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Abstract—This paper proposes a method improving the
fault-coverage capabilities of Field Programmable Gate Array
(FPGA) designs. Faults are mostly Single Event Upsets (SEUs) in
the configuration memory of SRAM-based FPGAs and they can
change the functionality of an implemented design. These changes
may lead to crucial mistakes and cause damage to people and
environment. The proposed method utilizes Concurrent Error
Detection techniques and the basic architectures of actual modern
FPGAs – the Look-Up Table (LUT) with two outputs. The main
part of the paper is the description of the proposed method
(Parity Waterfall) based on a cascade – waterfall – of several
waves of inner parity generating the final parity of outputs of
the whole circuit. The proposed Parity Waterfall (PWtf) method
utilizes the (mostly) unused output of a two-output LUT to
cover any single possible routing or LUT fault with a small
area overhead. The encapsulation of the proposed PWtf method
into a Duplication with Comparison scheme is presented in
the second part of the paper. This encapsulation allows us to
create a system containing two independent copies of all parts
able to detect and localize any single fault (like common Triple
Modular Redundancy method). Experiments are performed on
the standard set of IWLS2005 benchmarks in our simulator. The
results demonstrate differences between our proposed method
and a similar existing technique – Duplication with Comparison
(DwC), and between the encapsulated PWtf method and TMR.
The proposed method has a lower relative overhead and requires
a lower number of inputs and outputs.
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I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are widely used
especially (but not only) due to their flexibility, very good
price/performance ratio and rapid design process which short-
ens and streamlines ”time to market”. The universality of
FPGA chips is based on possible alternations of their config-
urations. The development is cheaper and faster, because the
price of the application based on an FPGA does not include
costs of the development of the FPGA chip itself (unlike
ASIC). Moreover, the possible reconfiguration without any
hardware redesign can be used for either the recovery from
a fault state or a less area overhead for pre-designed function
changes (the whole functionality should not be implemented
on a chip in the same time).

These properties predetermine their use in many areas,
even as a control parts in mission critical systems. FPGAs
may occur in many different areas (e.g. aviation, medicine,
space missions, and railway applications, etc.) with different

impacts to people and environment in a case of their failure.
Therefore such systems have to guarantee the determined level
of safety and reliability parameters. but there may appear
problems, especially when RAM-based FPGAs are utilized.
The main disadvantage is their sensitivity to many effects that
can change their programmed function [1]. These changes are
most unwelcome in systems, where financial losses, serious
injuries or casualties can be caused because of a failure. The
improvement of dependability parameters of the final design
is required to minimize the impact of such effects.

Dependability of a system is the ability to avoid service
failures (situations where the behaviour of the system deviates
from the correct behaviour) that are more frequent and more
severe than is acceptable [2].

One of the most important techniques allowing improve-
ments of dependability is redundancy. This means that if one
part of the system fails, there is an alternative functional part.
However, redundancy can have a negative impact on a system
performance, size, weight, power consumption, and others [3].
There are many redundancy techniques including hardware,
information, time, software redundancy, etc. [3]. We focus on
hardware redundancy by replication in this paper.

But each type of hardware redundancy means some space
(area) overhead, therefore our aim is to find such methods
which will minimize this area overhead with the focus to the
lowest hardware/structural level when some types of redun-
dancy will be used. It means that our method must depend on
the FPGA type.

The Fault Tolerant method designed for combinational cir-
cuits of newer FPGAs is proposed in this paper. The Parity
Waterfall (PWtf) is an FPGA-specific and architecture-specific
method – it is based on the architecture of newer FPGAs
(applied and partially tested on the Virtex-5 family) and the
technique of Totally-Self-Checking (TSC) circuits.

The proposed method has been also encapsulated into a
Duplication scheme. This modification - Duplication with
Parity Waterfall (DwPWtf) – allows to localize detected faults,
and the system may be fully operational during the fault repair
(i.e. partial reconfiguration, repair and recovery processes are
not part of this paper). This modification allows us to compare
DwPWtf method to Triple Modular Redundancy (TMR) sys-
tem directly, because both methods are able to mask a single
fault in one part of the design.

