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Abstract—A dependability model allows calculating the rate of
an event leading to a hazard state – a situation, where safety of the
modeled system is violated, thus the system may cause material
loss, serious injuries or casualties. A hierarchical dependability
model allows expressing multiple redundancies made at multiple
levels of a system decomposed to multiple cooperating blocks. A
hierarchical dependability model based on Markov chains allows
each block and its relation to the other blocks to be expressed
independently by a Markov chain. This allows a decomposition
of a complex dependability model into multiple small models to
be made. The decomposed model is easier to read, understand
and modify. A hazard rate is calculated significantly faster using
hierarchical model, because the decomposition allows exponential
calculation-time explosion to be avoided. The hazard rate of the
system is the key value to specify the Safety Integrity Level (SIL).

I. INTRODUCTION

FPGA-based systems are sensitive to many effects that can
change their programmed function [1]. These changes are
most unwelcome in systems, where financial losses, serious
injuries or casualties can be caused because of a failure. The
improvement of dependability parameters of the final design
is required to minimize the impact of such effects.

Dependability is an integrating concept including Avail-
ability, Safety, Reliability, Integrity and Maintainability [2].
We focus on the Safety parameter defined as absence of
catastrophic consequences on the user(s) and the environment
[2].

One of the most important design techniques improving
dependability is redundancy. This means that if one part
of the system fails, there is an alternate functional part.
However, redundancy can have a negative impact on a system
performance, size, weight, power consumption, and others [3].

There are many redundancy techniques including hardware,
information, time, software redundancy, etc. [3]. We focus on
hardware redundancy made by replication in this paper.

An event causing violation of safety of a system will be
called hazard event. The rate of a hazard event is called hazard
rate.

Dependability models – models designed to calculate a
hazard rate of a system – may be created as exact or inexact
models. Models of complex systems composed of cooperating
modules may be created as coarse-grained – small and simple

models allowing exact calculations of hazard rate in a short
time. On the other hand, coarse-grained models are inaccurate
and do not reflect the internal structure of the system. Fine-
grained models are accurate, but they may be too large,
and thus the hazard rate calculation is time-consuming. They
reflect the internal structure, but they grow rapidly in size when
a new module is added to a system (Cartesian product must
be used).

Inexact models may be used to speed up the calculations,
because accuracy is not crucial, if we prove that the inexact
result is pessimistic. In other words, we must prove that the
real system will be safer than the system modeled by the
inexact model(s).

This paper presents a method of reducing dependability
models based on Markov chains that allows us to reduce
low-level models, so they contain one transition with one
hazard rate only. The transition corresponds to hazard event
of modeled part of the system.

The reduction allows inexact hierarchical models to be
built. They use multiple linked models to reflect the structure
of a system. Multi-level hierarchy may be used to describe
each level of redundancy independently. The hazard rates
calculated from low-level models are used in higher-level
models. Higher-level models are also reduced and their hazard
rates are used in top-level models.

The proposed hierarchical models allow us to
1) calculate Safety Integrity Level (SIL) [4] (Top-level

model reduction),
2) determine, whether the hazard event can be toler-

ated/omitted safely (the hazard rate is lower than a limit
value specified by SIL),

3) calculate hazard rates of systems containing multiple
levels of redundancy.

Hierarchical models are composed of multiple small models,
so they

1) are easier to read/understand,
2) are easier to modify/manipulate,
3) allow exponential calculation-time explosion to be

avoided (the dependability parameters are calculated
significantly faster).

The proposed reduction method is demonstrated on a case



study system containing multiple (up to 25) identical redun-
dant blocks configured as an N-modular redundant system
(NMR) in this paper. A hierarchical model is used to illustrate
the reduction method. The hierarchical model uses 2 linked
models (a top NMR model and a model of the block) contain-
ing up to 19 states in total, instead of up to tens of thousands
states of the exact model that would result from the Cartesian
product of all models.

The results indicate that the hazard rate calculated using the
hierarchical model is higher than the hazard rate calculated
without hierarchy (up to 1.33 times in the case study systems
presented in this paper), but the CPU-time spent on the
reduction of the hierarchical model is greatly reduced (up to
40 times compared to the same system modeled by a standard
non-hierarchical model).

The paper is organized as follows: Section II introduces
basic reliability definitions. The reduction procedure is de-
scribed in Section III and applied on the case study system
in Section IV. Section V concludes the paper.

