
Parity Waterfall Method
Jaroslav Borecký, Martin Kohlı́k, Hana Kubátová

Department of Digital Design, Faculty of Information Technology
Czech Technical University in Prague, Technická 9, Prague, Czech Republic

{borecjar, kohlimar, hana.kubatova}@fit.cvut.cz

Abstract—This paper proposes a method for improvement of
the fault-coverage capabilities of Field Programmable Gate Array
(FPGA) designs. It utilizes Concurrent Error Detection (CED)
techniques and the basic architectures of actual modern FPGAs
the Look-Up Table (LUT) with two outputs. Proposed Parity
Waterfall method is based on a cascade (waterfall) of several
waves of inner parity generating the final parity of outputs of
the whole circuit. The utilization of the (mostly) unused output
of a two-output LUT allows the proposed method to cover any
single possible routing or LUT fault with a small area overhead.
The method is experimentally evaluated using the standard set of
IWLS2005 benchmarks and using our simulator/emulator. The
experimental results of the proposed parity waterfall method
are compared with a similar existing technique (duplication with
comparison). These results show that the area overhead is smaller
than the overhead of the duplication with comparison method for
all of the tested circuits and 100% fault coverage is achieved.

I. INTRODUCTION

Mission-critical systems with guaranteed level of safety and
reliability parameters are used in many different applications
(e.g. aviation, medicine, space missions, and railway applica-
tions, etc.) with different impacts to people and environment
in a case of their failure.

These systems are often based on FPGA due to the
universality of FPGA chips – the same chip can be used
in many different applications only using alternations of its
configurations. The development is cheaper and faster, because
the price of the application based on an FPGA does not include
costs of the development of the FPGA chip itself. Moreover,
the possible reconfiguration without any hardware redesign can
be used for either the recovery from a fault state or a less
area overhead for pre-designed function changes (the whole
functionality should not be implemented on a chip in the same
time).

The main disadvantage of FPGAs is their sensitivity to
many effects that can change their programmed function [1].
These changes are most unwelcome in systems, where finan-
cial losses, serious injuries or casualties can be caused because
of a failure. The improvement of dependability parameters of
the final design is required to minimize the impact of such
effects.

A dependability of a system is the ability to avoid service
failures (situations where the behaviour of the system deviates
from the correct behaviour) that are more frequent and more
severe than acceptable [2].

One of the most important technique allowing improve-
ments of dependability is redundancy. This means that if one
part of the system fails, there is an alternate functional part.
However, redundancy can have a negative impact on a system
performance, size, weight, power consumption, and others [3].
There are many redundancy techniques including hardware,

information, time, software redundancy, etc. [3]. We focus on
hardware redundancy made by replication in this paper.

A Fault Tolerant method designed for combinational cir-
cuits of newer FPGAs is proposed in this paper. This method
covers all possible routing and LUT faults with a small
area overhead. It is based on the architecture of FPGAs (the
Virtex-5 family) and the technique of Totally-Self-Checking
(TSC) [3], [4] circuits.

The proposed parity waterfall method is experimentally
verified on the standard set of International Workshop on Logic
Synthesis IWLS2005[5] benchmarks. The results demonstrate
that the proposed parity waterfall methodology covers all
possible routing and logic faults. The area overhead is smaller
than the overhead of the duplication with comparison in 100%
of the tested circuits.

The paper is organized as follows: Section II provides the
theoretical background and introduces related models. The
proposed parity waterfall method is described in Section III.
The results are shown in Section IV and Section V concludes
the paper.

II. BACKGROUND

The proposed parity waterfall method utilizes the properties
of the basic primitive of modern FPGA chips – the Look-Up
Table (LUT) with two outputs. This primitive (LUT6 2)[6]
can implement a function of 6-input logic or two functions of
5-input logic with shared inputs.

A. Self-checking Circuit

The main goal of the proposed parity waterfall method
is to create a self-checking circuit – a circuit able to detect
any single fault that may affect it. The self-checking circuit is
mostly based on a generator of some kind of error detection
code (i.e. parity generator, a copy of the original circuit, etc.).
The outputs of this generator – the check bits – are connected
(together with the outputs of the original circuit) to the checker
that is able to determine whether the original circuit or the
check bits generator is faulty or not. The checker must be able
to detect faults inside itself to achieve a TSC system.

