UseZeroCost)
{

f o r each node N t o p o l o g i c a l l y o r d e r e d a f t e r
s t a r t N o d e i n t h e ne twork XAIG

{
bestXAIG = NULL; Bes tGa in = −1;
f o r each 4− i n p u t c u t C of node N computed u s i n g

c u t e n u m e r a t i o n {
F = Boolean f u n c t i o n o f N i n t e r m s of t h e

l e a v e s o f C
/ / g e t b e s t c u t i m p l e m e n t a t i o n
b e s t C i r c u i t =

HashTableLookup (P r e c o m p u t e d S t r u c t u r e s , F) ;
/ / g e t XAIG wi th c u t r e p l a c e d by b e s t c i r c u i t
rwrXAIG = R e p l a c e C u t B y B e s t C i r c u i t (XAIG ,

b e s t C i r c u i t , c u t) ;
Gain = NodesCount (XAIG) − NodesCount (rwrXAIG) ;
/ / keep t r a c k o f b e s t p o s s i b l e r e w r i t e f o r

c u r r e n t node
i f (Gain > 0 | | (Gain = 0 && UseZeroCost)) {

i f (bestXAIG = NULL | | Bes tGa in < Gain) {
bestXAIG = rwrXAIG ; Bes tGa in = Gain ;

}
}

}
i f (bestXAIG != NULL) {

r e t u r n R e w r i t i n g (bestXAIG , N+1 ,
P r e c o m p u t e d S t r u c t u r e s , UseZeroCost) ;

}
e l s e {

c o n t i n u e ;
}
r e t u r n XAIG ;

}
}

Rewriting is a technique of replacing AIG subgraphs with k
leaves (k-feasible cuts [32]) by smaller, functionally equivalent
precomputed structures. This algorithm can reduce function-
ally equivalent subgraphs, unlike structural hashing can. An
example of one subgraph replacement can be seen in Figure
3.

As described in Listing 1, the newly introduced algorithm
&rewrite goes through XAIG nodes in topological order from
defined starting node. For each node, cuts are enumerated
using the algorithm presented in [32], described in Listing 2.
For each node cut, a truth table of the function of its leaves is
calculated by simulation. This truth table is then converted to
a canonical form described by a 16-bit integer value, which
is stored in a precomputed table for each possible function,
so are the permutations of inputs and negations of inputs and
outputs needed for this conversion. Conversion to the canoncial
form is done by the same conversion table already available
for the original rewriting. For every truth table in canonical
form, there is a precomputed “best structure”. The number of
nodes saved in case of replacement of a cut by this structure is
calculated. Replacement with the best number of nodes saved
is performed for each node and rewriting continues with the
next node in topological order. Apart from using XOR nodes
in addition to AND nodes and different “best structures”,

we expect no significant differences from the original rewrite
algorithm behaviour.

Note that for 4-feasible cuts, there are 216 possible func-
tions, but every possible cut can be converted by permutation
of inputs and negation of inputs and output to one of 222
NPN equivalent classes [18]. Therefore, using 4-feasible cuts
for rewriting is a good compromise between the efficiency of
the algorithm and its memory demands.

Listing 2: Cut enumeration algorithm
vo id Ne tworkKFeas ib l eCu t s (Graph g , i n t k) {

f o r each p r i m a r y o u t p u t node n of g {
NodeKFeas ib leCu t s (n , k) ;

}
}

c u t s e t NodeKFeas ib leCut s (Node n , i n t k) {
i f (n i s p r i m a r y i n p u t) r e t u r n {{n }} ;
i f (n i s v i s i t e d) r e t u r n NodeReadCutSet (n) ;
mark n as v i s i t e d ;
c u t s e t Se t1 =

NodeKFeas ib leCu t s (NodeReadChild1 (n) , k) ;
c u t s e t Se t2 =

NodeKFeas ib leCu t s (NodeReadChild2 (n) , k) ;
c u t s e t R e s u l t = MergeCutSe ts (Set1 , Set2 , k) U {n } ;
NodeWri teCutSe t (n , R e s u l t) ;
r e t u r n R e s u l t ;

