
PBO-Based Test Compression

Jiří Balcárek, Petr Fišer, and Jan Schmidt

Dept. of Digital Design

Czech Technical University in Prague

Prague, Czech Republic

{jiri.balcarek, petr.fiser, jan.schmidt}@fit.cvut.cz

Abstract—This paper presents a novel ATPG and test

compression algorithm based on Pseudo-Boolean (PBO)

optimization. Similarly to SAT-based ATPGs, the test for each

fault is represented implicitly as a PBO instance. The

optimization process solves the problem of maximizing the

number of unspecified values in the test. A novel don’t care

aware circuit-to-PBO conversion procedure is presented. The

obtained unspecified values in the test are efficiently exploited

in test compression. The produced compressed test sequence is

suited for the RESPIN decompression architecture, thus for

testing systems-on-chip. The presented experimental results

show the efficiency and competitiveness of the proposed method.

Keywords-ATPG, test compression, Pseudo-Boolean

Optimization, SoC testing , RESPIN.

I. INTRODUCTION

Testing of complex systems-on-chip (SoCs) is an

everlasting challenge for designers. Due to huge test data

volumes, compressed tests must be stored in the automated

test equipment (ATE) and submitted to tested chips.

In the state-of-the-art practice, a universal automated test

pattern generation tool (ATPG) [1], [2] is used first

to explicitly choose a non-compacted test for a given circuit,

which is then compressed [3], [4]. Such a two-steps process is

suboptimal as it loses information.

Recently, implicit techniques are becoming popular in test

generation [5], [6], [7] and compression. All test vectors for a

given fault are represented as solutions of a Boolean

satisfiability problem (SAT) instance. This is also the case

of SAT-Compress algorithm [8] referenced in this paper.

Using implicit test representations, we do not lose any

information, when the test is generated and passed to the

compression process.

All compressors discussed in this paper target the RESPIN

architecture [9], which is aimed for SoC designs compliant

with the IEEE P1500 standard [10].

The compression is based on overlapping of shifted test

vectors [8], [9]. In an optimal case, values of two subsequent

test vectors are displaced by one bit, with one bit added.

Hence, the presence of test don’t cares is essential for the

efficiency of the compression.

Unfortunately, common SAT solvers [11], [12] return

only one completely specified vector as a solution

(satisfiability proof). Thereby, no unspecified bits are present

in the test.

There are techniques to obtain incompletely specified

SAT solutions [13]-[17], however, they do not distinguish

primary inputs from the rest of variables.

In this paper we propose a Pseudo-Boolean Optimization

(PBO) [18], [19] technique to generate incompletely specified

test vectors. Similarly to SAT, the circuit is converted to a

PBO instance, whereas the optimization criterion is set

to maximize the number of unspecified values at the primary

inputs only.

As our previous results indicated, blindly introduced

unspecified values can do more harm than good [20].

Therefore, similarly to [20], we combine the PBO technique

with fault simulation. In this process, the PBO generates test

vectors with maximum of unspecified bits, which are

subsequently assigned a value, so that the fault coverage is

maximized.

II. PBO-BASED TEST COMPRESSION ALGORITHM

Principles of the proposed ATPG and test compression

algorithm based on Pseudo-Boolean Optimization (let us call

it PBO-Compress) will be described in this section.

Basically, the compressed bitstream is constructed

gradually, bit by bit, by shifting the scan-chain content and

adding one bit in each clock cycle. The values of the added

bits are determined by solving PBO equations formed by a

fault miter (see Subsection II.A) and constraints imposed by

the current scan-chain content. Every PBO solution represents

an updated scan-chain content.

A. Fault Miter Construction and Its PBO Conversion

In classical SAT-based ATPG algorithms [5], [6],

a conceptual hardware (the fault miter) is typically

constructed for each fault, as a copy of fault-free and faulty

circuit, whereas their respective outputs are compared,

forming a single-output circuit. The fault is detected under any

assignment of primary inputs (PIs) for which the output equals

to 1 (fault-free and faulty responses differ for one primary

output at least). To find such an assignment, the miter is

converted into a SAT instance (CNF). A variable is assigned

to each signal (both primary inputs – PIs and internal signals)

in the circuit. Each gate is then transcribed into a set of CNF

clauses by Tseitin’s transformations [21].

The SAT problem is then solved by a conventional SAT

solver [11], [12] and a test vector is obtained as a satisfiability

proof. If the instance is not satisfiable, the fault is redundant.

