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1Abstract—Dependability models allow calculating the rate 
of events leading to a hazard state – a situation, where safety of 
the modeled dependable system (e.g. railway station signalling 
and interlocking equipment, automotive systems, etc.) is 
violated, thus the system may cause material loss, serious 
injuries or casualties. A hierarchical dependability model 
based on multiple Markov chains allows expressing multiple 
redundancies made at multiple levels of a system consisting of 
multiple cooperating blocks. The hazard rates of the blocks are 
calculated independently and, when combined, they are used to 
calculate the hazard rate of the whole system. The independent 
calculations are significantly faster than the calculation of a 
single model composed of all models of the blocks. The paper 
shows a method of reducing Markov chains and using them to 
create hierarchical dependability models and its extensions 
allowing more accurate results to be achieved. An example 
study is used to demonstrate the improvements obtained by the 
extensions when compared to the original method. 
 

Index Terms—Fault tolerant systems, Hierarchical systems, 
Reliability, Reliability engineering. 

I. INTRODUCTION 
Dependability of a system is the ability to avoid service 

failures (situations where the behavior of the system 
deviates from the correct behavior) that are more frequent 
and more severe than acceptable. Dependability is an 
integrating concept that includes Safety, Availability, 
Reliability, Integrity, and Maintainability [1]. 

An event causing violation of a system safety will be 
called a hazard event. The rate of hazard events is called 
hazard rate. 

Dependability models are models designed to calculate 
the hazard rate of a system. Models of complex systems 
consisting of cooperating dependable blocks may be created 
as coarse-grained and fine-grained. Coarse-grained models 
are small and simple models allowing exact calculations of 
hazard rate in a short time. On the other hand, coarse-
grained models are inaccurate and do not reflect the internal 
structure of the system. Fine-grained models are accurate, 
but they can be too large, and thus the hazard rate 
calculation is time-consuming. They reflect the internal 
structure, but they grow rapidly in size when the complexity 
of a system (e.g. the number of the dependable blocks) 
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increases. 
Inexact models may be used to speed up the calculations. 

Accuracy is not crucial in such cases when we prove that the 
inexact result is pessimistic. In other words, we must prove 
that the real system will be safer than the system modeled by 
the inexact model(s). 

This paper presents extensions of the Markov chains-
based dependability models reduction method presented in 
[2]. The reduction allows inexact hierarchical models to be 
built using multiple linked models reflecting the structure of 
a system. The extensions presented in this paper allow more 
accurate results to be achieved for the intended application. 

Multi-level hierarchy may be used to describe each level 
of redundancy independently. The proposed hierarchical 
models allow to calculate the hazard rate and determine, 
whether the hazard event can be tolerated/omitted safely. 

The reduction allows a trade-off between accuracy and 
reduction time. The hazard rate, which is calculated by the 
hierarchical model, is higher than the hazard rate calculated 
without hierarchy, but the CPU-time spent on its calculation 
is greatly reduced (ca. 1000 times w.r.t the exact model). 
The extensions allow more accurate results when specific 
conditions of the systems are met (e.g. the maximal allowed 
operational time). 

The proposed extensions are demonstrated on a case 
study system containing multiple (17) identical dependable 
blocks configured as N-modular redundant system (NMR) 
in this paper. The hierarchical models use two linked models 
(a top NMR model and a model of the internal redundancy 
of the block) containing up to 16 states in total, instead of up 
to tens of thousands states which are necessarily used for the 
exact model. 

The paper is organized as follows: Section II introduces 
basic reliability definitions. The reduction procedure is 
described in Section III and applied on the case study 
system in Section IV. The results are shown in Section V 
and Section VI concludes the paper. 

II. THEORETICAL BACKGROUND 
Reliability function R(t) is a probability that the system 

will perform its intended operation under specified design 
limits from time 0 until time t at least [1], [3]. The failure 
distribution function F(t) is a complementary function to the 
reliability function, F(t) = 1-R(t). 
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Fig. 1.  Illustrative example of dependability model reduction 
A failure rate is defined as the probability that a system 

will fail at a time t, assuming that it has survived until that 
time. Hazard rate (λ) is defined as a constant failure rate [3]. 