}

c u t s e t MergeCutSe ts (c u t s e t Set1 , c u t s e t Set2 , i n t
k) {

c u t s e t R e s u l t = {} ;
f o r each c u t Cut1 i n Se t1{

f o r each c u t Cut2 i n Se t2{
i f (| Cut1 U Cut2 | <= k) {

R e s u l t = R e s u l t U {Cut1 U Cut2 } ;
}

}
}
r e s u l t R e s u l t ;

}

A. Best logic structures generation

All NPN equivalent classes of cuts mentioned above have
already been enumerated in ABC for the original rewrite al-
gorithm. The XAIG based rewriting algorithm however needs
different “best structures” than the original AIG rewriting, i.e.,
with XOR nodes allowed. For every NPN class, we calculated
this structure by the following sequence of ABC commands:
read truth; st; dch; if; mfs; st; dch; if; mfs; st; st; dch; if; mfs;
st; dch; map; write blif to optimize the initial representation
described by a truth table and map it using a custom library
providing ANDs, XORs, and inverters. ANDs and XORs have
the same cost during the mapping to not prefer any gate. The
final sequence of commands just converts the mapped structure
generated for each NPN class to the XAIGER format to be
used with the &rewrite command: read blif; &get -m; &st -m;
&w.

VI. EXPERIMENTAL RESULTS

As a comparison of AIG based synthesis performance with
XAIG based synthesis, we have run both algorithms over a

set of 490 benchmark circuits obtained as a mix of different
benchmarks: LGSynth‘91 [33], IWLS‘93 [34], ISCAS‘85 [35],
ISCAS‘89 [36], and IWLS 2005 [37] - available from [38].

A. Comparison of Rewriting Algorithms

Here we have made a comparison of the original AIG rewrit-
ing algorithm with the XAIG rewriting algorithm. Particularly,
ABC commands rewrite and &rewrite) were compared. The
counts of resulting nodes (AND, XOR) were measured.

The results are shown in Table I. After the circuit name,
the AND and XOR nodes counts obtained from the original
circuit by XOR-supporting structural hashing (the &st -m -
L 1; command) are given. Then, results obtained by the
proposed &rewrite command are shown. For comparison with
the original rewrite, the numbers of AND nodes produced by it
are shown next. Finally, the total cost computation is provided.
Here a XOR node cost in XAIG has been counted as 3 AND
nodes, because in the worst case this XOR node would be
replaced by 3 AND nodes by conversion to AIG.

We can see that in most cases the total cost of nodes is
higher for XAIG based rewriting than for AIG based rewriting.
The reason for this seems to be that XAIG does not distinguish
the cost of XOR and AND during cut replacement evaluation.
Despite of this, for some circuits the total cost of XAIG based
rewriting was significantly lower. In addition to this, for some
circuits new XORs were discovered (see, e.g., the ripple-carry
adders, where their XOR-based structure was found), while
for another circuits some disappeared.

However, the declared XOR cost compared to ANDs is
the worst case possible. Therefore, the improvement is more
significant after a mapping depending on XOR cost in the
target technology, or if some structural sharing between XORs
and ANDs was found during the mapping. Also note that
higher total cost of all nodes can help the mapper to not get
stuck in a local optimum.

B. The Overall Synthesis Process

To demonstrate the influence of XAIG based rewriting in
the overall synthesis process, we compared both rewriting
algorithms by the number of LUTs after FPGA (4-LUT)
mapping. The commands used for both AIG based process
were rewrite; balance; if; mfs, which was the same for the
XAIG based process except of using &rewrite instead of
rewrite. Results in Table II show that for some circuits, XAIG
based process produced smaller area, while other circuits work
better with AIG based process. The delay after mapping is the
same for both algorithms in most cases, but for some circuits
there is a significant difference between the two algorithms.
This is an impulse to future research on identification of the
cause of this phenomenon and characterization of circuits
working better with XAIG based rewriting than with AIG
based rewriting.