B. Common Hardware Redundancy Type

One well-known redundancy type is compared with the
parity waterfall. This method – Duplication with Comparison
(DwC) – is able to detect any single fault affecting the system,
but it is unable to localize it. The duplication with comparison
is not fully functional when a fault is detected.

A totally self-checking DwC is shown in Figure 1. A DwC
contains two copies of the original circuit, two independent
sets of inputs, two independent checkers (comparators), and
two independent sets of outputs.



If any of these parts is present in a single copy only, it
becomes a single point of failure and the system is not a DwC
system anymore. A DwC system is able to detect any single
fault, it may detect multiple faults, if there is at least one
unaffected copy of the original circuit and comparator.

Original circuit 

= 

FPGA I 

OK/Fail 

Outputs 

Inputs 

Original circuit 

= 

FPGA II 

OK/Fail 

Outputs 

Inputs 

Fig. 1: Totally-Self-Checking duplex system.

C. Related Fault Detection Methods

The faults can affect content of Configurable Logic Blocks
(CLBs) or the signal routing as described in [7].

The related fault detection methods are described below –
they are sorted by the fault-detection locations they monitor.

1) Routing Faults: The method presented in [8] aims on the
routing faults in FPGAs. It introduces two new CLB designs
using a pre-computed parity value to detect error on any one
of the input nets. However, the method uses off-line detection
and it cannot be used in current FPGAs.

The slightly similar method is described in [9]. This
selective Triple Modular Redundancy (TMR) (STMR) method
is based on a modified circuit structure where the selected gates
are tripled and the effectiveness of the method depends on the
input signal probabilities. The area of STMR is smaller than
TMR, but the fault coverage does not reach 100%.

2) LUT Content Faults: Most methods are based on the
dual-output LUTs and use the unused parts of the LUTs
to mask some faults in the LUTs by duplication [10], [11],
[12] or use TMR method [13]. The method presented in [14]
maximizes the fault-masking capabilities of a LUT using logic
decomposition and restructuring.

Another method described in [15] proposing a new CLB
architecture. The method applies the TMR method to a func-
tion generator that can generate any Boolean function with
k-inputs.

The main disadvantage of these methods is a limited cov-
erage of the faults (thus they do not cover all faults applicable
to FPGA) and/or a requirement of a special architecture of
CLB (thus they are not applicable on the current FPGAs). The
method presented in [12] uses similar technique to the one
presented in this paper, but it is based on duplication, thus it
requires comparators to operate and it is not focused to achieve
100% fault coverage. Our proposed parity waterfall method
combines several practices, it is able to cover all possible faults
and uses the basic element of existing modern FPGAs.

III. PARITY WATERFALL METHOD

The main goal of the parity waterfall is to cover all possible
routing and LUT content faults using a Totally-Self-Checking
circuit with a parity generator with small area overhead at
the same time. The parity waterfall block shown in Figure 2
performs the original function modified by the proposed Parity
Waterfall (PWtf) method. The checkers are connected not only
to the PWtf block outputs, but also to the PWtf block inputs,
where the outputs of the previous block and/or primary inputs
are checked.

Parity Waterfall 
(Original function N) 

Checker 
(N-1) 

Checker 
(N) 

Ok/Fail (N-1) Ok/Fail (N) 

Parity (N-1) 

Outputs (N-1) 

Parity (N) 

Outputs (N) 

Fig. 2: Totally-Self-Checking circuit with Parity waterfall
method.

The final parity of outputs of the whole circuit is calculated
using a cascade (waterfall) of several waves of inner parities.
The example of the cascade of parity waves is shown in
Figure 3.

The first parity wave of the example is generated using
the parity of the inputs of the circuit (A, B, C, and D) and
the O5 (parity) outputs of the first level of the LUTs (two
2-input LUTs in the left part of Figure 3). The other waves
are generated using the parity output of the previous wave and
the O5 outputs of the last level of the LUTs. Each fault is
propagated to the end of cascade and can be detected by the
checker (parity predictor) connected to the PWtf block outputs.

