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Abstract—Dependability models allow calculating the rate of
an event leading to a hazard state – a situation, where safety of
the modeled dependable system (e.g. railway station signaling and
interlocking equipment, automotive systems, etc.) is violated, thus
the system may cause material loss, serious injuries or casualties.
A hierarchical dependability model allows expressing multiple
redundancies made at multiple levels of a system decomposed to
multiple cooperating blocks. A hierarchical dependability model
based on Markov chains allows each block and relations between
these blocks to be expressed independently by Markov chains.
This allows a decomposition of a complex dependability model
into multiple small models to be made. The decomposed model
is easier to read, understand and modify. A hazard rate is
calculated significantly faster using hierarchical model, because
the decomposition allows exponential calculation-time explosion
to be avoided. The paper shows a method how to reduce Markov
chains and use them to create hierarchical dependability models.
An example study is used to demonstrate the advantages of
the hierarchical dependability models (the decomposition of the
complex model into multiple simple models and the speedup of
the hazard rate calculation).

I. INTRODUCTION

The design methods of dependable systems that can be used
in mission-critical applications is the area of interest of our
research group in Faculty of Information Technology (FIT).
We have been using field-programmable gate arrays (FPGAs)
in such practical applications as railway station signaling
and interlocking equipment, automotive systems, etc., due
to their flexibility and ”time to market”. But FPGA-based
systems are sensitive to many effects that can change their
programmed function [1]. These changes are most unwelcome
in dependable systems, where financial losses, serious injuries
or casualties can be caused because of a failure. Therefore
the appropriate methods of dependability modeling, which will
guarantee the worst-case dependability parameters and which
will be able to perform these computations as simple and as
quick as possible is needed.

Dependability is an integrating concept including Availabil-
ity, Safety, Reliability, Integrity and Maintainability. We focus
on the Safety parameter defined as absence of catastrophic
consequences on the user(s) and the environment [2].

One of the most important design techniques allowing
improvement of dependability is redundancy. This means that
if one part of the system fails, there is an alternate functional
part. However, redundancy can have a negative impact on a
system performance, size, weight, power consumption, and
others [3].

There are many redundancy techniques including hardware,
information, time, software redundancy etc. [3]. We use hard-
ware redundancy made by replication in this paper.

Hierarchical dependability models are especially suitable,
when the system is built from multiple dependable blocks.
Each dependable block can use internal redundancy and an-
other level of redundancy can be used outside the blocks to
greatly reduce the probability of safety violation.

An event causing violation of safety of a system will be
called hazard event. The rate of a hazard event is called hazard
rate.

Dependability models – models designed to calculate a
hazard rate of a system – may be created as exact or inexact
models. Models of complex systems composed of cooperating
blocks may be created as coarse-grained – small and simple
models allowing exact calculations of hazard rate in a short
time. On the other hand, coarse-grained models are inaccurate
and do not reflect the internal structure of the system. Fine-
grained models are accurate, but they can be too large, and thus
the hazard rate calculation is time-consuming. They reflect the
internal structure, but they grow rapidly when the complexity
of a system – e.g. the number of the dependable blocks – is
increased.

Inexact models may be used to speed up the calculations,
because accuracy is not crucial, if we prove that the inexact
result is pessimistic. In other words, we must prove that the real
system will be safer than the system modeled by the inexact
model(s).

This paper presents a method of reducing dependability
models based on Markov chains that allows us to reduce
low-level models, so they contain one transition with one
hazard rate only. The transition corresponds to hazard event
of modeled part of the system.

The reduction allows inexact hierarchical models to be
built. They use multiple linked models to reflect the structure
of a system. Multi-level hierarchy may be used to describe
each level of redundancy independently. The hazard rates
calculated from low-level models are used in higher-level
models. Higher-level models are also reduced and their hazard
rates are used in top-level models.

Hierarchical models are composed of multiple small mod-
els, so they are easier to read/understand, easier to mod-
ify/manipulate, and allow exponential calculation-time explo-
sion to be avoided (the dependability parameters are calculated
significantly faster).