VII. CONCLUSION

The answer to the question stated in the title is: ”yes”. There
are cases, where XOR based synthesis really does help.

TABLE I: Comparison of XAIG rewriting (&rewrite) to AIG rewriting (rewrite) regarding the total cost of nodes. Only 10
circuits with the best cost ratio and 10 benchmarks with worst ratio are shown due to limited paper size. The average is
calculated from all of the 490 benchmark circuits.

name original stats &rewrite rewrite rewrite; XAIG strashed &rewrite. vs rewrite ratioand xor and xor cost and and xor cost
c1355 510 0 130 59 307 446 278 56 446 0.69
i8 3090 0 1579 0 1579 1781 1781 0 1781 0.89
Altera oc ssram 388 0 350 0 350 388 388 0 388 0.90
majority 17 0 12 0 12 13 13 0 13 0.92
Altera fip cordic cla 2130 177 1041 202 1647 1773 1178 209 1654 0.93
cm152a 31 0 27 0 27 29 29 0 29 0.93
mc 18 0 15 0 15 16 16 0 16 0.94
cm85a 32 4 31 1 34 36 28 4 40 0.94
dc2 126 2 88 4 100 105 97 3 106 0.95
cmb 54 0 45 0 45 47 47 0 47 0.96
i5 335 0 285 0 285 223 223 0 223 1.28
13-adder 91 13 80 19 137 107 55 25 130 1.28
12-adder 84 12 76 17 127 99 51 23 120 1.28
15-adder 105 15 92 22 158 123 63 29 150 1.28
14-adder 98 14 88 20 148 115 59 27 140 1.29
Altera ts mike fsm 71 3 49 3 58 45 36 4 48 1.29
16-adder 112 16 100 23 169 131 67 31 160 1.29
newapla1 39 0 36 0 36 27 27 0 27 1.33
x1 1468 0 1206 0 1206 899 899 0 899 1.34
too large 7771 0 6331 0 6331 4486 4486 0 4486 1.41
AVERAGE 1.06

TABLE II: Comparison of XAIG rewriting (&rewrite) to AIG rewriting (rewrite), after mapping to LUTs. Only 10 circuits
with the best LUT ratio and 10 benchmarks with worst ratio are shown due to limited paper size. The average is calculated
from all of the 490 benchmark circuits.

name LUTs Levels &rewrite vs. rewrite ratio
&rw rewrite &rewrite rewrite LUTs Levels

cm85a 10 16 3 3 0.63 1.00
majority 2 3 2 2 0.67 1.00
mm30a 241 314 33 51 0.77 0.65
02-adder 4 5 2 2 0.80 1.00
03-adder 6 7 3 3 0.86 1.00
i2 63 72 5 5 0.88 1.00
count 37 42 6 6 0.88 1.00
root 74 83 5 5 0.89 1.00
s838 111 124 12 12 0.90 1.00
Altera ts mike fsm 18 20 2 2 0.90 1.00
ldd 38 34 4 4 1.12 1.00
frg1 177 156 6 6 1.13 1.00
rd53 33 29 4 4 1.14 1.00
too large 1686 1429 8 9 1.18 0.89
bigkey 1642 1348 3 3 1.22 1.00
Altera xbar 16x16 336 272 4 3 1.24 1.33
cm163a 14 11 3 3 1.27 1.00
mm4a 86 66 10 10 1.30 1.00
Altera mux8 64bit 1283 963 3 3 1.33 1.00
Altera mux8 128bit 2563 1923 3 3 1.33 1.00
AVERAGE 1.00 1.01

To prove this, we implemented an XAIG based rewriting
algorithm in the framework of logic synthesis and optimization
tool ABC. Experimental comparisons show that XAIG based
rewriting is not the ultimate solution to the synthesis process,
but it can still be beneficial in sense of area reduction, and in
some cases even in delay optimization.

For some circuits, improvement can be seen on two levels:
first, directly after the rewriting algorithm, the total cost of the
network was smaller when XAIG based rewriting was used.
Secondly, for some circuits, mapping resulted in lower area
after using the XAIG based algorithm, even if the total cost

of network was greater with XAIG based rewriting than with
the original AIG based one.