The routing fault affecting any input of the LUT will
change the value of the O5 output, therefore the change will
be propagated as a single change to the parity wave at the
next level. The same fault affects the O6 output as well, it
will be distributed to other LUTs, where it will manifest as
the routing fault of an input and is propagated as an another
single change to the after-the-next parity wave. If the output
of the circuit is affected by this fault as well and the parity
output affected by two changes is correct, the parity predictor
connected to the PWtf block outputs will detect it. If the output
of the circuit is not affected by this fault, the checker of the
next circuit will not detect it, but the output is correct and the
fault is dormant (hidden). This detection scheme can fail, if
the O6 output is connected to two (or the other even number)
LUTs. More details about this situation and its solution will
be presented in Section III-A.

The fault affecting the content of the LUT will change the
O5 or O6 output (it cannot affect both output simultaneously),
thus it can be treated as the routing fault on the inputs of the
connected LUTs.

More detailed view to a single parity wave is shown in
Figure 4. It is based on an original block composed from two
LUTs (one LUT3 and one LUT2). The parts added by the
proposed method are highlighted with the green color. The
yellow colored blocks represent two identical logic functions.
The bottom LUT6 2 presents the main idea of the proposed
method. The method is based on LUT6 2 architecture, where



A 

B 

C 

D 

Parity_in 

Parity_out 

X 

Y 

LUT2 

LUT2 

LUT2 

LUT2 

LUT5 LUT3 

I0 

I0 
I0 

I0 

I0 

I0 

I1 I1 

I1 

I1 

I1 I1 

I2 

I2 
I3 

I4 

O 

O 

O5 O5 

O5 
O5 

O6 O6 

O6 O6 

1 

2 

First wave Last wave 

Parity 
predictor 

Original 
function 

... 

... 

... 

Fig. 3: Parity Waterfall wave cascades example.

two 5-input LUTs are multiplexed. If the original block
contains LUT5 or smaller, LUT6 2 will be only configured
partially, thus we can utilize the second LUT5 for our method.

The output X of the original function is generated using
the output O6 of LUT3 (the output O6 of LUT6 2 would
be used in a real FPGA). The output O5 of the same LUT is
used to generate the inner parity for the parity of the first wave.
The LUT5 bottom contains the function of original logic from

LUT5 top, which is masked by the XOR function of LUT
inputs (it performs a partial check of the inputs). This method
is applied on each LUT of the original block. Then we add the
last part composing all inner parities and the parity of inputs
using the XOR function. This part not only composes inner
parities together, but also unmasks the parity of outputs via
the parity of inputs.

The following equations show the basic principle of parity
unmasking for an example circuit shown in Figure 4.

parity of outputs = (l funcLUT2 ⊕ inputs XORLUT2)⊕ (l funcLUT3 ⊕ inputs XORLUT3)⊕ parity of inputs

= (l funcLUT2 ⊕ l funcLUT3)⊕ (inputs XORLUT2 ⊕ inputs XORLUT3 ⊕ parity of inputs)

= (l funcLUT2 ⊕ l funcLUT3)⊕ 0 = X ⊕ Y

The parity of outputs output is created from the O5 outputs
of both LUTs and parity of inputs input. If no error is present,
parity of outputs is equal to X⊕Y , but, when an error occurs,
it is equal to X ⊕ Y ⊕ 1 (error at an input) or X ⊕ Ȳ (error
in a logic function). The equation of the output checker is
X ⊕ Y ⊕ parity out, thus checker output is equal to zero
(X ⊕ Y ⊕ X ⊕ Y ), if no error is present. When an error
occurs, the output is changed, therefore any single error can
be detected.

The possible fault locations:
Inputs:

A, B, C, D, E – this fault can cause incorrect output and
the same (undetectable) error at the output
parity. But the output parity is changed
to incorrect code word through unmask-
ing part, because the input parity does
not match parities from checkers of LUT
inputs. The fault is detected by the checker
connected to the block outputs.1

parity of inputs – the incorrect input parity is propagated
to the output parity and can be detected by
the checker, too.