II. THEORETICAL BACKGROUND

The presented reduction method is intended for
non-renewable Markov chains [5]. A non-renewable Markov
chain contains hazard and non-hazard states. Hazard states
represent situations where safety of the modeled system is
violated. There are paths from each non-hazard state leading
to a hazard state and there are no paths leading from a hazard
state to a non-hazard state.

The failure distribution function F (t) is a complementary
function to reliability function. Reliability function R(t) is a
probability that the system will perform its intended function
under specified design limits from time 0 until time t at least
[2], [6].

Hazard rate (λ) is defined as a constant failure rate f(t) that
is a conditional probability of failure density function if the
failure has not occurred until time t [6].

III. DEPENDABILITY MODELS REDUCTION

The reduction of a dependability model is made by joining
all non-hazard states into a single state as shown in Fig. 1. The
hazard state remains intact, the index ”E” (Exact) is used to
mark the hazard state of the exact model. Any dependability
model can be reduced using this procedure to the same
reduced model shown in the lower part of Fig. 1. The reduced
model contains a new hazard rate λHazard – the hazard rate
substituting all hazard rates in the exact model. λHazard is
the inexact hazard rate of the modeled system that has to be
calculated.

The drawback of the reduction is the loss of accuracy.
Accuracy is not crucial in our case, but we must prove that the
inaccurate hazard rate calculated from the reduced model is
pessimistic. In other words, we must prove that the real system
will be at least as safe as the system modeled by the reduced
model(s). The proof is made by comparison of the reduced
failure distribution function FR(t) = 1 − e(−λHazard∗t) with
the failure distribution function FE(t) of the exact model. The
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Fig. 1. Illustrative example of dependability model reduction.

reduced failure distribution function must be greater than the
failure distribution function of the exact model all the time.
This condition is called the main requirement.

The reduction is made as follows:

1) Calculate the exact failure distribution function FE(t)1.
2) Find the estimated value λHazard Est.

The main goal of this step is to make a fast estimation
of the hazard rate that will be used as the starting point
of the next step. This value may not meet the main
requirement, but the better is the estimation, the faster
will be the next step.
λHazard Est is taken from the estimated failure dis-
tribution function FR(t) intersecting the exact failure
distribution function FE(t) from the previous step at
the predefined probability level.

FE(tlevel) = level = FR(tlevel) = 1−e(−λHazard Est∗tlevel)

3) Make correction of λHazard Est to satisfy the main
requirement.
The goal of the correction is to find the lowest value of
λHazard Est whose FR(t) meets the main requirement
with the accuracy given by minStep parameter. The
search is based on the bisection method – a method for
iteratively converging to a solution which is known to
lie inside some interval – searching for a point, where
FE(t) ≤ FR(t) all the time and λHazard Est has the
lowest possible value. There are three main loops (see
the flowchart shown in Fig. 2):

a) Find and verify the endpoints of the interval that
will be bisected (start and end).
• start is a hazard rate whose FR(t) does not meet

the main requirement.
• end is a hazard rate whose FR(t) meets the main

requirement.

1Numeric method performed by NDSolve command of Mathematica 8.01
[7] software is used in this paper.
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Fig. 2. Correction algorithm flowchart.

b) Perform the bisection until the required accuracy
given by minStep is met.

c) Verify the result.
The flowchart shown in Fig. 2 contains subroutines
verify value and find end. Verify value checks whether
FR(t) using selected value as hazard rate is greater than
FE(t) all the time or not. In other words, it checks
whether the value meets the main requirement.
The find end method is used to find the end of the inter-
val that will be bisected. A new function M(λ) is created
as the best-fitting function using three points – three
maximal differences between FE(t) and FR(t) using
three consecutive hazard rates with minStep difference.
The end value is taken as the hazard rate, where the
extrapolation of function M(λ) reaches 0.

IV. CASE STUDY SYSTEM

A. Two-out-of-two Block
The safety of blocks based on Two-out-of-two redundancy

cannot be violated by a single fault. The Two-out-of-two
(2oo2) model is currently used as a dependability model of
the railway station signaling and interlocking equipment [8].

