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Abstract: - It is often assumed that if practical difficulties are neglected, active systems could in principle produce 

arbitrary ideal behavior. This paper presents the factorization approach that is taken to derive limitations of 

achievable frequency responses for active vehicle suspension systems in terms of invariant frequency points and 

restricted rate of decay at high frequencies. The factorization approach enables to determine complete sets of such 

constraints on various transfer functions from the load and road disturbance inputs for typical choices of measured 

outputs and then choose the “most advantageous” vector of the measurements from the point of view of the widest 

class of the achievable frequency responses. Using a simple linear two degree-of-freedom car suspension system 

model it will be shown that even using complete state feedback and in the case of in which the system is controllable 

in the control theory sense, there still are limitations to suspension performance in the fully active state. In control law 

design for active suspension system of vehicles it is demanded to prevent magnitudes of the road and load frequency 

responses from being too large. The paper aims to show that there are some frequency points and frequency ranges 

where the transfer functions have modulus strictly greater than one i.e. where road and load disturbance amplification 

occurs. On the base of the Bode integral theorems a proof will be given to show that the transfer functions must be 

greater in modulus to at least the same extend that it is less than one, when measured in terms of the area on a Bode 

magnitude plot. In such a case there is a possibility to shift frequency ranges where disturbance amplification occurs 

to a ”more advantageous place” or to make magnitudes lower spreading the frequency range. 

 

Key-words: - one-quarter-car model, vibration, active suspension, comprime factorization, frequency responses 

invariant points, dynamics 

 

1   Introduction 
Two major performance requirements of suspension are 

to improve ride and handling quality when random road 

and load disturbances from the environment act upon 

running vehicles. Automotive suspensions are designed 

to provide good vibration insulation of the passengers 

and to maintain adequate adherence of the wheel for 

braking, accelerating and handling, i.e. the purpose of 

active suspensions in terms of performance is to 

improve both of these conflicting requirements. 

In this paper it will be shown the factorization 

approach taken to derive limitations of achievable 

frequency responses for active vehicle suspension 

systems. As we will see, limitations derived for a 

traditional one-quarter-car model in the frequency 

domain arise in the form of invariant frequency points 

and restricted rate of decay at zero and infinite 

frequencies. 

Youla-Kucera factorization approach to feedback 

system stability has been shown in [2)], [3] to derive 

achievable dynamic responses for active suspension 

systems of vehicles. Complete sets of constraints on 

various transfer functions from the road and load 

disturbance inputs were derived 

for typical choices of measured 

outputs. 

 

 

 

 

 

 

 
Fig.1.: One-quarter-car model 

The approach was illustrated for the one-quarter-car 

model shown in Fig.1, where: 

u(t)    control input (active suspension force) [N] 

mu     weight of the unsprung mass (wheel) [kg] 

ms    weight of the sprung mass supported by each 

wheel and taken as equal to a quarter of the total 

body mass [kg] 

kt      stiffness of the tyre [N/m] 

zr(t)   road displacement (road disturbance) [m] 

zs(t)  displacement of the sprung mass [m] 

zu(t)  displacement of the unsprung mass [m] 

f(t)    load disturbance [N] 



Note that if the one-quarter-car model contains also 

a passive suspension system (a sprung of stiffness k and 

a shock absorber of damping quotient b then the 

suspension force u(t) involves also the adequate force 

generated by the passive suspension system. 

On the base of the Youla-Kucera parametrization, 

complete sets of limitations were derived for transfer 

functions from the road disturbance input: 
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and analogically for the load disturbance input for 

various choices of  measured outputs even for full state 

feedback. 

 

 

2   Comprime Factorization 
Consider the standard feedback configuration shown in 

Fig.2, 

 

 

 

 

 

 
Fig. 2.: Standard feedback configuration 

where w is the exogenous input, typically consisting of 

disturbances and sensor noises, u is the control signal, 

z is the output to be controlled, and y the measured 

output. In general u, w, y and z are vector-valued 

signals. 

The transfer matrices G(s) and K(s) are, by 

assumption, real-rational and proper: G represents a 

generalized plant, the fixed part of the system, and K a 

controller [4]. Partition G(s) as: 
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Then Fig.2 stands for the following algebraic equations: 
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Manipulating the equations listed above, the 

following transfer function Tzw(s) from w to z as a 

linear-fractional transformation of K(s) can be derived: 
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It is shown in [1] that the set of all proper real-

rational matrices K(s) stabilizing G(s) is parametrized 

by a free parameter RHsQ )(  as follows: 
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by comprime factorization approach of G22(s): 
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Substituting the equation (9) into (8) we obtain the 

transfer matrix Tzw(s) from w to z in terms of the free 

parameter RHsQ )( : 
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As the parameter Q(s) varies over the set of all stable 

proper functions, the equation (12) parametrizes all 

achievable transfer functions Tzw(s). 