For our purposes, it is convenient to obtain a maximally

unspecified test vector, that is, a solution with maximum

of unspecified values at primary inputs. Therefore, solving an

optimization version of SAT is needed.

There were several optimization versions of SAT solvers

proposed [13], [14], [15], [16], [17], however, they are not

suitable for our purpose for one reason, as they maximize the

number of all don’t care (unassigned) variables. We would

like to maximize only unassigned values at the circuit primary

inputs, i.e., only some CNF variables.

Pseudo-Boolean optimization [18] offers a flexible way

of defining optimization criteria, moreover the PBO

constraints greatly resemble SAT clauses. Therefore, a

straightforward conversion of CNF-to-PBO constraints

suggests itself:

1) Let 𝑥1, … , 𝑥𝑛 be variables of the original SAT problem.

2) For each CNF clause (𝑙1 + 𝑙2 + ⋯ + 𝑙𝑗), where 𝑙𝑖 are

individual literals (variables or their negations) construct an

inequality 𝑙1 + 𝑙2 + ⋯ + 𝑙𝑗 ≥ 1.

3) If a literal 𝑙𝑖 = 𝑥𝑘 (variable in its direct form),

substitute 𝑙𝑖 = 𝑥𝑘 in the inequality.

4) If a literal 𝑙𝑖 = 𝑥𝑘̅̅ ̅ (variable in its negated form),

substitute 𝑙𝑖 = (1 − 𝑥𝑘).

Still, all the variables are in the Boolean domain, while we

need to encode unspecified values. For this purpose, we must

use two Boolean variables to encode each literal, for example

like this:

TABLE I. LITERAL ENCODING

𝑥𝑖 𝑥𝑖
𝑉 𝑥𝑖

𝐴

0 0 1

1 1 1

U any 0

The optimization criterion can be then formed as:

𝑥1
𝐴 + 𝑥2

𝐴 + ⋯ + 𝑥𝑛−1
𝐴 = 𝑚𝑖𝑛. (1)

Where 𝑥1 … 𝑥𝑛−1 are primary inputs.

Detecting a fault means to control defined values in the

circuit, and to observe defined values at outputs. Hence, the

propagation of undefined values must be observed, and every

original CNF variable must be doubled in PBO.

B. Characteristic Functions for Tseitin’s Transformation

During miter conversion, characteristic functions of all

gates in the circuit in CNF form are added to the SAT instance.

For a gate with inputs 𝑥1 … 𝑥𝑚 and output y, the signature

of the characteristic function F is 𝐹: {0,1}𝑚+1 → {0,1}. For

our problem, we need the function 𝐹: {0,1,U}𝑚+1 → {0,1}.

The strategy is to calculate F in some form, then to encode it

by TABLE I. into 𝐹: {0,1}2𝑚+2 → {0,1} or, alternatively,

into two functions 𝐹𝑉: {0,1}2𝑚+1 →
{0,1}, 𝐹𝐴: {0,1}2𝑚+1 → {0,1} which have 𝑦𝑉 resp. 𝑦𝐴 as

the last argument, and to convert them to CNF form.

The main task is to find a concise and complete

representation of F. By completeness we mean that all

possible combinations at input and output are covered, so that

the origin, propagation, and termination of undefined values

can be calculated.

For this purpose, we adapted D-intersection [22]. Because

we represent F as a set of terms in tabular form, TABLE II.

includes also the ‘-‘ symbol. Notice that incompatibility

cannot occur here.

TABLE II. SYMBOL INTERSECTION

 0 1 - U

0 0 U 0 U

1 U 1 1 U

- 0 1 - U

U U U U U

The complete algorithm for generation of a CNF for a

given gate is shown in Figure 1. Let us assume that gate is a

table describing the on-set of a completely specified Boolean

function with one output, and that the columns of the table are

labeled 𝑥1, … , 𝑥𝑚−1, 𝑦. Furthermore, if t is a term, let t[j] be

the symbol of t in the column labelled j.