The proposed reduction method is demonstrated on case
study system containing multiple (up to 17) identical depend-
able blocks configured as an N-modular redundant system
(NMR) in this paper. Hierarchical model is used to illustrate
the reduction method. The hierarchical model uses 2 linked
models (a top NMR model and a model of the block) contain-
ing up to 14 states in total, instead of up to tens of thousands
states of the exact model that would result from the Cartesian
product of all models.

The results indicate that the hazard rate calculated using the
hierarchical model is higher than the hazard rate calculated
without hierarchy, but the CPU-time spent on the reduction
of the hierarchical model is greatly reduced (up to 80 times
compared to the same system modeled by a standard non-
hierarchical model).

The paper is organized as follows: Section II introduces
basic reliability definitions. The reduction procedure is de-
scribed in Section IV and applied on the case study system
in Section V. Section VI concludes the paper.

II. THEORETICAL BACKGROUND AND RELATED MODELS

The failure distribution function F (t) is a complementary
function to reliability function. Reliability function R(t) is a
probability that the system will perform its intended function
under specified design limits from time 0 until time t at least
[2], [4].

Hazard rate (λ) is defined as a constant failure rate f(t)
that is a conditional probability of failure density function if
the failure has not occurred until time t [4]. The hazard rate
of the system is the key value to calculate the value of SIL.

The hierarchical models used to calculate the hazard rate
of the system are based on non-renewable Markov chains ([5]
Section 6.4). Markov chains (MCs) are able to model systems
whose events are defined by discrete probability values and
are also able to model systems whose events are defined by
continuous intensity rates. The second variant is more suitable
to determine SIL, because the value of SIL is based on hazard
rate of the modeled system.

A non-renewable Markov chain contains hazard and non-
hazard states. Hazard states represent situations where safety
of the modeled system is violated. There are paths from each
non-hazard state leading to a hazard state and there are no
paths leading from a hazard state to a non-hazard state.

The main advantage of Markov chains is the simple cal-
culation of reliability function of the modeled system using
the system of differential equations when all events satisfy the
Markovian property. The Markovian property is met, when
the future of the modeled system is based on its present state
only. Nowadays mathematical software is able to solve such
system automatically using analytic or numeric methods. The
main disadvantage of Markov chain is the state explosion – the
number of the states of the model grows fast when modeled
system complexity is increased.

The Fault Trees (FTs) and Reliability Block Diagrams
(RBDs) are commonly used to build hierarchical dependability
models [6], but there is one main disadvantage – elementary
events/blocks of these models must be independent. Hierarchi-
cal dependability models based on MCs allow us to model any
dependability among the events/blocks that can be modeled by
an MC.
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Fig. 1. Illustrative example of dependability model reduction.

Hierarchical dependability models based on FTs or RBDs
can use MCs as the models of the events/blocks, when elemen-
tary events/blocks are independent. The well-known method
shown in [6] uses the limit value of failure distribution function
limt→∞ F (t) (steady-state availability) of the MC in the upper
level of hierarchy. The steady-state availability cannot be used
to calculate hazard rate of the modeled system, because the
hazard state of non-renewable MC will be reached sooner or
later and there is no way back thus the steady-state availability
of any non-renewable MC is always equal to 0.

III. DEPENDABILITY MODELS REDUCTION

The reduction of a dependability model is made by joining
all non-hazard states into a single state as shown in Fig. 1. The
hazard state remains intact, the index ”E” (Exact) is used to
mark the hazard state of the exact model. Any dependability
model can be reduced using the reduction to the same model
shown in the lower part of Fig. 1. The reduced model contains
a new hazard rate λHazard – the hazard rate substituting all
hazard rates in the exact model.

The drawback of the reduction is the loss of accuracy,
because the failure distribution functions of the exact and
the reduced models are not equal. The constant hazard rate
calculated from the reduced system leads to exponential fail-
ure distribution function, but the failure distribution function
calculated from the exact system can have general shape.