The presented hierarchical models used to calculate the 
hazard rate of the system are based on non-renewable 
Markov chains [4]. Markov chains (MCs) are able to model 
systems whose events are defined by continuous intensity 
rates. All events in the system modeled by MC must satisfy 
the Markovian property – the future of the system is based 
on its present state only. 

A non-renewable MC contains hazard and non-hazard 
states. There are paths from each non-hazard state leading to 
a hazard state and there are no paths leading from a hazard 
state to a non-hazard state. 

III. DEPENDABILITY MODELS REDUCTION 
The hazard rate cannot be calculated directly from a 

general MC due to non-constant failure rate in most cases. 
One way to achieve a constant failure rate is to create a 
simple MC containing two states and one hazard rate only.  

The approximation of a general MC by a simple one 
(reduction) is made by merging all non-hazard states of a 
general MC into a single state that is called Operational in 
this paper (see Fig. 1). The merge is feasible, because there 
is no need to distinguish among the non-hazard states in the 
hazard rate calculation. The reduced model contains a new 
hazard rate λHazard – the hazard rate substituting all hazard 
rates in the exact model. 

The hazard rate of the reduced model is calculated as a 
pessimistic value meeting the condition called the main 
requirement in this paper. The main requirement is met 
when (1) is valid. 

:ݐ∀  (ݐ)ோܨ ≥  (1) (ݐ)ாܨ
FE(t) is the failure distribution function of the  
non-reduced (exact) model and FR(t) is the failure 
distribution function of the reduced model equal to the 
probability of the hazard state. 

The reduction always leads to the same reduced model, 
thus the function FR(t) is calculated in (2). 

(ݐ)ோܨ  = ு௔௭௔௥ௗ݌ = 1 − ݁ିఒಹೌ೥ೌೝ೏∗௧ (2) 
The drawback of the reduction is the loss of accuracy, 

because FE(t) can have any shape in general and FR(t) has 
always an exponential shape, thus they are not equal. 

The main requirement is met only for a given time limit 
value tlimit. This way leads to more accurate solutions, but it 
can be used only when it is guaranteed that the modeled 

system will be replaced/repaired before tlimit is reached. If the 
tlimit is exceeded, the calculated hazard rate cannot be used. 

The details about reduction algorithm have been 
presented in [2]. 

This paper is focused on the reduction using three 
different ways to set the limit time value tlimit: 

1. Time-limited reduction – uses tlimit itself 
2. Probability-limited reduction – uses a limit probability 
(see (3)). 

(௟௜௠௜௧ݐ)ாܨ  = (௟௜௠௜௧ݐ)ோܨ =  (3)  ݐ݈݅݉݅
3. Hazard rate-limited reduction – uses a λLimit hazard rate 
(see (4)). 

(௟௜௠௜௧ݐ)ாܨ = 1 − ݁ିఒಽ೔೘೔೟∗௧೗೔೘೔೟[=  (4) [(௟௜௠௜௧ݐ)ோܨ
The main issue of using the reduction to calculate a 

hazard rate of a multi-level hierarchical model is using of 
FE(t) during the reduction. The calculation of FE(t) is  
time-consuming, thus it is necessary to avoid it to keep the 
main advantage of the reduction – the speedup of the 
calculation. 

The calculation of FE(t) of the whole system can be 
avoided by using the reduction with the same tlimit during the 
reduction of all levels of the model. If the same tlimit is used, 
the FR(t) of the top-level model will meet the main 
requirement exactly up to tlimit, thus the most accurate valid 
result is produced. 

The reduction of multi-level hierarchical model using 
limit probability or limit hazard rate requires balancing of 
limit values for individual levels of the model. The two-
level hierarchical model reduction is accomplished by 
algorithm shown in Fig. 2. The multi-level hierarchy model 
will use the same principle. The iterative algorithm is used 
to find tlimit optimal for their limit value in both cases. The 
algorithms are similar, except for details enclosed in ** 
(specific for the probability limit) and // (specific for the 
hazard rate limit).  