CNFlib(gate)
1 // generate the characteristic function

2 minimize gate // by Espresso

3 add the off-set to gate // by Espresso

4 move the output column to input columns of gate

5 put all 1s into the output column of gate

6 // calculate intersections

7 do {

8 for each unordered pair (t1, t2) of terms from gate {

9 let s be the intersection of t1[y] and t2[y]

10 if s == U {

11 let t be the intersection of t1 and t2

12 if t is not in gate

13 insert t into gate with output symbol 1

14 }

15 }

16 } while new terms are added to gate

17 // encode and convert to Boolean domain

18 encode gate using TABLE I. giving F

19 // produce CNF

20 turn F into off-set description // by Espresso

21 for each term t in F {

22 start a new clause

23 for each column label j {

24 if t[j] == 0 output j

25 if t[j] == 1 output j

26 }

27 }

Figure 1 . An algorithm generating the CNF characteristic function of a

library gate for Tseitin’s transformation with encoded undefined values

The algorithm has four main phases. The first one (lines 1

to 5) derive the characteristic function. Lines 6 to 16 are the

main phase, which adds terms describing the behavior

of undefined values to the function. Finally, the third phase

(line 18) encodes the table and phase four (19-27) outputs the

resulting CNF, using CNF and DNF duality.

The obtained CNF is then rewritten into a PBO instance

in the straightforward way described in Subsection II.A.

The algorithm is as feasible as Espresso minimization [23]

and off-set generation are.

For purposes of the test compression algorithm, a library

of PBO instances for every supported gate is created using the

procedure from Figure 1. Thus, the conversion is run only

once.

C. The PBO-Compress Algorithm

The principles of the PBO-Compress algorithm are the

same as those of SAT-Compress [8], except of the test patterns

generation, where instead of generating and solving SAT for

each fault, a PBO instance is generated and solved. For the

complete algorithm see [8] and [20].

Test vectors having maximum of unspecified values are

produced by the PBO solver. Specifying additional values

generally decreases the chance for overlapping, but increases

the number of covered faults. We have shown in [20] that this

issue is crucial – when the local fault coverage is lost, the

compression process is prolonged and the resulting bitstream

is bigger too.

However, specifying a bit needs not always increase the

fault coverage. This is the principle of the care bits injection

procedure used in PBO-Compress. Maximum “meaningful”

number of care bits are injected into a test pattern; injecting

yet more care bits wouldn’t increase fault coverage.

Similarly to [24] (where don’t care bits are injected), all

test pattern bits that are unassigned are tried for care bit

injection by fault simulation. Both ‘0’ and ‘1’ values are tried

and the case maximizing the number of detected faults is

chosen. If no care value injected yields a fault coverage

improvement, the unspecified value is retained.

III. EXPERIMENTAL RESULTS

We have tested the algorithm on a subset of ISCAS [25],

[26], IWLS [27] and ITC’99 [28] benchmarks. Only smaller

circuits were chosen for a thorough testing of the algorithms

properties. Since the results greatly resemble results from

[20], we refer to this paper for results of bigger circuits.

Since all the algorithms are greedy, they are sensitive

to many aspects, like the initial pattern choice, the order

in which the faults are processed, the order of care-bits

injection, and the structure of the source file. For this reason,

a single measurement for one benchmark circuit and one

algorithm configuration cannot bring reliable results [29],

[30]. Therefore, except of the final experiments, we have

conducted 1,000 measurements for each tested circuit and

configuration, with the above-mentioned aspects set

randomly.

In SAT-Compress, MiniSAT [11] was used as a SAT

solver, in PBO-Compress MiniSAT+ [19] was used as PBO

solver.

Recently we have published the SAT-Compress

algorithm, where unspecified values were injected into

completely specified test patterns, the Coverage Preserving

Don’t Care Injection (CPDCI) [20]. The approach presented

in this paper treats the unspecified values in the opposite way;

care bits are injected into maximally unspecified patterns.

The results for some selected benchmarks and the average

values are shown in TABLE III. Average percentages

of unassigned test bits obtained by the four techniques:

SAT-Compress maximizing the numbers of don’t cares

regardless the fault coverage, SAT-Compress retaining the

fault coverage (CPDCI), and PBO-Compress without and

with the care bits injection are shown in the “DCs” columns.

In the last case, two DC values are given: before (“DCs”) and

after (“CBI”) care bits injection. The average bitstream

lengths are provided in “Bits” columns.

Even though very few care bits are typically injected

(1.5% on average), they greatly increase the number

of covered faults. This is shown in the “FD” column. The

values indicate the percentage of total faults covered due

to the injected care bits.

We can see that approaches blindly maximizing the

numbers of unspecified values are inferior to approaches

retaining the fault coverage, in sense of final bitstream

lengths. It can be observed that results of similar quality are

obtained by SAT-Compress with unspecified values injection

and PBO-Compress with care bits injection. This just

confirms the theory that the compression algorithm behaves

indifferently of the way of producing of unspecified values

in the test cubes. Even though a real maximum of unspecified

values is produced by PBO, the fault coverage aspect prevails.