Accuracy is not crucial in our case, but we must prove
that the inaccurate hazard rate calculated from the reduced
model is pessimistic. In other words, we must prove that the
real system will be at least as safe as the system modeled by
the reduced model(s). The proof is made by comparison of the
reduced failure distribution function FR(t) = 1−e(−λHazard∗t)

with the failure distribution function FE(t) of the exact model.
The condition is called the main requirement. The main
requirement is met when

∀t : FR(t) ≥ FE(t)

In other words, the reduced failure distribution function must
be greater than the failure distribution function of the exact
model all the time.
The reduction is made as follows:
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Fig. 2. Correction algorithm flowchart.

1) Calculate the exact failure distribution function FE(t)1.
2) Find the estimated value λHazard Est.

The main goal of this step is to make a fast estimation
of the hazard rate that will be used as the starting point
of the next step. This value may not meet the main
requirement, but the better is the estimation, the faster
will be the next step.
λHazard Est is taken from the estimated failure dis-
tribution function FR(t) intersecting the exact failure
distribution function FE(t) from the previous step at the
predefined probability level.

FE(tlevel) = FR(tlevel) = 1− e(−λHazard Est∗tlevel)

3) Make correction of λHazard Est to satisfy the main
requirement.
The goal of the correction is to find the lowest value of
λHazard Est whose FR(t) meets the main requirement
with the accuracy given by minStep parameter. The
search is based on the bisection method – a method for
iteratively converging to a solution which is known to
lie inside some interval – searching for a point, where
FE(t) ≤ FR(t) all the time and λHazard Est has the
lowest possible value. There are three main loops (see
the flowchart shown in Fig. 2):

a) Find and verify the endpoints of the interval
that will be bisected (start and end). Start is a
hazard rate whose FR(t) does not meet the main
requirement, end is a hazard rate whose FR(t)
meets the main requirement.

b) Perform the bisection until the required accuracy
given by minStep is met.

c) Verify the result.

1Numeric method performed by NDSolve command of Mathematica 8.01
[7] software is used in this paper.

The flowchart shown in Fig. 2 contains subroutines verify
value and find end. Verify value checks whether FR(t)
using selected value as hazard rate is greater than FE(t)
all the time or not. In other words, it checks whether the
value meets the main requirement.
The find end method is used to find the end of the interval
that will be bisected. A new function M(λ) is created
as the best-fitting function using three points – three
maximal differences between FE(t) and FR(t) using
three consecutive hazard rates with minStep difference.
The end value is taken as the hazard rate, where the
extrapolation of function M(λ) reaches 0.

IV. PARTIAL COVERAGE REDUCTION

The main requirement (the reduced failure distribution
function must be greater than the failure distribution function
of the exact model all the time) mentioned in Section IV may
be too strict in many applications.

The area, where the main requirement is not met, is mostly
located in the upper part of the failure distribution function,
where the probability of safety violation is close to 1. The
safety-critical system has to be replaced/repaired long before
this area is reached.

If the specifications/standards define that the system has to
be replaced/repaired when the probability of safety violation
meets the specified level, the rest of the failure distribution
function can be ignored (the main requirement does not need
to be met in the ignored area). The ignoring of the rest of
the failure distribution function can significantly improve the
accuracy of the reduction in the most interesting area of the
failure distribution function, where the probability of safety
violation is close to 0.

The plot shown in Fig. 3 contains the illustrative example of
the reduced failure distribution functions using partial and full
coverage. The horizontal axis represents the time of operation
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Fig. 3. Illustrative example of partial coverage of failure distribution function.

measured in hours, the vertical axis represents the failure
distribution function. The thick dashed line represents the
exact failure distribution function, the black line represents the
reduced failure distribution function using the partial coverage,
the gray line represents the reduced failure distribution function
using the full coverage, and the horizontal line represents the
limit value. The area, where the exact failure distribution func-
tion is greater than the reduced failure distribution function, is
highlighted by a light-gray shading. As you can see, the area is
located above the limit value, thus it is not taken into account
during the reduction using the partial coverage.