Any railway station signaling and interlocking equipment
must meet dependability requirements given by the European
Standard EN 50129:2003 [4]. This standard is focused on
railway equipment systems classified as the safety-critical
systems. These standards define that all railway equipment
systems must meet Safety Integrity Level (SIL) 4. SIL 4 means
that any event whose rate is higher than 10−8 per hour must
be taken into account during the dependability calculations.
Any event whose rate is lower than 10−8 per hour may be
neglected safely.
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Fig. 3. Dependability model of Two-out-of-two block used to calculate the
exact failure distribution function.

Block Description
The dependability model of 2oo2 used in this paper is

constructed using the following assumptions:
• Two faults will never occur in the block at the same time.
• Assuming a fault occurs in one module, the redundant

module is able to lock the block into a safe state, so that
a possible future fault will not cause a hazard state. A safe
state is considered as the situation where the block is not
operational, but the safety is not violated (e.g. all lights
are red and the traffic is operated by a human operator).

• If another fault occurs before the redundant module locks
the block, the safety of the block may be violated. This
double-fault situation is considered as a hazard state.

Exact Dependability Model
The model shown in Fig. 3 is used to calculate the exact

failure distribution function FE(t) of the 2oo2 block.
Fault Free is the functional/fault-free state of the block.

The fault rate of the first fault is set to 2λ, because the first
fault can affect two functional parts of the block. Latent state
is active when the block contains a fault that has not been
detected yet.



The self-test rate is labeled as δ. If the self-test is performed
successfully (a fault is detected), the block will be locked in the
Safe state. The probability of successful self-test is labeled
as c.

If the self-test fails (the fault is not detected), the block
will be in Not Detected state. The safety of the block is
not violated in this state, but another fault (with fault rate
λ) affecting the unaffected functional part will lead to safety
violation (HazardE state). The second fault hit inside already
affected functional part cannot cause a hazard, because the
second functional part works correctly.

The arc leading from Latent to HazardE expresses the
possibility that a second fault affects the unaffected functional
part before the self-test is finished.

The block locked in the Safe state waits until the repair
is finished (repair rate µ). The block is not functional in this
state, but the safety is not violated.

The functionality of the block will be performed by a human
operator, when the block is locked in the Safe state. The
rate γ expresses the human operator’s hazard behavior rate.
This rate should be included into the safety analysis if a more
complex analysis needs to be done.

The probability of detection of a fault, the fault rate and
the self-test rate of the block form the following parameters
values. The values have been taken from [9].

µ = 24−1 [h−1] – the repair rate
λ = 10−5 [h−1] – the fault rate
δ = 10−1 [h−1] – the self-test rate
c = 0.6 – the probability of detecting a fault by the
self-test
γ = 10−3 [h−1] – the human operator’s hazard behavior
rate

Dependability Model Reduction
The reduced model of the 2oo2 block is the same as shown

in the right part of the illustrative example in Fig. 1.
The steps of reduction correspond to the algorithm described

in Section III.
Calculate the exact failure distribution function FE(t).
The system of differential equations describing the depend-

ability model of 2oo2 block shown in Fig. 3 can be found in
[10].

Find an estimated value λHazard Est.
We use 10 different probability levels covering the interval

(0, 1) to gain more precise estimation in this paper. The levels
are given by

leveli = 1.1− 10−( i
10 ), where i = 0 . . . 9

This non-linear level distribution is based on experimental
observations of failure distribution functions of exact de-
pendability models. The observations indicate that the most
pessimistic estimated failure distribution function intersects
FE(t) in the upper part of the interval (0, 1) in most cases.

All 10 probability levels and estimations are shown in Fig. 4.
The horizontal axis represents the time of operation measured
in hours, the vertical axis represents the failure distribution
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Fig. 4. Failure distribution function of the exact model (FE(t)) and estimated
functions intersecting FE(t) at predefined probability levels (Two-out-of-two
system).

function. The thick dashed line represents the exact failure
distribution function, the black thin line represents the most
pessimistic estimated failure distribution function used in the
correction step, and the gray lines represent the other estimated
failure distribution functions. The horizontal and vertical lines
show the intersections of the exact and the estimated failure
distribution functions.

The estimated value λHazard Est taken from the most
pessimistic estimated failure distribution function is

λHazard Est = 5.996× 10−6 [h−1]

Make correction of λHazard Est to satisfy the main require-
ment.

The estimated failure distribution function from the previous
step does not meet the main requirement defined in Section III,
because there is an area, where the exact failure distribution
function is greater than the reduced failure distribution func-
tion. The correction made according to the flowchart shown
in Fig. 2 shown in Section III is necessary in such case.