The end of the main loop is determined by minStep 
parameter. This parameter is used to balance the accuracy 
and the duration of the reduction. 

 

Fig. 2.  The Reduction flowchart 
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Fig. 3.  Block diagram of a case study system 

 

Fig. 4.  Dependability model of the Modified duplex system block used to 
calculate the exact model failure distribution function. 

 

Fig. 5.  Dependability model of N-modular redundant system used to 
calculate the exact model failure distribution function. 

IV. CASE STUDY SYSTEM 
A case study system uses dependable blocks connected in 

N-modular Redundant (NMR) system. The system is 
reduced using a two-level reduction. 

The system is based on blocks using Modified duplex 
system redundancy [5]. Each dependable block contains two 
independent copies of functional modules, thus the safety of 
the blocks using these redundancies cannot be violated by a 
single fault.  The structure of the system is shown in Fig. 3. 

A. Modified Duplex System 
Modified Duplex System (MDS) is based on two 

independent modules with parity checkers attached [5]. The 
parity checkers are able to detect some faults. The remaining 
faults are detected by comparators attached to the outputs of 
both modules. 

The MDS is designed to utilize the reconfiguration ability 
of a field-programmable gate array (FPGA). FPGA is an 
integrated circuit designed to be configured by a customer or 
a designer after manufacturing. A part of the FPGA affected 
by a fault can be repaired by reconfiguration in tenths or 
hundreds of milliseconds. 

The dependability model of MDS used in this paper is 
constructed using the following assumptions: 
 Two faults will never occur at the same time. 
 When a fault occurs in one module, the parity checker 
attached to this module may detect the fault. The parity 
checker needs not cover all possible faults. If the fault is 
detected by the parity checker, the affected module is 
repaired. If the fault is not detected by the parity checker, 
it may be detected by comparators. Both modules have to 
be repaired in such case, because the faulty module 
cannot be identified. 

 If another fault occurs before the repair is completed, 
the safety of the block can be violated. This double-fault 
situation is considered as a hazard state. 
The model shown in Fig. 4 is used to calculate the exact 

model failure distribution function FE(t) of the MDS block. 
The model, its states and rates, is described in [2]. 

B. N-modular Redundancy 
N-modular Redundancy (NMR) is based on N identical 

blocks and voter. This voter is able to compare all outputs of 
the blocks and use majority voting to produce a single 
output. If less than half of the blocks fails, the voter is able 
to produce correct output. If more than half of the blocks 
fails, the voter will produce incorrect output – this situation 
is considered as a hazard state. The erroneous blocks cannot 
be identified, thus there is no repair/recovery system. 

The system containing 17 blocks is used in this paper. 
The model shown in Fig. 5 is used to calculate the exact 
model failure distribution function. 

The details about reduction of both MDS block and NMR 
system are shown in [2]. 

V. RESULTS 
We have presented results of the reduction (including the 

speedup of the reduction when compared to the exact 
solution and more NMR systems containing from 3 to 17 
blocks) of the case study system in [2]. Additionally to [2], 
here we present the results of the time-limited and hazard 
rate-limited reductions in this paper. The probability-limited 
reduction presented in [2] used tlimit = 1012 for low-level 
(MDS) model, thus the results have been more pessimistic 
than results presented in this paper. 

The duration of the exact solution of the case study 
system is ca. 750 s [2], all results presented in this paper are 
acquired in ca. 1 s. 

TABLE I. TIME-LIMITED REDUCTION. 
Limit time [103 h] Hazard rate  [h-1]  

100 855.0  10-12 
150 57.34  10-9 
200 514.3  10-9 
250 1.530  10-6 
300 3.155  10-6 
350 5.127  10-6 
400 7.146  10-6 
450 8.990  10-6 
500 10.53  10-6 
550 12.49  10-6 

→ ∞1) 23.85  10-6 
1) The reduction with limit 1012 is used. 
 

Table I contains results of time-limited reduction. The first 
column contains the limit time – the maximal allowed 
operational time of the system. If this time is exceeded, the 
hazard rate (in the second column) will not be pessimistic 
when compared to the exact solution. 