Both the plain PWtf and the encapsulated modification
DwPWtf are experimentally verified using the standard set
of International Workshop on Logic Synthesis IWLS2005[4]
benchmarks. The results demonstrate that the PWtf covers all
possible routing and logic faults. The area overhead is smaller
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than the overhead of the Duplication with Comparison (DwC)
in 100% of the tested circuits. The results also demonstrate
that the overhead of the DwPWtf is smaller than the overhead
of the TMR.

Both methods (PWtf and DwPWtf) have been presented in
conference papers – PWtf has been presented in [5], DwPWtf
has been presented in [6]. This paper summarizes both methods
and their results, compares them to common methods (DwC
and TMR) and adds a short overview of the future work.

The paper is organized as follows: Section II provides the
theoretical background and introduces related methods. The
proposed parity waterfall method and its encapsulation is
described in Section III. The results are shown in Section IV
and Section V concludes the paper.

II. BACKGROUND

A. Basic Primitive Element of FPGA
The proposed method utilizes the properties of the ba-

sic primitive of modern FPGA chips – the Look-Up Table
(LUT) with two outputs shown in Figure 1. This primitive
(LUT6 2)[7] can implement a 6-input logic function or two
5-input logic functions with shared inputs. A logical function
of LUT is specified by 64-bit hexadecimal value stored in an
INIT attribute. The upper half (bits 63:32) of the INIT values is
used for the upper LUT5 and the lower half (bits 31:0) for the
lower LUT5. The logic function of the O5 output correspond
only the lower LUT5 value, but the O6 output can use both
LUT5 values, which depends on a value of the I5 input.
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Fig. 1: Six-input, two-output Look-Up Table.

B. Self-checking Circuit
The main goal of the proposed method is to create a

self-checking circuit – a circuit which is able to detect any
fault caused by a bit-flip in the configuration memory that may

affect it. A recovery from a bit-flip fault can be performed by
a reconfiguration process. Transient faults affecting flip-flops
containing data are detected as well and can be recovered by
a recovery method.

The self-checking circuit is mostly based on a predictor of
some kind of error detection code (i.e. parity predictor, a copy
of the original circuit, etc.). The outputs of this predictor –
the check bits – are connected (together with the outputs of
the original circuit) to the checker that is able to determine
whether the original circuit or the predictor is faulty or not.
The checker must be able to detect faults inside itself to achieve
a Totally-Self-Checking (TSC) system.

C. Common Hardware Redundancy Types
In this section, two well-known redundancy types are com-

pared. The first one – a TSC – is able to detect any single
fault affecting the system, but it is not able to localize it.
The duplication with comparison is not fully functional when
a fault is detected. The second system is a Triple Modular
Redundancy (TMR) that is able to mask and localize any single
fault affecting the system. The triple modular redundancy
system is fully functional when a single fault is present.

1) Duplication with Comparison: A totally self-checking
DwC is shown in Figure 2. A DwC contains two copies
of the original circuit, two independent sets of inputs, two
independent checkers (comparators), and two independent sets
of outputs. If any of these parts is present in one copy only,
the system is not a DwC system anymore, because a fault in
such part cannot be detected.
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Fig. 2: Duplication with Comparison system.

2) Triple Modular Redundancy System: A totally self-
checking Triple Modular Redundancy system (TMR) is shown
in Figure 3. A TMR system contains three copies of all parts
(inputs, original circuits, checkers, and outputs) described in
the DwC case. A TMR system is able to detect and localize
any single fault, it may detect multiple faults, if there are
at least two unaffected copies of the original circuit and the
voter/checker. If any of the parts is not present in three copies,
a fault may not be successfully localized. If any of the parts is
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present in one copy only, it becomes a single point of failure.
In both cases, the system is not a TMR system anymore.
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Fig. 3: Totally self-checking triple modular redundancy system.