V. CASE STUDY SYSTEM

A. Modified Duplex System Block
Modified Duplex System (MDS) is based on two indepen-

dent modules with parity checkers attached [8]. The parity
checkers are able to detect some faults. The rest of the faults
are detected by comparators attached to the outputs of both
blocks. The MDS is designed to utilize the reconfiguration
ability of FPGA. The reconfiguration is able to repair a part
affected by a fault in tenth of milliseconds.

The dependability model of MDS used in this paper is
constructed using the following assumptions:

• Two faults will never occur in the block at the same time.
• When a fault occurs in one module, the parity checker

attached to this module is able to detect the fault. If the
fault is detected by parity checker, the affected module
is repaired. If the fault is not detected by parity checker
(it is detected by comparators), both modules have to be
repaired, because the faulty module cannot be identified.

• If another fault occurs before the repair is completed,
the safety of the block can be violated. This double-fault
situation is considered as a hazard state.

Exact Dependability Model

The model shown in Fig. 4 is used to calculate the exact
failure distribution function FE(t) of the MDS block.

Fault Free is the functional/fault-free state of the block.
The fault rate of the first fault is 2λ, because the first fault can
affect two functional parts of the block. Latent state is active
when the block contains a fault that has not been detected yet.

The self-test rate is labeled as δ. If the self-test is performed
successfully (a fault is detected by the parity checkers), the
block will be locked in the Detected Parity state. The
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Fig. 4. Dependability model of Modified duplex system block used to
calculate the exact failure distribution function.

probability of detecting a fault by parity checkers is labeled as
cP . If the self-test is performed successfully (a fault is detected
by the set of the comparators), the block will be locked in the
Detected Comp state. The probability of detecting a fault by
comparators only is labeled as cF .

If the self-test fails (the fault is detected neither by
parity checkers nor by comparators), the block will be in
Not Detected state. The safety of the block is not violated
in this state, but another fault (with fault rate λ) affecting
the unaffected functional part will lead to safety violation
(HazardE state). The second fault hit inside already affected
functional part cannot cause a hazard, because the second
functional part works correctly.

The arc leading from Latent to HazardE expresses the
possibility that a second fault affects the unaffected functional
part before the self-test is finished.

The block locked in the Detected Parity state waits until
the repair is finished (repair rate µModule – only one part is
repaired). The block locked in the Detected Comp state also
waits until the repair is finished (repair rate µ – both parts
and the set of the comparators is repaired). The block is not
functional in these states, but the safety is not violated.

The probability of detection of a fault, the fault rate, and
the self-test rate of the block form the following parameters
values.

µ = 103 [h−1] – the repair rate of the whole block (both
parts and the set of comparators)
µ = 5× 103 [h−1] – the repair rate of the faulty part
λ = 10−5 [h−1] – the fault rate
δ = 10−1 [h−1] – the self-test rate
cP = 0.6 – the probability of detecting a fault by the
parity checkers
cF = 0.2 – the probability of detecting a fault by the
comparators

Dependability Model Reduction

The reduced model of the MDS block is the same as shown
in the lower part of the illustrative example in Fig. 1.

The steps of reduction correspond to the algorithm de-
scribed in Section IV.

Calculate the exact failure distribution function FE(t).
The calculation is made using the system of differential

equations.
Find an estimated value λHazard Est.
We use 10 different probability levels covering the interval
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Fig. 5. Failure distribution function of the exact model (FE(t)) and estimated
functions intersecting FE(t) at predefined probability levels (MDS block).

(0, 1) to gain more precise estimation in this paper. The levels
are given by

leveli = 1.1− 10−(
i
10 ), where i = 0 . . . 9

This non-linear level distribution is based on experimental
observations of failure distribution functions of exact de-
pendability models. The observations indicate that the most
pessimistic estimated failure distribution function intersects
FE(t) in the upper part of the interval (0, 1) in most cases.