These results point out an area of possible future research on
classification of circuits, where original AIG based rewriting
works better than the XAIG based rewriting, to bring a unified
process advantageous for both classes.

ACKNOWLEDGMENT

This research has been partially supported by the grant
GA16-05179S of the Czech Grant Agency, Fault-Tolerant
and Attack-Resistant Architectures Based on Programmable

Devices: Research of Interplay and Common Features (2016-
2018).

Access to computing and storage facilities owned by parties
and projects contributing to the National Grid Infrastructure
MetaCentrum, provided under the programme ”Projects of
Large Research, Development, and Innovations Infrastruc-
tures” (CESNET LM2015042), is greatly appreciated.

REFERENCES

[1] E. McCluskey, “Minimization of Boolean functions,” The Bell System
Technical Journal, vol. 35, no. 6, pp. 1417–1444, Nov 1956.

[2] R. K. Brayton, A. L. Sangiovanni-Vincentelli, C. T. McMullen, and
G. D. Hachtel, Logic Minimization Algorithms for VLSI Synthesis.
Norwell, MA, USA: Kluwer Academic Publishers, 1984.

[3] R. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued minimiza-
tion for PLA optimization,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 6, no. 5, pp. 727–750,
September 1987.

[4] O. Coudert, “Doing two-level logic minimization 100 times faster,” in
Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, ser. SODA’95. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 1995, pp. 112–121.

[5] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification Algo-
rithms. Norwell, MA, USA: Kluwer Academic Publishers, 1996.

[6] S. Hassoun and T. Sasao, Logic Synthesis and Verification. Kluwer
Academic Publishers, 2002.

[7] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“SIS: a system for sequential circuit synthesis,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/ERL M92/41, 1992.

[8] M. Gao, J.-H. Jiang, Y. Jiang, Y. Li, A. Mishchenko, S. Sinha, T. Villa,
and R. Brayton, “Optimization of multi-valued multi-level networks,”
in 32nd IEEE International Symposium on Multiple-Valued Logic (IS-
MVL’02), 2002, pp. 168–177.

[9] S. Muroga, Y. Kambayashi, C. Lai, Hung, and N. Culliney, Jay, “The
transduction method-design of logic networks based on permissible
functions,” vol. 38, no. 10, pp. 1404–1424, 10 1989, iEEE Transactions
on Computes.

[10] S. B. Akers, “Binary decision diagrams,” IEEE Transactions on Com-
puters, vol. 27, no. 6, pp. 509–516, Jun. 1978.

[11] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Transactions on Computers, vol. 35, no. 8, pp. 677–691,
Aug. 1986.

[12] K. Karplus, “Using if-then-else DAGs for multi-level logic minimiza-
tion,” in Proc. of Advance Research in VLSI, C. Seitz Ed. MIT Press,
1989, pp. 101–118.

[13] Y.-T. Lai, M. Pedram, and S. B. K. Vrudhula, “BDD based decom-
position of logic functions with application to FPGA synthesis,” in
Proceedings of the 30th International Design Automation (DAC’93).
New York, NY, USA: ACM, 1993, pp. 642–647.

[14] C. Yang and M. Ciesielski, “BDS: a BDD-based logic optimization
system,” vol. 21, no. 7, pp. 866–876, 08 2002, iEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems.

[15] N. Vemuri, P. Kalla, and R. Tessier, “BDD-based logic synthesis
for LUT-based FPGAs,” ACM Transactions on Design Automation of
Electronic Systems, vol. 7, no. 4, pp. 501–525, 12 2001.

[16] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai, “Robust boolean
reasoning for equivalence checking and functional property verification,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 21, no. 12, pp. 1377–1394, 2001.

[17] P. Bjesse and A. Borlv, “DAG-aware circuit compression for formal
verification,” in IEEE/ACM International Conference on Computer-
Aided Design, 2004, pp. 42–49.