D. Related Fault Detection Methods
The faults can affect both Configuration Logic Block (CLB)

content or the signal routing as described in [8].
The related fault detection methods are described below –

they are sorted by the fault-detection locations they monitor.
1) Routing Faults: The method presented in [9] aims on the

routing faults in FPGAs. It introduces two new Configurable
Logic Block (CLB) designs using a pre-computed parity value
to detect error on any one of the input nets. However, the
method uses off-line detection and it cannot be used in current
FPGAs (because of the modified CLB design).

The slightly similar method is described in [10]. This
selective TMR (STMR) method is based on a modified circuit
structure where the selected gates are tripled and the effective-
ness of the method depends on the input signal probabilities.
The area of STMR is smaller than TMR, but the fault coverage
does not reach 100%.

2) LUT Content Faults: Most methods are based on the
dual-output LUTs and use the unused parts of the LUTs to
mask some faults in the LUTs by duplication [11], [12], [13]
or use TMR method [14]. The other methods maximize the
fault-masking capabilities of a LUT using logic decomposition
and restructuring [15].

Another method is described in [16], where a new CLB
architecture is proposed by applying the TMR method to
a function generator that can generate any k-input boolean
function.

The main disadvantage of these methods is a limited cover-
age of the faults (thus they do not cover all faults applicable
to FPGA) and/or a requirement of a special architecture of
CLB (thus they are not applicable on the current FPGAs). The

method presented in [13] uses similar technique to the one
presented in this paper, but it is based on duplication, thus it
requires comparators to operate and it is not focused to achieve
100% fault coverage. Our proposed parity waterfall method
combines several practices, it is able to cover all possible faults
and uses the basic element of existing modern FPGAs.

III. NEW METHODS

A. Parity Waterfall Method

The main goal of the parity waterfall is to cover all possible
routing and LUT content faults using a TSC circuit with a
parity generator with small area overhead at the same time.
The parity waterfall block shown in Figure 4 performs the
original function modified by the proposed PWtf method. The
checkers are connected not only to the PWtf block outputs,
but also to the PWtf block inputs, where the outputs of the
previous block and/or primary inputs are checked.

Parity Waterfall 
(Original function N) 

Checker 
(N-1) 

Checker 
(N) 

Ok/Fail (N-1) Ok/Fail (N) 

Parity (N-1) 

Outputs (N-1) 

Parity (N) 

Outputs (N) 

Fig. 4: Totally-Self-Checking circuit with Parity waterfall
method.

The final parity of outputs of the whole circuit is calculated
using a cascade (waterfall) of several waves of inner parities.
The example of the cascade of parity waves is shown in
Figure 5.

The first parity wave of the example is generated using
the parity of the inputs of the circuit (A, B, C, and D) and
the O5 (parity) outputs of the first level of the LUTs (two
2-input LUTs in the left part of Figure 5). The other waves
are generated using the parity output of the previous wave and
the O5 outputs of the last level of the LUTs. Each fault is
propagated to the end of cascade and can be detected by the
checker (parity predictor) connected to the PWtf block outputs.

The routing fault affecting any input of the LUT will change
the value of the O5 output, therefore the change will be
propagated as a single change to the parity wave at the next
level. The same fault affects the O6 output as well, it will be
distributed to other LUTs, where it will manifest as the routing
fault of an input and is propagated as an another single change
to the after-the-next parity wave. If the output of the circuit
is affected by this fault as well and the parity output affected
by two changes is correct, the parity predictor connected to
the PWtf block outputs will detect it. If the output of the
circuit is not affected by this fault, the checker of the next
circuit will not detect it, but the output is correct and the
fault is dormant (hidden). This detection scheme can fail, if
the O6 output is connected to two (or the other even number)
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Fig. 5: Parity Waterfall wave cascades example.

LUTs. More details about this situation and its solution will
be presented in Section III-A1.

The fault affecting the content of the LUT will change the
O5 or O6 output (it cannot affect both output simultaneously),
thus it can be treated as the routing fault on the inputs of the
connected LUTs.

A more detailed view to a single parity wave is shown in
Figure 6. It is based on an original block composed from two
LUTs (one LUT3 and one LUT2). The parts added by the
proposed method are highlighted with the green color. The
yellow colored blocks represent two identical logic functions.
The bottom LUT6 2 presents the main idea of the proposed
method. The method is based on LUT6 2 architecture, where
two 5-input LUTs are multiplexed. If the original block
contains LUT5 or smaller, LUT6 2 will be only configured
partially, thus we can utilize the second LUT5 for our method.