I5 of LUT6 2 – this fault changes the output O6, which
is now equal to O5 and the output parity
is correct after unmasking, but it does not

1Only if the fanout of the input is odd – more details about even-fanout
situation will be presented in Section III-A.

match the final outputs.
Outputs:

X, Y,
parity of outputs – detected by the checker directly.
LUTs:

LUT5 top – this fault changes the output O6 and can
be detected by the checker.2

LUT5 bottom – the inner parity is changed and produces
the incorrect parity of outputs that can be
detected by the checker.

LUT3 – the incorrect parity of outputs will be
generated (and detected by the checker).

The method can be modified to perform an independent
check of each parity wave output, but this modification is not
used in this paper.

A. Routing Condition

The proposed Parity Waterfall method requires a specific
routing condition. If the fanout of any signal is even (it is
connected to the even number of other LUTs and/or outputs),
it can cause incorrect output undetectable by the output parity.
The proposed method avoids this situation by adding another
branch to all signals with even fanout (represented by the
dashed lines in the illustrative example).

2Only if the fanout of the O6 output is odd – more details about even-fanout
situation will be presented in Section III-A.



logic function 
(copy) 

logic function 

LUT5_bottom 

LUT5_top 

LUT6_2(LUT3) 

I5 

I0 

I1 

I3 

a 

b 

c 

LUT6_2(LUT2) 

I5 

d 

e 

parity of inputs 

LUT3 

parity of outputs 

x 

y 

parity compose & unmasking 

parity masking 

checker of LUT inputs 

I0 

I1 

O5 

O6 

O5 

O6 

I0 

I1 

I2 

O6 

Fig. 4: Parity Waterfall method details.

If the split of the signal is performed correctly (see the
signal marked as (1) in Figure 3), the fault can affect one
branch of the signal, or all three. If a fault affects odd number
of branches, it will be detected by the parity waterfall method.
On the other hand, the signal containing the incorrect split
(marked as (2)) contains a critical part (the black vertical part).
The fault affecting this critical part affects two independent
branches, thus it may not be detected.

The signal can be split several times, but all splits have to
be performed correctly. The splits have to be corrected, when
all components are placed and all signals are routed (after Place
& Route step of the implementation). The automated tools
performing these corrections are currently under development.

B. Method Application – Parity LUT Content Calculation

A logical function of LUT of a Virtex 5 is specified by
64-bit hexadecimal value stored in an INIT attribute. The upper
half (bits 63:32) of the INIT value is used for the upper LUT5
and the lower half (bits 31:0) for the lower LUT5. The logic
function of the O5 output corresponds only to the lower LUT5
value, but the O6 output can use both LUT5 values, depending
on the I5 input value.

The parity waterfall method requires the function generat-
ing the O5 output of the LUT has to be configured as the result
of XOR operation of the O6 function and the XOR of all inputs
of the same LUT (see the green part of the LUT6 2(LUT3)
in Figure 4).

The LUT6 2 primitive does not contain a XOR allowing
connection between O6 and O5, but the INIT value – the
content of the memory controlling the output of the LUT –
of the lower LUT5 generating the O5 output can be calculated

to effectively generate such XOR function, if the INIT value
of the upper LUT5 generating the O6 output is known.

Parity LUT Content Calculation – Example

The following example shows, how the INIT value of
LUT6 2 can be calculated. It is not necessary to know the
original function, the waterfall method can perform the next
steps using INIT value provided by any synthesis tool. The
example is based on the INIT value of LUT4 (1) value
provided by a synthesis tool.

LUT4 INIT = 0145 (1)

FPGA chips contain LUT6 2 primitives only, thus the INIT
value must be extended to cover 5-input function. The ex-
tension of the 4-input function to a 5-input function (2) is a
doubled copy of the original INIT value (1). This INIT value
(2) guarantees that the value of the output will not depend on
the fifth unused input.

The INIT value generating 5-input XOR function (3) does
not depend on the original function. The 5-input XOR function
depends on the fifth input (that was unused by the original
function) – it allows the method to detect faults affecting this
input.