Still, PBO-Compress is capable of producing more don’t cares

which can be possibly used in some further processing.

IV. CONCLUSIONS

We have presented a test generation and compression

method based on Pseudo-Boolean Optimization. A novel and

original method to convert a conceptual hardware (miter) to a

PBO instance was proposed. Similarly to SAT-based ATPGs,

the PBO instance implicitly represents test vectors for a given

fault. Additionally, the PBO-based approach offers a

possibility of introducing an optimization criterion. In our

case, it is the amount of unspecified values in the solution,

which is maximized.

The experimental results show that the PBO-based

algorithm unfortunately brings no qualitative breakthrough,

compared to the previously published CPDCI technique. Even

the scalability suffers here, since the PBO solving is much

more time-expensive that SAT solving. However, it

necessarily fits into an exploration of possibilities

of generating and efficiently exploiting test don’t cares and

also more unspecified values are obtained, which could help

in further refining the compression algorithm.

ACKNOWLEDGEMENT

This research has been supported by the grant of the Czech
Technical University in Prague, SGS14/105/OHK3/1T/18.

REFERENCES

[1] H. Fujiwara and T. Shimono, “On the Acceleration of Test Generation
Algorithms,” in IEEE Trans. Comput. Vol. 32, No. 12, December
1983, pp. 1137-1144.

[2] H.K. Lee and D.S. Ha, “Atalanta: an Efficient ATPG for
Combinational Circuits,” Techn. Report, 93-12, Dep't of Electrical
Eng., Virginia Polytechnic Institute and State University, 1999.

[3] J. Rajski, “Embedded Deterministic Test,” in IEEE Trans. on CAD,
vol. 23, No. 5, 2004, pp. 776-792.

[4] J. Jeníček and O. Novák, “COMPAS Advanced test compressor,”
in Proc. of IEEE East-West Design and Test Symposium 2010,
pp. 543-548.

[5] T. Larrabee, “Test pattern generation using boolean satisfiability,”
in IEEE Trans. on Computer-Aided Design, vol. 11, 1992, pp. 4-15.

[6] R. Drechsler, S. Eggersglüß, G. Fey, and D. Tille, “Test Pattern
Generation using Boolean Proof Engines”. Springer Netherlands,
2009, XII, p. 192.

[7] R. Dobai, M. Baláž, “SAT-based generation of compressed skewed-
load tests for transition delay faults”, Microprocessors and
Microsystems (MICPRO), Vol. 37, Issue 2, March 2013, pp. 196-205.

[8] J. Balcárek, P. Fišer, and J. Schmidt, „Techniques for SAT-based
Constrained Test Pattern Generation,“ in Microprocessors and
Microsystems, Vol. 37, Issue 2, March 2013, Elsevier, pp. 185-195.

[9] R. Dorsch and H.-J. Wunderlich, “Reusing Scan Chains for Test
Pattern Decompression,” in Journal of Electronic Testing: Theory and
Applications (JETTA), Vol. 18, Issue 2, April 2002, pp. 231–240.

[10] E.J. Marinissen, et al., “On IEEE P1500's Standard for Embedded Core
Test,” in Journal of Electronic Testing, August 2002, Vol.18, Issue 4-5,
pp. 365-383.

[11] N. Éen, N. Sorensson, “An extensible SAT-solver,” in Lecture Notes
in Computer Science 2919 - Theory and Applications of Satisability
Testing, Springer Verlag, 2004 pp. 333-336.

[12] N. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an effcient SAT solver,” in Proc. of 39th Design
Automation Conference (DAC 2001), pp. 530-535.

[13] R. Ben-Eliyahu, R. Dechter, “On Computing Minimal Models,”
Annals of Mathematics and Artif. Intelligence, vol. 18, 1993, pp. 2-8.

[14] C. Pizzuti, “Computing Prime Implicants by Integer Programming,” in
8th International Conference on Tools with Artificial Intelligence,
1996, pp. 332.

[15] V. Manquinho et al. “Prime implicant computation using satisfiability
algorithms,” in 9th International Conference on Tools with Artificial
Intelligence, Newport Beach, CA, 1997, pp. 232-239.

[16] K. Ravi and F. Somenzi, “Minimal assignments for bounded model
checking,” in TACAS'04, Barcelona, Spain, 2004, pp. 31-45.

[17] I. Dillig, T. Dillig, K.L. McMillan, and A. Aiken, “Minimum satisfying
assignments for SMT,” in Proceedings of the 24th international
conference on Computer Aided Verification, 2012, pp. 394-409.