All 10 probability levels and estimations are shown in
Fig. 5. The horizontal axis represents the time of operation
measured in hours, the vertical axis represents the failure
distribution function. The thick dashed line represents the
exact failure distribution function, the black thin line represents
the most pessimistic estimated failure distribution function
used in the correction step, and the gray lines represent the
other estimated failure distribution functions. The horizontal
and vertical lines show the intersections of the exact and the
estimated failure distribution functions.

The estimated value λHazard Est taken from the most
pessimistic estimated failure distribution function is

λHazard Est = 3.511× 10−6 [h−1]

Make correction of λHazard Est to satisfy the main require-
ment.

The estimated failure distribution function from the pre-
vious step does not meet the main requirement defined in
Section IV, because there is an area, where the exact failure
distribution function is greater than the reduced failure distribu-
tion function. The correction made according to the flowchart
(see Fig. 2 in Section IV) is necessary in such case.

The plot shown in Fig. 6 contains the exact failure distribu-
tion function, the estimated failure distribution function from
the previous step and the reduced failure distribution function.
The horizontal axis represents the time of operation measured
in hours, the vertical axis represents the failure distribution
function. The thick dashed line represents the exact failure
distribution function, the gray line represents the estimated
failure distribution function, and the black line represents the
reduced (corrected) failure distribution function. The area,
where the exact failure distribution function is greater than
the reduced failure distribution function, is highlighted by a
light-gray shading (see the zoom window).

The corrected value λHazard MDS is
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Fig. 6. Exact, estimated, and reduced failure distribution functions of the
MDS block.
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Fig. 7. Dependability model of generic N-modular redundant system used
to calculate exact failure distribution function.

λHazard MDS = 3.927× 10−6 [h−1]

The CPU-time2 spent on reducing the MDS dependability
model is

tReduction MDS = 12.48 [s]

This CPU-time will be used in Section V-D1 to compare
runtimes of reduction of hierarchical and non-hierarchical
dependability models of the system using MDS as a block.

B. N-modular Redundancy
The model shown in Fig. 7 is used to calculate the exact

failure distribution function of a generic NMR system. The
NMR system containing N blocks will contain

⌊
N
2

⌋
transient

hazard states. These states correspond to the numbers of blocks
that are in the hazard state. We reduce NMR systems consisting
of 1 (a single block) to 17 blocks in this section.

C. NMR based on Modified Duplex System Blocks
The hierarchical dependability model of the NMR system

based on MDS blocks is shown in Fig. 8. The model of a
MDS block is created, reduced, and the result of reduction
(λHazard MDS calculated in Section V-A) is taken as the
hazard rate (λ) of the NMR model. The result of the reduction
of the hierarchical dependability model (λHazard) is calculated
in Section V-D.

D. Results
1) Comparison of Runtimes: Table I shows the comparison.

The first time is the CPU-time spent on solving3 the system of
differential equations of the exact dependability model – model
generated by the Cartesian product of the dependability models
of the MDS blocks configured as NMR. The second time is the
summarized CPU-time spent on reducing the MDS dependabil-
ity model (12.48 s – tReduction MDS taken from Section V-A)
and CPU-time spent on reducing the dependability model of
NMR. The reduction time includes the time required to solve
the exact model, to estimate λHazard Est and to make the
correction. Both models (MDS and NMR) are small, thus the
main part of the time is spent on the corrections.

2Running on Intel Core i5 @3.3 GHz, OS: Win7 64-bit
3NDSolve command of Mathematica 8.01 [7] software running on Intel

Core i5 @3.3 GHz, OS: Win7 64-bit
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TABLE I. NUMBER OF STATES AND CPU-TIMES OF SOLUTIONS OF
N-MODULAR REDUNDANT SYSTEM BASED ON IDENTICAL MODIFIED

DUPLEX SYSTEM BLOCKS.
NMR No. of states No. of states NDSolve Reduction
blocks before merging after merging time [s] time [s]

n1 (MDS)1) 6 6 0.031 12.48 2)

n3 155 55 0.125 26.18
n5 3900 246 0.593 25.30
n7 97625 771 2.449 25.65
n9 2.441× 106 1946 9.204 25.72

n11 61.03× 106 4242 36.83 26.35
n13 1.526× 109 8316 135.2 25.99
n15 38.15× 109 15042 594.3 25.43
n17 953.7× 109 25542 2041.3 25.40

1) NMR containing one block is equivalent to a single MDS block.
2) Contains time to reduce an MDS block only.