The output X of the original function is generated using the
output O6 of LUT3 (the output O6 of LUT6 2 would be used
in a real FPGA). The output O5 of the same LUT is used
to generate the inner parity for the parity of the first wave.
The LUT5 bottom contains the function of original logic from
LUT5 top, which is masked by the XOR function of LUT
inputs (it performs a partial check of the inputs). This method
is applied on each LUT of the original block. Then we add the
last part composing all inner parities and the parity of inputs
using the XOR function. This part not only composes inner
parities together, but also unmasks the parity of outputs via
the parity of inputs.

The following equations show the basic principle of parity
unmasking for an example circuit shown in Figure 6.

The parity of outputs output is created from the O5 outputs
of both LUTs and parity of inputs input. If no error is present,
parity of outputs is equal to X⊕Y , but, when an error occurs,
it is equal to X ⊕ Y ⊕ 1 (error at an input) or X ⊕ Ȳ (error
in a logic function). The equation of the output checker is
X ⊕ Y ⊕ parity out, thus checker output is equal to zero

logic function 
(copy) 

logic function 

LUT5_bottom 

LUT5_top 

LUT6_2(LUT3) 

I5 

I0 

I1 

I3 

a 

b 

c 

LUT6_2(LUT2) 

I5 

d 

e 

parity of inputs 

LUT3 

parity of outputs 

x 

y 

parity compose & unmasking 

parity masking 

checker of LUT inputs 

I0 

I1 

O5 

O6 

O5 

O6 

I0 

I1 

I2 

O6 

Fig. 6: Parity Waterfall method details.

(X ⊕ Y ⊕ X ⊕ Y ), if no error is present. When an error
occurs, the output is changed, therefore any single error can
be detected.
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parity of outputs = (l funcLUT2 ⊕ inputs XORLUT2)⊕ (l funcLUT3 ⊕ inputs XORLUT3)⊕ parity of inputs

= (l funcLUT2 ⊕ l funcLUT3)⊕ (inputs XORLUT2 ⊕ inputs XORLUT3 ⊕ parity of inputs)

= (l funcLUT2 ⊕ l funcLUT3)⊕ 0 = X ⊕ Y

The possible fault locations:
Inputs:
A, B, C, D, E – this fault can cause incorrect output and the

same (undetectable) error at the output parity.
But the output parity is changed to incorrect
code word through unmasking part, because
the input parity does not match parities from
checkers of LUT inputs. The fault is detected
by the checker connected to the block outputs.1

parity of inputs – the incorrect input parity is propagated to
the output parity and can be detected by the
checker, too.

I5 of LUT6 2 – this fault changes the output O6, which
is now equal to O5 and the output parity is
correct after unmasking, but it does not match
the final outputs.

Outputs:
X, Y,

parity of outputs – detected by the checker directly.
LUTs:

LUT5 top – this fault changes the output O6 and can be
detected by the checker.2

LUT5 bottom – the inner parity is changed and produces the
incorrect parity of outputs that can be detected
by the checker.

LUT3 – the incorrect parity of outputs will be gen-
erated (and detected by the checker).

The method can be modified to perform an independent
check of each parity wave output, but this modification is not
used in this paper.

1) Routing Condition: The proposed PWtf method requires
a specific routing condition. If the fanout of any signal is
even (it is connected to the even number of other LUTs
and/or outputs), it can cause incorrect output undetectable by
the output parity. The proposed method avoids this situation
by adding another branch to all signals with even fanout
(represented by the dashed lines in the illustrative example).

If the split of the signal is performed correctly (see the signal
marked as (1) in Figure 5), the fault can affect one branch
of the signal, or all three. If a fault affects odd number of
branches, it will be detected by the parity waterfall method.
On the other hand, the signal containing the incorrect split
(marked as (2)) contains a critical part (the black vertical part).
The fault affecting this critical part affects two independent
branches, thus it may not be detected.