The plot in Fig. 6 shows failure distribution functions 
when time limit tlimit = 200  103 h. The horizontal axis of 
the plot represents the time of operation measured in hours, 
the vertical axis represents the failure distribution function. 
The thick dashed line represents the exact model failure 
distribution function, the gray line represents the reduced 
model failure distribution function calculated using the full 
reduction and the black line represents the reduced model 
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failure distribution function calculated using the reduction. 
The vertical line represents the time limit tlimit. 

TABLE II. PROBABILITY-LIMITED REDUCTION. 
Limit probability [-] Limit time  

[103 h] 
Hazard rate  [h-1] 

10-4 102 1.113  10-9 
10-3 123 8.160  10-9 
10-2 155 69.73  10-9 
10-1 209 590.2  10-9 
0.35 257 1.694  10-6 
0.6 302 3.155  10-6 
0.95 417 7.505  10-6 
0.99 479 9.754  10-6 
0.999 562 12.49  10-6 

1 → ∞1) 23.85  10-6 
1) The reduction limit 1012 is used. 
 

Table II contains results of probability-limited reduction. 
The first column contains limit probability – the maximal 
allowed probability of failure of the system. This probability 
is reached at operational limit time shown in the second 
column. The hazard rate of the system, when the limit is 
applied, is shown in the third column. 

The plot in Fig. 7 shows failure distribution functions 
when probability limit limit = 0.35. The axes represent the 
time of operation measured in hours and the failure 
distribution function (they are identical to the axes used in 
the previous plot). The horizontal line represents the 
probability limit. 

Table III contains results of hazard rate-limited reduction. 
The first column contains limit hazard rate – the maximal 
allowed hazard of the system. The solution is pessimistic up 
to operational limit time shown in the second column. The 
hazard rate of the system, when the limit is applied, is 
shown in the third column. 

TABLE III. HAZARD RATE-LIMITED REDUCTION. 
Limit hazard rate [h-1] Limit time [103 h] 

5  10-8 50  10-9 141 
10-7 100  10-9 158 

2  10-7 200  10-9 174 
5  10-7 500  10-9 200 

10-6 1  10-6 229 
2  10-6 2  10-6 240 
5  10-6 5  10-6 347 

10-5 10  10-6 479 
2  10-5 20  10-6 891 

 

 

VI. CONCLUSIONS 
 The presented reduction of hierarchical dependability 

models based on Markov chains has been used to calculate 
the hazard rates of safety-critical systems in this paper. The 
model uses redundancy – the Modified duplex system 
method as low-level redundancy and the N-modular 
redundancy as high-level redundancy. 

The results indicate that the reduction can improve the 
calculated hazard rate of the system significantly when 
compared to the full reduction. 

The reduction decreases the hazard rate of the case  
study system ca. 40 times (from ca. 23  10-6 h-1 – one 
failure per ca. 5 years – to ca. 5  10-7 h-1 – one failure per 
ca. 200 years), but the system must be replaced/repaired 
before 200,000 hours of operation (ca. 22 years). If the 
replacement/repair before 150,000 hours (ca. 17 years) of 
operation is guaranteed, the hazard rate can be decreased to  
ca. 5  10-8 h-1 (the probability of a system failure, until 
150000 hours of operation is reached, is ca. 1%). 

The reduction can be bounded by the limit probability, 
too. This reduction type is suitable if the overall system 
failure probability cannot exceed a limit (the limit may be 
specified by some standard etc.) 

The last but not least reduction method is specified by a 
limit hazard rate. Many safety-critical systems (e.g. railway 
station signalling and interlocking equipment, automotive 
systems, etc.) have maximal allowed hazard rate. Hazard 
rate limited reduction can find a maximal theoretical 
operational time of such systems thus the regular 
replacements may be performed less often. 
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Fig. 6.  Comparison of exact, full reduction, and time-limited reduction 
failure distribution functions 

Fig. 7.  Comparison of exact, full reduction, and 
probability-limited reduction failure distribution functions 

  