[18] K. Brayton, Robert, A. Mishchenko, and S. Chatterjee, “DAG-aware
AIG rewriting: a fresh look at combinational logic synthesis,” in 43rd
ACM/IEEE Design Automation Conference. ACM, 2006, pp. 532–535.

[19] A. Mishchenko et al., “ABC: A system for sequen-
tial synthesis and verification,” 2012. [Online]. Available:
http://www.eecs.berkeley.edu/˜alanmi/abc

[20] R. Brayton and A. Mishchenko, “ABC: an academic industrial-strength
verification tool,” in Proceedings of the 22nd International Conference
on Computer Aided Verification (CAV’10). Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 24–40.

[21] K. Brayton, Robert and A. Mishchenko, “Scalable logic synthesis using
a simple circuit structure,” in International Workshop on Logic and
Synthesis, 2006, pp. 15–22.

[22] L. Amaru, P.-E. Gaillardon, and G. De Micheli, “Biconditional binary
decision diagrams: A novel canonical logic representation form,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 4,
no. 4, pp. 487–500, Dec 2014.

[23] ——, “Boolean logic optimization in majority-inverter graphs,” in 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), June 2015,
pp. 1–6.

[24] L. Amaru, P.-E. Gaillardon, S. Mitra, and G. De Micheli, “New logic
synthesis as nanotechnology enabler,” Proceedings of the IEEE, vol. 103,
no. 11, pp. 2168–2195, Nov 2015.

[25] J. Schmidt and P. Fiser, “The case for a balanced decomposition
process,” in 12th Euromicro Conference on Digital System Design,
Architectures, Methods and Tools, Aug 2009, pp. 601–604.

[26] A. Mishchenko and M. Perkowski, “Fast heuristic minimization of
exclusive-sums-of-products,” in International Workshop on Reed-Muller
expansions in circuit design, 2001, pp. 242–249.

[27] A. Mishchenko, M. Perkowski, and B. Steinbach, “An algorithm for
bi-decomposition of logic functions,” in 38th ACM/IEEE Design Au-
tomation Conference, 2001, pp. 103–108.

[28] P. Fiser and J. Schmidt, “Small but nasty logic synthesis examples,” in
8th. Int. Workshop on Boolean Problems (IWSBP), 2008, pp. 183–189.

[29] Z. Huang, L. Wang, Y. Nasikovskiy, and A. Mishchenko, “Fast boolean
matching based on NPN classification,” in International Conference on
Field-Programmable Technology (FPT), Dec 2013, pp. 310–313.

[30] A. Mishchenko, S. Chatterjee, R. Jiang, and K. Brayton, Robert, “Fraigs:
A unifying representation for logic synthesis and verification,” Berkeley
University, Tech. Rep.

[31] A. Biere, “AIGER,” http://fmv.jku.at/aiger/, 2007.
[32] A. Mishchenko, S. Chatterjee, K. Brayton, Robert, X. Wang, and

T. Kam, “Technology mapping with boolean matching, supergates and
choices,” ERL Technical Report, EECS Dept., UC Berkeley, Tech. Rep.,
03 2005.

[33] S. Yang, “Logic synthesis and optimization benchmarks user guide:
Version 3.0,” MCNC Technical Report, Tech. Rep., Jan. 1991.

[34] K. McElvain, “IWLS’93 Benchmark Set: Version 4.0,” Tech. Rep., May
1993.

[35] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortran,” in IEEE
International Symposium Circuits and Systems (ISCAS’85). IEEE Press,
Piscataway, N.J., 1985, pp. 677–692.

[36] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in IEEE International Symposium on
Circuits and Systems (ISCAS’89), May 1989, pp. 1929–1934 vol.3.

[37] C. Albrecht, “IWLS 2005 benchmarks,” Tech. Rep., Jun. 2005.
[38] S. J. Fiser P., “A comprehensive set of logic synthesis and

optimization examples,” pp. 151–158, 2016. [Online]. Available:
http://ddd.fit.cvut.cz/prj/Benchmarks/