Bitwise XOR applied on values (2) and (3) provides INIT
value generating the O5 function of the LUT6 2 primitive (4).

LUT5:
LUT5 INIT O6 = 01450145 (2)

⊕
INIT 5-Input XOR = 96696996 (3)

=

LUT5 INIT O5 = 972C68D3 (4)

The unused input can be also used to optimize the number of
LUTs generating parity waves. An O5 output of a LUT of any
of the previous levels can be connected to such input. The O6
function will not be affected, the O5 function will generate
XOR including this input. If the O5 output is connected to
the unused input, it does not need to be connected to the
parity-wave logic and this logic may be reduced. The results
presented in this paper are generated using this optimization.

The concatenation of the INIT values of the O6 (2) and O5
(4) functions forms the INIT value of the LUT6 2 primitive
(5). The inputs I0-I3 are used to generate the original function
and the inner parity, the input I4 can be used to optimize
the number of parity waves, and the last input I5 must be
connected to logic “1”, the O5 function would be propagated
to the O6 output otherwise.

LUT6 2 INIT = 972C68D301450145 (5)

C. Preparation Flow

The standard IWLS2005 benchmarks are described in BLIF
format and were used in our experiments. Process flow of the
whole preparation and simulation is shown in Figure 5.

The process starts with creating an EDIF file. A source
BLIF benchmark file is minimized and synthesized with the
ABC[16] tool and it is executed with dch;if -K 5;mfs



.blif 
Synthesis 

(ABC, Blif2Edif) 

Simulation 

PWtf generator 

PWtf Netlist 

Place & Route 

PWtf Bitstream 

Netlist 

Synthesis 
(5-input LUTs) 

Parity Waterfall 
insertion 

Place & Route 
(routing conditions) 

Fig. 5: Parity Waterfall preparation diagram.

parameters (the result will contain only LUTs with 5 or less
inputs). Then is the final BLIF converted to EDIF by our
Blif2Edif tool. These three steps can be skipped, if a circuit is
described in EDIF format and contains only LUTs with 5 or
less inputs.

This EDIF with original circuit is the input for our Par-
ity Waterfall insertion tool. This tool creates a new EDIF
containing all the necessary logic and signals that can be
implemented in common tools or used for simulation in our
software simulator.

The correction of the signal splits described in Sec-
tion III-A would be performed after Place & Route step of
the implementation. The automated tools performing these
corrections are currently under development.

IV. EXPERIMENTAL RESULTS

The proposed Parity Waterfall (PWtf) was tested on the set
of standard IWLS2005 benchmarks. The benchmark source
files has been synthesized and modified according to flow
presented in Section III-C.

All results presented in this paper are results of the simu-
lation based on post-synthesis EDIF file. The simulator is able
to apply a single bit-flip fault to a LUT memory or a stuck-at
fault at any input, output, or internal signal.

Two main parameters – the total size and the fault coverage
– have been measured. The fault coverage measurement was
performed for small benchmarks (containing up to 300 LUTs)
only. Because the 100% fault coverage was achieved in all
these small cases, the rest of the benchmarks has been used to
measure total size only (The principles of this method do not
depend on the size of circuits, the fault coverage of the bigger
circuits will be 100%, too.) Therefore, the total size and the
comparison between methods with the same fault coverage is
the main focus of the results.

The results of the PWtf method and standard hardware
redundancy method are shown in Table I. Original size means
the size of the benchmark after synthesis and the values are

the numbers of inputs and outputs (IOs), and used LUTs. The
rests of the results are the sizes of the methods relative to the
original size expressed as a percentage. The Overhead is only
the redundant logic of the method, the PWtf and the DwC
represent the sizes of the methods including the checkers. The
number of IOs of the DwC method varies when the method is
implemented in a single board or in two independent boards.

The Overhead values show that the PWtf method applied
on the benchmarks achieved better results (less redundant
logic) than the duplication itself.

The fault coverage of the new method is the same as the
fault coverage of the DwC and the PWtf method has a lower
overhead for all benchmarks.