1Only if the fanout of the input is odd – more details about even-fanout
situation will be presented in Section III-A1.

2Only if the fanout of the O6 output is odd – more details about even-fanout
situation will be presented in Section III-A1.

The signal can be split several times, but all splits have to be
performed correctly. The splits have to be corrected, when all
components are placed and all signals are routed (after Place
& Route step of the implementation). The automated tools
performing these corrections are currently under development.

2) Method Application – Parity LUT Content Calculation:
A logical function of LUT of a Virtex 5 is specified by 64-bit
hexadecimal value stored in an INIT attribute. The upper half
(bits 63:32) of the INIT value is used for the upper LUT5
and the lower half (bits 31:0) for the lower LUT5. The logic
function of the O5 output corresponds only to the lower LUT5
value, but the O6 output can use both LUT5 values, depending
on the I5 input value.

The parity waterfall method requires the function generating
the O5 output of the LUT has to be configured as the result of
XOR operation of the O6 function and the XOR of all inputs
of the same LUT (see the green part of the LUT6 2(LUT3)
in Figure 6).

The LUT6 2 primitive does not contain a XOR allowing
connection between O6 and O5, but the INIT value – the
content of the memory controlling the output of the LUT –
of the lower LUT5 generating the O5 output can be calculated
to effectively generate such XOR function, if the INIT value
of the upper LUT5 generating the O6 output is known.

Parity LUT Content Calculation – Example
The following example shows, how the INIT value of

LUT6 2 can be calculated. It is not necessary to know the
original function, the waterfall method can perform the next
steps using INIT value provided by any synthesis tool. The
example is based on the INIT value of LUT4 (1) value
provided by a synthesis tool.

LUT4 INIT = 0145 (1)

FPGA chips contain LUT6 2 primitives only, thus the INIT
value must be extended to cover 5-input function. The ex-
tension of the 4-input function to a 5-input function (2) is a
doubled copy of the original INIT value (1). This INIT value
(2) guarantees that the value of the output will not depend on
the fifth unused input.

The INIT value generating 5-input XOR function (3) does
not depend on the original function. The 5-input XOR function
depends on the fifth input (that was unused by the original
function) – it allows the method to detect faults affecting this
input.

Bitwise XOR applied on values (2) and (3) provides INIT
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value generating the O5 function of the LUT6 2 primitive (4).

LUT5:
LUT5 INIT O6 = 01450145 (2)

⊕
INIT 5-Input XOR = 96696996 (3)

=

LUT5 INIT O5 = 972C68D3 (4)

The unused input can be also used to optimize the number of
LUTs generating parity waves. An O5 output of a LUT of any
of the previous levels can be connected to such input. The O6
function will not be affected, the O5 function will generate
XOR including this input. If the O5 output is connected to
the unused input, it does not need to be connected to the
parity-wave logic and this logic may be reduced. The results
presented in this paper are generated using this optimization.

The concatenation of the INIT values of the O6 (2) and O5
(4) functions forms the INIT value of the LUT6 2 primitive
(5). The inputs I0-I3 are used to generate the original function
and the inner parity, the input I4 can be used to optimize
the number of parity waves, and the last input I5 must be
connected to logic “1”, the O5 function would be propagated
to the O6 output otherwise.

LUT6 2 INIT = 972C68D301450145 (5)

3) Preparation Flow: The standard IWLS2005 benchmarks
are described in BLIF format and were used in our experi-
ments. Process flow of the whole preparation and simulation
is shown in Figure 7.

.blif 
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PWtf generator 

PWtf Netlist 

Place & Route 

PWtf Bitstream 

Netlist 

Synthesis 
(5-input LUTs) 

Parity Waterfall 
insertion 

Place & Route 
(routing conditions) 

Fig. 7: Parity Waterfall preparation diagram.

The process starts with creating an EDIF file. A source
BLIF benchmark file is minimized and synthesized with the
ABC[17] tool and it is executed with dch;if -K 5;mfs
parameters (the result will contain only LUTs with 5 or less
inputs). Then is the final BLIF converted to EDIF by our

Blif2Edif tool. These three steps can be skipped, if a circuit is
described in EDIF format and contains only LUTs with 5 or
less inputs.