The plot shown in Fig. 5 shows the exact failure distribution
function, the estimated failure distribution function from the
previous step and the reduced failure distribution function.
The horizontal axis represents the time of operation measured
in hours, the vertical axis represents the failure distribution
function. The thick dashed line represents the exact failure
distribution function, the gray line represents the estimated
failure distribution function, and the black line represents the
reduced (corrected) failure distribution function. The area,
where the exact failure distribution function is greater than
the reduced failure distribution function, is highlighted by a
light-gray shading (see the zoom window).

The corrected value λHazard 2oo2 is

λHazard 2oo2 = 7.892× 10−6 [h−1]

The CPU-time2 spent on reducing the 2oo2 dependability
model is

tReduction 2oo2 = 11.14 [s]

2Running on Intel Core i5 @3.3 GHz, OS: Win7 64-bit
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Fig. 5. Exact, estimated and reduced failure distribution functions of the
Two-out-of-two system.

This CPU-time will be used in Section IV-D1 to compare
runtimes of reduction of hierarchical and non-hierarchical
dependability models of the system using 2oo2 as a block.

B. N-modular Redundancy

The model shown in Fig. 6 is used to calculate the exact
failure distribution function of a generic N-modular Redundant
(NMR) system. The NMR system containing N blocks will
contain

⌊
N
2

⌋
transient hazard states. These states correspond to

the numbers of blocks that are in the hazard state. We reduce
NMR systems consisting of 1 (a single block) to 25 blocks in
this section.

C. NMR based on Two-out-of-two Blocks

The hierarchical dependability model of the NMR system
based on 2oo2 blocks is shown in Fig. 7. The model of a
2oo2 block is created and reduced and the result of reduction
(λHazard 2oo2 calculated in Section IV-A) is taken as the
hazard rate (λ) of the NMR model. The result of the reduction
of the hierarchical dependability model (λHazard) is calculated
in the following section.

D. Results

1) Comparison of Runtimes: Table I shows the comparison.
The CPU-time spent on solving3 the system of differential
equations of the dependability model generated by the Carte-
sian product of the dependability models of the 2oo2 blocks
configured as NMR is compared to summarized CPU-time
spent on reducing the 2oo2 dependability model (11.14 s –
tReduction 2oo2 taken from Section IV-A) and CPU-time spent
on reducing the dependability model of NMR. The reduction
time includes the time required to solve the exact model, to
estimate λHazard Est and to make the correction. Both models
(2oo2 and NMR) are small, thus the main part of the time is
spent on the corrections.

Some states of the exact Cartesian-product dependability
model may be merged, because the 2oo2 blocks are identical
and it is not necessary to distinguish, which blocks are in a

3NDSolve command of Mathematica 8.01 [7] software running on Intel
Core i5 @3.3 GHz, OS: Win7 64-bit

TABLE I
NUMBER OF STATES AND CPU-TIMES OF SOLUTIONS OF N-MODULAR

REDUNDANT SYSTEM BASED ON IDENTICAL TWO-OUT-OF-TWO BLOCKS.

NMR No. of states No. of states NDSolve Reduction
blocks before merging after merging time [s] time [s]

n1 (2oo2)1) 5 5 0.031 11.14 2)

n3 84 34 0.078 22.45
n5 1360 121 0.280 22.79
n7 21824 315 0.827 23.15
n9 349440 680 2.231 23.06
n11 5.592× 106 1295 5.538 22.34
n13 89.48× 106 2254 12.28 22.86
n15 1.432× 109 3666 27.69 22.34
n17 22.91× 109 5655 61.42 22.71
n19 366.5× 109 8360 119.9 22.86
n21 5.864× 1012 11935 251.0 22.82
n23 93.82× 1012 16549 540.5 23.26
n25 1.501× 1015 22386 969.8 22.87

1) NMR containing one block is equivalent to a single 2oo2 block.
2) Contains time to reduce a 2oo2 block only.

hazard state. The model without merging grows too fast, so
we generate the merged model – Cartesian model – directly.

The first column of Table I shows the number of the
2oo2 blocks, the second column shows the number of the
states of the Cartesian-product dependability model without
state merging. The dependability model without state merging
would be used, if the blocks were not identical. The third
column shows the number of states of the Cartesian model
(after state merging), the fourth column shows the CPU-time
spent on solving the Cartesian model exactly and the fifth
contains the sum of the CPU-times spent on reducing 2oo2
(tReduction 2oo2) and reducing NMR.