Results show that the proposed PWtf method has the half
size against the DwC method in most cases. Moreover, the
number of IOs of the DwC method is doubled (or quadrupled)
when compared with the original method, but the proposed
PWtf method adds only three IOs (the parity of inputs, the
parity of outputs, and the OK/Fail output of the checker).

V. CONCLUSIONS AND FUTURE WORK

The Parity Waterfall (PWtf) method and the Duplication
with Comparison (DwC) based on the parity waterfall allowing
the detection of all faults affecting the circuit implemented
in FPGA has been presented in this paper. The method has
been applied on IWLS2005 sets of benchmarks to create
self-checking circuits.

The main advantage of the method is the ability to create a
self-checking circuit able to detect all faults affecting it without
a fault simulation, thus it does not depend on a selected fault
model.

The results indicate that the fault coverage of the presented
method is able to detect all faults affecting LUTs and the
routing logic. The overhead of the method has been compared
with DwC method and the results indicate that the method has
lower overhead than DwC in all benchmarks.

The parity waterfall method can be encapsulated into a
scheme of duplication. This modification – Duplication with
Parity Waterfall (DwPWtf) – will allow the detected faults to
be localized, and the system to be fully operational during
the fault repair (reconfiguration). This modification will allow
us to compare the DwPWtf method to the Triple Modular
Redundancy (TMR) system directly.

The presented method is valid only, if there are guaranteed
specific routing conditions. These conditions are met, when
there are no wires (signals) split into even numbers of branches
(the fanout of any signal cannot be even). The method is able
to fix these situations by adding an additional branch, thus the
fanout of all signals is odd.

The routing of the FPGA must be modified to create correct
(atomic) splits of all signals – splits not allowing a fault to
affect only two independent branches keeping the third branch
unaffected. This routing modification in FPGAs is not a part
of this paper and will be processed in future work.

ACKNOWLEDGEMENT

This research has been partially supported by the projects
MSMT-32106/2015-1: LG15012 and GA16-05179S.



Benchmark Original Overhead PWtf DwC
(IOs) (LUTs) (%) (IOs) (%) (IOs) (%)

ac97 ctrl 132 3184 15.30 135 115.33 2661/4582 200.06

aes core 388 6783 13.70 391 113.71 7781/12942 200.03

des area 304 1588 13.04 307 113.22 6101/8662 200.25

des perf 298 9946 18.97 301 118.98 5981/8542 200.02

ethernet 213 12642 15.08 216 115.09 4281/8882 200.02

i2c 33 277 12.27 36 112.64 681/1242 200.72

mem ctrl 267 2362 8.43 270 108.47 5361/11442 200.08

pci bridge32 369 5685 12.51 372 112.52 7401/15682 200.04

pci conf cyc addr dec 64 32 15.62 67 121.88 1301/2582 212.50

pci spoci ctrl 38 280 10.00 41 110.36 781/1302 200.71

sasc 28 172 20.35 31 121.51 581/1062 204.65

simple spi 28 214 19.63 31 120.09 581/1062 200.93

spi 92 1059 8.78 95 108.97 1861/3662 200.57

ss pcm 28 114 19.30 31 121.05 581/942 205.26

steppermotordrive 8 40 12.50 11 115.00 181/342 205.00

systemcaes 389 2256 8.91 392 108.95 7801/12962 200.09

systemcdes 197 653 16.39 200 116.54 3961/6562 200.31

tv80 46 2297 9.53 49 109.58 941/2222 200.09

usb funct 249 3899 8.54 252 108.59 5001/9842 200.21

usb phy 33 111 10.81 36 111.71 681/1402 201.80

vga lcd 198 30854 11.62 201 111.63 3981/8342 200.01

wb conmax 2546 13244 12.61 2549 112.62 50941/107582 200.03

wb dma 432 1055 5.21 435 105.40 8661/17262 200.57

1 One board
2 Two boards

TABLE I: IWLS2005 benchmarks: comparison of results of the Parity Waterfall and Duplication with Comparison methods.

REFERENCES

[1] Normand, E.: “Single Event Upset at Ground Level, IEEE Transactions
on Nuclear Science”, vol. 43, 1996, pp. 2742–2750.

[2] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Computing”, IEEE
Transactions on Dependable and Secure Computing, Vol. 1, No. 1,
January–March 2004.