TABLE II. THE HAZARD RATES OF THE HIERARCHICAL MODEL USING
PARTIAL COVERAGE REDUCTION.

Limit λHazard Ratio
10−4 2.803× 10−9 9300

10−3 20.30× 10−9 1284

10−2 142.3× 10−9 183.2

0.1 959.0× 10−9 27.19

0.35 2.795× 10−6 12.19

0.6 4.762× 10−6 8.76

0.95 10.07× 10−6 2.59

0.99 12.75× 10−6 2.04

0.999 15.61× 10−6 1.67

11) 26.07× 10−6 1

1) Limit 1 is equal to the reduction with the full coverage.

Some states of the exact Cartesian-product dependability
model may be merged, because the MDS blocks are identical
and it is not necessary to distinguish, which blocks are in a
hazard state. The size of the model without merging grows too
fast, so we generate the merged model – Cartesian model –
directly.

The first column of Table I shows the number of the
MDS blocks, the second column shows the number of the
states of the Cartesian-product dependability model without
state merging. The dependability model without state merging
would be used, if the blocks were not identical. The third
column shows the number of states of the Cartesian model
(after state merging), the fourth column shows the CPU-time
spent on solving the Cartesian model exactly and the fifth
contains the sum of the CPU-times spent on reducing MDS
(tReduction MDS) and reducing NMR.

As you can see, the CPU-time spent on solving the
Cartesian model grows exponentially when the MDS blocks
are added, but the reduction time is nearly constant, therefore
the reduction will be faster when the system containing more
than 11 blocks is used in this particular configuration.

2) Accuracy: Table II shows the hazard rates calculated
using the hierarchical model. The first column shows the
limit of probability of safety violation for main requirement
application. The main requirement is applied up to this value
only. The third column shows the ratio between the full
coverage reduction and the partial coverage reduction with the
given limit value.

As you can see, the lower the limit the higher hazard rate
is able to meet the main requirement. The best ratio of the
presented systems is cca. 10000, when the limit is 10−4.

VI. CONCLUSIONS

A method of constructing of hierarchical dependability
models based on Markov chains has been presented. The
hierarchical models can be used to calculate the hazard rate –
the rate of a hazard event leading to a situation where safety of
a system is violated. The hazard rate is the key value specifying
whether the hazard event may be tolerated or not.

The presented models are applicable to many
mission-critical and safety-critical systems including railway
systems, automotive systems, etc.

The proposed hierarchical model has been used to calculate
the hazard rate of a complex system. The system uses two-level
redundancy – Modified duplex system method as low-level
redundancy and N-modular as high-level redundancy. The re-
sults indicate that the hazard rate calculated using hierarchical
dependability model based on Markov chains is higher than the
hazard rate calculated without using hierarchy, but the increase
can be significantly reduced, when the partial coverage of the
failure distribution function is applied.

The CPU-time spent on the reduction of the hierarchical de-
pendability model based on Markov chains is greatly reduced
(up to 80 times) compared to the same system modeled by
a non-hierarchical model. The partial coverage of the failure
distribution function could lead to additional acceleration of
the reduction, but the partial coverage reduction algorithm.

The results also show that the CPU-time spent on solving
the system of the differential equations of the dependability
model generated by the Cartesian product of the dependability
models of the blocks grows exponentially with respect to the
number of blocks used, but the CPU-time spent on solving
the system of the differential equations of the hierarchical
dependability model is nearly constant.
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