This EDIF with original circuit is the input for our Par-
ity Waterfall insertion tool. This tool creates a new EDIF
containing all the necessary logic and signals that can be
implemented in common tools or used for simulation in our
software simulator.

The correction of the signal splits described in Sec-
tion III-A1 would be performed after Place & Route step
of the implementation. The automated tools performing these
corrections are currently under development.

B. Parity Waterfall Method Encapsulation

Parity Waterfall 
Inputs 

Parity_in 

Checker 
OK/Fail 

Parity_out 

Outputs 

0 

1 

Parity Waterfall 
Inputs 

Parity_in 

Checker 
OK/Fail 

Parity_out 

Outputs 

0 

1 

FPGA I 

FPGA II 

Fig. 8: Duplication with Parity Waterfall system block scheme.

The parity waterfall circuit allows us to create a system
comprising of two independent copies of all parts and detection
and localization of any single fault (like TMR). Our structure –
DwPWtf – is based on DwC combined with Concurrent Error
Detection principle presented in [18]. The original circuits and
comparators of the DwC are replaced with the proposed parity
waterfall method (see the block diagram in Figure 8).

Because the parity waterfall method is able to detect all
faults in the circuit (see the result in Section IV-A), the fault
detection and localization does not require output comparators
anymore. If a fault affects the original circuit, the checker will
detect it and the outputs from the other unaffected FPGA will
be enabled. If a fault affects the checker, the false-positive fail
signal will be enabled. The outputs from the other unaffected
FPGA will be enabled in such case, too. The reconfiguration
of the affected FPGA is performed in both cases, thus the fault
will be removed.

IV. RESULTS

The proposed method (PWtf) and its encapsulation (Dw-
PWtf) were tested on the set of standard IWLS2005 bench-
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TABLE I: IWLS2005 benchmarks: Comparison of Results of the Parity Waterfall and Duplication with Comparison methods.

Benchmark Original Overhead PWtf DwC
(IOs) (LUTs) (%) (IOs) (%) (IOs) (%)

ac97 ctrl 132 3184 15.30 135 115.33 2661/4582 200.06

aes core 388 6783 13.70 391 113.71 7781/12942 200.03

des area 304 1588 13.04 307 113.22 6101/8662 200.25

des perf 298 9946 18.97 301 118.98 5981/8542 200.02

ethernet 213 12642 15.08 216 115.09 4281/8882 200.02

i2c 33 277 12.27 36 112.64 681/1242 200.72

mem ctrl 267 2362 8.43 270 108.47 5361/11442 200.08

pci bridge32 369 5685 12.51 372 112.52 7401/15682 200.04

pci conf cyc addr dec 64 32 15.62 67 121.88 1301/2582 212.50

pci spoci ctrl 38 280 10.00 41 110.36 781/1302 200.71

sasc 28 172 20.35 31 121.51 581/1062 204.65

simple spi 28 214 19.63 31 120.09 581/1062 200.93

spi 92 1059 8.78 95 108.97 1861/3662 200.57

ss pcm 28 114 19.30 31 121.05 581/942 205.26

steppermotordrive 8 40 12.50 11 115.00 181/342 205.00

systemcaes 389 2256 8.91 392 108.95 7801/12962 200.09

systemcdes 197 653 16.39 200 116.54 3961/6562 200.31

tv80 46 2297 9.53 49 109.58 941/2222 200.09

usb funct 249 3899 8.54 252 108.59 5001/9842 200.21

usb phy 33 111 10.81 36 111.71 681/1402 201.80

vga lcd 198 30854 11.62 201 111.63 3981/8342 200.01

wb conmax 2546 13244 12.61 2549 112.62 50941/107582 200.03

wb dma 432 1055 5.21 435 105.40 8661/17262 200.57

1 Single board implementation
2 Implementation on two independent boards

marks [4]. The benchmark source files has been synthesized
and modified according to flow presented in Section III-A3.