[18] E. Boros and P. L. Hammer, “Pseudo-Boolean optimization,”
in Discrete Applied Mathematics, Vol. 123, Issues 1–3, 15 Nov. 2002,
pp. 155-225.

[19] N. Éen, N. Sorensson, “Translating Pseudo-Boolean Constraints into
SAT,” in Journal on Satisfiability, Boolean Modeling and
Computation, vol. 2 2006, pp. 1-25.

[20] J. Balcárek, P. Fišer, and J. Schmidt, “Simulation and SAT Based
ATPG for Compressed Test Generation,” in Proc. of 16th Euromicro
Conference on Digital Systems Design, Sep. 4-6, 2013, pp. 445-452.

[21] G.S. Tseitin, “On the complexity of derivation in propositional
calculus,” in Studies in Constructive Mathematics and Mathematical
Logic, Steklov Mathematical Institute, 1968, pp. 115–125.

[22] J.P. Roth, “Diagnosis of automata failures: A calculus and a method,”
IBM J. Res. Develop., vol. 10,1966, p. 278.

[23] R.K. Brayton et al., Logic Minimization Algorithms for VLSI Synthesis,
Boston, MA, Kluwer Academic Publishers, 1984, 192 p.

[24] S. Kajihara and K. Miyase, “On Identifying Don’t Care Inputs of Test
Patterns for Combinational Circuits,” Proc. Int’l Conf. on Computer
Aided Design, Nov. 2001, pp. 364-369.

[25] F. Brglez, H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortan,“ in Proc. of the
International Symposium on Circuits and Systems, 1985, pp. 663-698.

[26] F. Brglez, D. Bryan, K. Kozminski, “Combinational Profiles of
Sequential Benchmark Circuits,“ in Proc. of the International
Symposium of Circuits and Systems, 1989, pp. 1929-1934.

[27] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide,”
Technical Report 1991-IWLS-UG-Saeyang, MCNC.

[28] F. Corno, M.S. Reorda, G. Squillero, “RT-level ITC‘99 benchmarks
and first ATPG results,“ in: Proc. of the IEEE Design and Test of
Computers (2000), pp. 44-53.

[29] A. Puggelli, T. Welp, A. Kuehlmann, and A. Sangiovanni-Vincentelli,
“Are Logic Synthesis Tools Robust?,” in Proc. of the 48th Design
Automation Conference (DAC), 5-9 June 2011, pp. 633-638.

[30] P. Fišer, J. Schmidt, and J. Balcárek, "Sources of Bias in EDA Tools
and Its Influence," in Proc. of 17th IEEE Symposium on Design and
Diagnostics of Electronic Systems (DDECS), Warsaw (Poland), April
23-25, 2014, pp. 258-261.

TABLE III. EXPERIMENTAL RESULTS

Circuit
SAT-Compress, max. DCs SAT-Compress, CPDCI PBO-Compress PBO-Compress + CB injection

Bits DCs[%] Bits DCs [%] Bits DCs [%] Bits DCs [%] CBI [%] FD [%]

5xp1 155.58 8.56 102.32 0.52 106.82 1.82 96.77 1.43 0.43 8.09

b03_C 139.29 12.7 113.12 2.31 111.71 5.80 115.5 4.91 4.13 10.27

b9 271.23 9.11 215.10 4.14 217.76 9.94 228.72 8.61 7.53 20.32

c1355 292.18 1.80 265.57 0.29 264.09 0.79 265.32 0.70 0.59 5.27

c432 245.26 9.50 185.93 5.11 193.58 13.70 178.39 10.20 9.02 18.63

c499 222.66 2.18 198.28 0.29 200.74 0.90 204.46 0.74 0.52 4.22

c8 363.39 24.05 276.09 15.00 281.74 36.32 295.27 33.10 30.74 23.98

dc2 133.97 14.44 91.24 8.70 98.20 16.65 91.43 16.51 13.17 13.27

f51m 273.02 12.44 163.93 3.35 167.55 5.93 142.79 6.64 3.26 14.75

cht 156.09 6.76 133.98 4.94 138.03 6.77 126.61 6.57 5.98 6.26

i1 189.25 8.74 152.75 6.10 164.25 21.36 161.43 19.79 17.78 26.68

i3 392.22 8.55 349.81 4.83 361.34 13.15 391.51 10.65 9.99 64.31

Avg. 221.07 11.51 175.65 6.37 180.25 13.29 179.72 12.17 10.70 17.33