If it is assumed that the tyre does not leave the ground, 

for the one-quarter car model (Fig.1) the linear 

differential equations of motion are: 

fuzm ss
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where zu and zs are measured from the static equilibrium 

position. 

First, let the load disturbance is absent (f=0). 

Adding equations (13) and (14) we obtain the invariant 

equation of: 

)( urtuuss zzkzmzm       (15) 

that is independent on the suspension force u. The 

following transfer functions will be investigated: 
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3   Invariant Properties 
Manipulating the equation (15) we can derive the 

following invariant identities: 
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It is obvious from (19) and (20) that the sprung mass 

position transfer function HSP has an invariant “tyre-

hop” frequency at 
ut mk /1

, where: 

sujsSP mmsH //)(
1

    (22) 

Similarly from (16) and (18) the suspension deflection 

transfer function HSD has an invariant “rattle-space” 

frequency at )/(2 sut mmk  and: 
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2 sujsSD mmsH    (23) 

Finally, from (20) and (21), the tyre deflection transfer 

function HTD does not have any invariant frequency 

point except 03 , where: 
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4   Transfer Function Limitations 
In the next, we will consider the standard block diagram 

shown in Fig.2. As an example, let w=zr , z=zs  and 
T

ruusu zzzzzy ,, . 

Then: 
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The limitations of all achievable closed-loop transfer 

functions )()( sHsT SPzw  are derived from the right 

and left comprime factorization of G22(s), i.e.: 
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where p2(s) and p4(s) are Hurwitz polynomials of degree 

2 and 4, respectively. Then: 
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where )()()()(,)(/)()( 32123
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It follows from (27) that thanks to the term 
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i.e., the resulting rate of decay is of second degree: 
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the denominator of RHsQ )(*
. With respect to (27) 

and the Bezout identity (11) it follows, that: 
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This result endorses (25). 

Thanks to the first order of the imaginary axis 

zero at s=0, the first derivative of the transfer function 

HSP(s) does not have any similar restrictions at this 

point. Expressions (29), (30) and (31) create the 

complete set of limitations which any admissible 

transfer function RHsH SP )(  must satisfy. Another 

words, if any complex transfer function satisfies the 

mentioned limitations, there exists a stabilizing 

controller K(s) so that )()( sHsT SPzw . It does not 

depend on what variables are chosen as the measured 

output - the limitations always arise in the form of 

invariant frequency points as was shown in paragraph 3 

and in the form of restricted rate of decay at infinite 

frequencies as shown in (29). 



Complete sets of limitations for the transfer 

functions HSD(s) and HTD(s) can be similarly carried out 

from the corresponding transfer functions G(s) or using 

(26), (27), (28) and the corresponding invariant 

equation stated above. That way the following complete 

sets of limitations can be derived: 
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Note, that even though it is desirable to prevent 

amplitudes of the frequency responses )(sH SP , 

)(sH SD , and )(sHTD  being too large in any frequency 

domain, a brief analysis of the expressions (29) - (36) 

enables to find out that the investigated transfer 

functions must have modulus strictly grater that one at 

some frequencies what indicates the fact that the road 

disturbance signal is amplified at these mentioned 

frequencies. 

The same approach can be used to derive 

limitations for other transfer functions and various 

choices of the measured outputs. 

It has been shown that the limitations always 

arise in the form of invariant frequency points (for 

example 
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restricted rate of decay at frequencies tending to zero 

and infinity. 

As an example, the complete sets of constraints 

for transfer functions )s(H 1

zw
, )s(H 2
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 and )s(H 3
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 when 

suspension deflection and suspension deflection 

velocity are measured is as follows [2],[3]: 
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It is often assumed that if practical difficulties are 

neglected, active systems could in principle produce 

arbitrary ideal behavior. This paper presents the 

factorization approach that is taken to derive limitations 

of achievable frequency responses for active vehicle 

suspension systems in terms of invariant frequency 

points and restricted rate of decay at high frequencies. 

 

 

5   Bode Integral Theorem 
To analyze the results given above it is useful to make a 

short review of some relevant ideas and definitions of 

sensitivity theory. 