All results presented in this paper are results of the simula-
tion based on post-synthesis EDIF file. The simulator is able
to apply a single bit-flip fault to a LUT memory or a stuck-at
fault at any input, output, or internal signal.

Two main parameters – the total size and the fault coverage
– have been measured. The fault coverage measurement was
performed for small benchmarks (containing up to 300 LUTs)
only. Because the 100% fault coverage was achieved in all
these small cases, the rest of the benchmarks has been used to
measure total size only (The principles of this method do not
depend on the size of circuits, the fault coverage of the bigger
circuits will be 100%, too.) Therefore, the total size and the
comparison between methods with the same fault coverage is
the main focus of the results.

A. Parity Waterfall Method vs Duplication with Comparison
The results of the PWtf method and a common DwC method

are shown in Table I. Original size means the size of the

benchmark after synthesis and the values are the numbers of
inputs and outputs (IOs), and used LUTs. The rests of the
results are the sizes of the methods relative to the original size
expressed as a percentage. The Overhead is only the redundant
logic of the method, the PWtf and the DwC represent the sizes
of the methods including the checkers. The number of IOs of
the DwC method varies when the method is implemented in a
single board or in two independent boards.

The Overhead values show that the PWtf method applied on
the benchmarks achieved better results (less redundant logic)
than the duplication itself.

The fault coverage of the new method is the same as the
fault coverage of the DwC and the PWtf method has a lower
overhead for all benchmarks.

Results show that the proposed PWtf method has the half
size against the DwC method in most cases. Moreover, the
number of IOs of the DwC method is doubled (or quadrupled)
when compared with the original method, but the proposed
PWtf method adds only three IOs (the parity of inputs, the
parity of outputs, and the OK/Fail output of the checker).
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TABLE II: IWLS2005 benchmarks: Comparison of Results of the Duplication with Parity Waterfall and Triple Modular
Redundancy methods.

Benchmark Original Overhead DwPWtf TMR
(IOs) (LUTs) (%) (IOs) (%) (IOs) (%)

ac97 ctrl 132 3184 15.30 2701/4662 230.65 3991/8313 300.19

aes core 388 6783 13.70 7821/13022 227.42 11671/23283 300.04

des area 304 1588 13.04 6141/8742 226.45 9151/14913 312.47

des perf 298 9946 18.97 6021/8622 237.97 8971/14733 300.03

ethernet 213 12642 15.08 4321/8962 230.19 6421/16773 300.05

i2c 33 277 12.27 721/1322 225.27 1021/2283 301.08

mem ctrl 267 2362 8.43 5401/11522 216.93 8041/21723 300.13

pci bridge32 369 5685 12.51 7441/15762 225.05 11101/29733 300.11

pci conf cyc addr dec 64 32 15.62 1341/2662 243.75 1951/4833 525.00

pci spoci ctrl 38 280 10.00 821/1382 220.71 1171/2343 301.07

sasc 28 172 20.35 621/1142 243.02 871/1953 327.91

simple spi 28 214 19.63 621/1142 240.19 871/1953 301.40

spi 92 1059 8.78 1901/3742 217.94 2791/6843 303.68

ss pcm 28 114 19.30 621/1022 242.11 871/1683 334.21

steppermotordrive 8 40 12.50 221/422 230.00 271/633 307.50

systemcaes 389 2256 8.91 7841/13042 217.91 11701/23313 300.13

systemcdes 197 653 16.39 4001/6642 233.08 5941/11793 300.46

tv80 46 2297 9.53 981/2302 219.16 1411/4293 300.52

usb funct 249 3899 8.54 5041/9922 217.18 7501/18393 303.92

usb phy 33 111 10.81 721/1482 223.42 1021/2643 305.41

vga lcd 198 30854 11.62 4021/8422 223.28 5971/15783 300.32

wb conmax 2546 13244 12.61 50981/107662 225.25 76411/203853 332.12

wb dma 432 1055 5.21 8701/17342 210.81 12991/32343 361.42

1 Single board implementation
2 Implementation on two independent boards
3 Implementation on three independent boards

B. Parity Waterfall Method Encapsulation vs Triple Modular
Redundancy

The results of the DwPWtf method and a common TMR
method are shown in Table II. The columns are identical to
the columns used in Table I. Original size means the size of
the benchmark after synthesis and the values are the numbers
of inputs and outputs (IOs), and used LUTs. The rests of the
results are the sizes of the methods relative to the original size
(without any type of redundancy) expressed as a percentage.
The Overhead is only the redundant logic of the PWtf method,
the DwPWtf and the TMR represent the sizes of the methods
including the checkers. The number of IOs of the methods
varies when the method is implemented in a single board or
in two (DwPWtf) or three (TMR) independent boards.