As you can see, the CPU-time spent on solving the Cartesian
model grows exponentially when the 2oo2 blocks are added,
but the reduction time is nearly constant, therefore the reduc-
tion will be faster when the system containing more than 15
blocks is used in this particular configuration.

2) Accuracy: Table II shows the difference between the
hazard rates calculated using the hierarchical model and the
hazard rate calculated by reducing a Cartesian model directly.
The first column shows number of the 2oo2 blocks, the second
column shows the hazard rate of the NMR system using
reduction of the Cartesian model. The third column shows
the hazard rate of the NMR system using two-level reduction
of the hierarchy model. The fourth column contains the ratio
of the hazard rates shown in the previous columns.

As you can see, the higher is number of the 2oo2 blocks,
the higher is the error of the reduction of the hierarchical
model compared to the reduction of the Cartesian model. The
worst difference of the presented systems is cca. 33%, but the
CPU-time spent on the reduction drops cca. 40 times.

The plot shown in Fig. 8 shows the comparison of the failure
distribution functions of the N-modular redundant system
based on 25 identical Two-out-of-two blocks. The reduction
of this system (NMR25) is the most inaccurate of the systems
calculated in this paper, because the shape of the exact failure
distribution function of NMR25 system differs from the shape
of the exponential function used by the reduction widely.

The horizontal axis of the plot shown in Fig. 8 represents
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TABLE II

COMPARISON OF HAZARD RATES OF N-MODULAR REDUNDANT SYSTEM
CALCULATED USING HIERARCHY AND CARTESIAN-PRODUCT

DEPENDABILITY MODELS.

NMR λHazard Cartesian λHazard Hierarchy λHazard Hierarchy

blocks [×10−6] [×10−6] λHazard Cartesian

n3 14.35 15.20 1.06
n5 19.74 22.43 1.14
n7 24.44 28.04 1.15
n9 28.73 34.12 1.19

n11 32.41 39.22 1.21
n13 35.48 44.00 1.24
n15 38.75 48.53 1.25
n17 41.47 52.30 1.26
n19 43.59 56.45 1.30
n21 46.06 60.50 1.31
n23 48.45 63.75 1.32
n25 50.26 66.87 1.33
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Fig. 8. Comparison of failure distribution functions of N-modular redundant
system based on 25 identical Two-out-of-two blocks.

the time of operation measured in hours, the vertical axis
represents the failure distribution function. The thick dashed
line represents the exact failure distribution function, the gray
line represents the reduced failure distribution function calcu-
lated using the Cartesian model and the black line represents
the reduced failure distribution function calculated using the
hierarchy model.

V. CONCLUSIONS

A method of constructing of hierarchical dependability
models based on Markov chains has been presented. The
hierarchical models can be used to calculate the hazard rate –
the rate of a hazard event leading to a situation where safety
of a system is violated. The hazard rate is the key value
specifying whether the hazard event may be tolerated or not.

The presented models are applicable to many
mission-critical and safety-critical systems including railway
systems, automotive systems, etc.

The proposed hierarchical model has been used to calcu-
late the hazard rate of a complex system. The system uses
two-level redundancy – Two-out-of-two method currently used
in railway station signaling and interlocking equipment and
N-modular redundancy. The results indicate that the hazard
rate calculated using hierarchical dependability models based
on Markov chains is higher than the hazard rate calculated
without using hierarchy (by 33% in the worst case study
system presented in this paper), but the CPU-time spent on
the reduction of the hierarchical dependability models based
on Markov chains is greatly reduced (up to 40 times compared
to the same system modeled by a non-hierarchical model).

The results also show that the CPU-time spent on solving
the system of the differential equations of the dependability
model generated by the Cartesian product of the dependability
models of the blocks grows exponentially with respect to the
number of blocks used, but the CPU-time spent on solving
the system of the differential equations of the hierarchical
dependability model is nearly constant.
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[10] Kohlı́k, M. and Kubátová, H.: Reduction of Complex Safety Models
based on Markov Chains, In Proc. of the 2012 IEEE 15th International
Symposium on Design and Diagnostics of Electronic Circuits and
Systems (DDECS), New York: IEEE Computer Society Press (2012),
pp. 183–186.