[3] D. K. Pradhan, “Fault-Tolerant Computer System Design”, Prentice
Hall PTR, Upper Saddle River, New Jersey 1996, ISBN 0-7923-7991-
8.

[4] Kubalı́k, P., Kubátová, H., “Dependable design technique for
system-on-chip”, Journal of Systems Architecture, Vol. 2008, no. 54,
(2008) pp. 452–464. ISSN 1383-7621.

[5] Albrecht, C. IWLS 2005 Benchmarks. Technical report, June 2005.
[6] Xilinx, Virtex-5 Libraries Guide for HDL Designs, http://www.xilinx.

com/support/documentation/sw manuals/xilinx11/virtex5 hdl.pdf,
April, 2015

[7] Bellato, M.; Bernardi, P.; Bortolato, D.; Candelori, A.; Ceschia, M.;
Paccagnella, A.; Rebaudengo, M.; Reorda, M.S.; Violante, M.; Zam-
bolin, P., “Evaluating the effects of SEUs affecting the configura-
tion memory of an SRAM-based FPGA”, Design, Automation and
Test in Europe Conference and Exhibition, 2004. Proceedings, vol.1,
pp.584,589 Vol.1, 16-20 Feb. 2004, ISBN 0-7695-2085-5.

[8] Syam Sundar Reddy, E.; Vikram Chandrasekhar; Sashikanth, M.; Ka-
makoti, V.; Vijaykrishnan, N., “Detecting SEU-caused routing errors
in SRAM-based FPGAs”, VLSI Design, 2005. 18th International Con-
ference on, pp.736,741, 3-7 Jan. 2005, ISBN 0-7695-2264-5.

[9] Samudrala, P.; Ramos, J.; Katkoori, S. Selective triple Modular redun-
dancy (STMR) based single-event upset (SEU) tolerant synthesis for

FPGAs. Nuclear Science, IEEE Transactions on, volume 51, no. 5, Oct
2004: pp. 2957–2969, ISSN 0018-9499.

[10] Ju-Yueh Lee; Yu Hu; Majumdar, R.; Lei He; Minming Li, “Fault-
tolerant resynthesis with dual-output LUTs”, Design Automation Con-
ference (ASP-DAC), 2010 15th Asia and South Pacific, pp.325,330,
18-21 Jan. 2010, ISBN 978-1-4244-5765-6.

[11] Leveugle, R.; Ben Jrad, M., “On improving at no cost the quality of
products built with SRAM-based FPGAs”, Quality Electronic Design
(ASQED), 2013 5th Asia Symposium on, pp.295,301, 26-28 Aug. 2013,
ISBN 978-1-4799-1312-1.

[12] Ben Jrad, M.; Leveugle, R., “Automated design flow for no-cost
configuration error detection in sram-based FPGAs”, Reconfigurable
Computing and FPGAs (ReConFig), 2013 International Conference on,
pp.1,6, 9-11 Dec. 2013, ISBN 978-1-4799-2078-5.

[13] Kyriakoulakos, K.; Pnevmatikatos, D., “A novel SRAM-based FPGA
architecture for efficient TMR fault tolerance support”, Field Pro-
grammable Logic and Applications, 2009. FPL 2009. International
Conference on, pp.193,198, Aug. 31 2009-Sept. 2 2009

[14] Das, A.; Venkataraman, S.; Kumar, A., “Improving autonomous soft-
error tolerance of FPGA through LUT configuration bit manipulation”,
Field Programmable Logic and Applications (FPL), 2013 23rd Interna-
tional Conference on, pp.1,8, 2-4 Sept. 2013.

[15] Rohani, A.; Zarandi, H.R., “A New CLB Architecture for Tolerating
SEU in SRAM-Based FPGAs”, Reconfigurable Computing and FPGAs,
2009. ReConFig ’09. International Conference on, pp.83,88, 9-11 Dec.
2009

[16] Berkeley Logic Synthesis and Verification Group. ABC:
A System for Sequential Synthesis and Verification. 2000,
http://www.eecs.berkeley.edu/˜alanmi/abc/.