The proposed DwPWtf method has a lower overhead for all
benchmarks. The difference between the overheads of these
methods is better than ca. 70% in most cases. More important
improvement can be found in the number of IOs of the meth-

ods. TMR method requires three sets of independent IOs and
three independent boards to guarantee the ability to localize a
single fault and to be able to continue its operation during
a fault recovery process. On the other hand, the proposed
DwPWtf method requires two sets of IOs and two independent
boards only.

V. CONCLUSION

The Parity Waterfall (PWtf) method and the Duplication
with Comparison (DwC) based on the parity waterfall allowing
the detection of all faults affecting the circuit implemented in
Field Programmable Gate Array (FPGA) has been presented
in this paper. The method has been applied on IWLS2005 sets
of benchmarks to create self-checking circuits.

The main advantage of the method is the ability to create a
self-checking circuit able to detect all faults affecting it without
a fault simulation, thus it does not depend on a selected fault
model.
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Fig. 9: Parity Driven Reconfigurable Duplex System.

The results indicate that the fault coverage of the presented
method is able to detect all faults affecting Look-Up Tables
(LUTs) and the routing logic. The overhead of the method has
been compared with DwC method and the results indicate that
the method has lower overhead than DwC in all benchmarks.

The PWtf has been also encapsulated using the DwC method
allowing not only the detection of all faults affecting the
circuit, but also the localization of the detected faults, thus
the system may be fully operational during a fault repair and
recovery processes.

More important improvement can be found in the number
of IOs of the methods. Triple Modular Redundancy (TMR)
method requires three sets of independent IOs and three
independent boards to guarantee the ability to mask a single
fault. On the other hand, the proposed Duplication with Parity
Waterfall (DwPWtf) method requires two sets of IOs and two
independent boards only. Number of IOs which are needed
for interconnection between boards is included. Our method
reduces number of IOs, boards, difficulty and also price.

A. Future Work
We are currently working on application of PWtf method

on previously designed Upgraded Modified Duplex System
(UMDS)[19]. The system is designed to achieve high Avail-
ability. The architecture is composed of Reconfigurable Parti-
tions (RPs) – blocks able to use partial reconfiguration to repair
their transient faults (SEUs). A Reconfigurable Module (RM)
(based on PWtfdesign) will be placed in the RP. The proposed
system will be based on two boards, each one containing one
FPGA loaded with the same design (see Figure 9).

An error is mostly detected by an internal checker included
in an RM. The Fail signal of the encapsulating RP is active
in such case and the Reconfiguration unit reconfigures the
affected RP only. For example: RM-1 detects an error, the
Fail signal is activated, and the RP-1 is reconfigured. Other
partitions (RP-2, RP-3, etc.) are fully operational during the
reconfiguration. This partial reconfiguration is significantly
faster than a reconfiguration of the whole FPGA, thus a higher
Availability can be achieved.

When a fault affects the Reconfiguration unit, the External
unit performs reconfiguration of the whole FPGA. The error at
this region is detected by two consecutive reconfigurations of
the same RP (the Reconfiguration unit receives a false positive
signal about RP failures) or by an internal checker of the
Reconfiguration unit.

This enhancement should lead to a significant improve-
ment of the Availability parameter. If the reconfiguration and
the synchronization after reconfiguration will be performed
correctly, the system should be able to reach Availability
comparable with a TMR system. The enhanced system will be
still based on two independent boards only, thus is could be
produced with reduced costs (when compared to TMR based
on three independent boards).
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