It is well known that the Bode sensitivity 

function can formally be extended to the 

characterization of the transfer function )s(F  with 

respect to the transfer function )s(G , called the variable 

component. Suppose that )s(G  is a transfer function of 

the controlled plant and )s(K  is a transfer function of 

the feedback controller. Then the Bode sensitivity 

function of the closed loop with the transfer function: 
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is defined as: 
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where )s(K)s(G)s(L  is the open-loop transfer 

function. Because the open-loop (i.e. the control chain) 

sensitivity function )s(S
0

 is equal to one in the whole 

frequency range, the sensitivity function )s(S  can serve 

as a criterion for the comparison of the sensitivity of the 

control loop with any control chain containing the same 

plant. For the frequencies , at which 1)j(S , the 

parameter sensitivity of the control loop is larger than 

that of the open control chain, i.e. the parameter 

sensitivity is increased by introduction feedback. To 

show this in terms of the Nyquist locus suppose the 

Nyquist locus  of the open  loop )j(L  as shown in 

Fig. 3. 
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Fig. 3.: Evaluating the sensitivity from the Nyquist diagram 

 

The vector from the point )0j,1(  to the point *  

represents the dominator of the closed-loop sensitivity 

function )j(S * . 

Thus: 

)j(L1)j(Q **      (39) 

This implies: 
1
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From Fig.3, we can therefore make the following 

observations. For those frequencies at which the locus 

)j(L  cuts the unit circle centered at –1, the 

sensitivities of the closed-loop and open-loop systems 

are the same. For all those frequencies 
1
 at which 

the locus )j(L  lies outside the unit circle, 1)j(S  

holds and the closed-loop system is less sensitive than 

the open-loop system.  For all frequencies 
1
, at 

which the locus )j(L  lies inside the unit circle, 

1)j(S  holds and the closed-loop system is more 

sensitive than the open one. From above the following 

can be seen: For a control system )j(L  which has at 

least two more poles than zeros, there always exists a 

frequency 
1
 such that: 
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i.e. there exist frequencies at which the feedback control 

system is more sensitive than the uncontrolled one. The 

frequency range 
1
 for which 1)j(S  holds can 

be influenced in a wide range by a proper choice of the 

transfer function )j(K . This fact was already 

recognized by Bode and expressed by the following 

theorem: 

Theorem 1. (Bode integral theorem):  If the transfer 

function )s(L  of the open loop does not contain poles 

and )s(L1  does not contain zeros in the right half of 

the s-plane and if the number of poles of )s(L  exceeds 

the number of zeros at least by 2, then the following 

equality holds: 
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In words: For a stable control system with a pole excess 

of at least 2, the logarithm of the magnitude of the 

sensitivity function is on average equal to zero. This 

means that if the logarithmic Bode diagram )j(S is 

drawn, the area enclosed with 0 dB line for the region 

1)j(S  is exactly the same as that for the region 

1)j(S . The frequency 
1
 at which 1)j(S  can 

be specified by a suitably chosen transfer function )s(K  

of the controller. 

Bode original result was valid only for open-

loop stable systems and was generalized by 

Freudenberg and Looze [1] for systems with unstable 

open loops as: 

Theorem 2. (generalized Bode integral theorem): 

Assume that the open-loop transfer function )s(L  

possesses finitely many open right half plane poles 
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Then if the closed loop is stable, the sensitivity function 

must satisfy: 
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The proof of this theorem is given by Freudenberg and 

Looze in [1]. 

 

 

6   Analysis of the Complete Sets of 

Limitations 
In context with transfer functions )s(H  of the one-

quarter-car model given in Section 1, the generalized 

Bode integral theorem can be modified as follows: 

Theorem 3.  Let RH  is a set of rational transfer 

functions that are stable (their poles lie in the open right 

half-plane) and proper (the numerator degree of this 

functions is less than or equal to the denominator 

degree). Let )s(H  belongs to RH  and satisfies 
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In control law design, it is desirable to prevent 

amplitudes of the dynamic responses )s(H 1

zw
, )s(H 2
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and )s(H 3

zw
 from being too large. 

A brief examination of the results stated in 

Section 1 shows that the suspension deflection transfer 
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frequency an amplification grater than one occurs. This 

amplification can be made less only and only by 

adjusting the ratio of the unsprung and sprung masses. 

From the result: 
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it is evident, that )j(H 3

zw
 must tend to one from 

above as  tends to and it turns out that 

)j(H 3

zw
can not be made less than or equal to one at 

all frequencies. Since the right hand side of (45) is non-

negative then it is not possible for )j(H 3

zw
 to be less 

then or equal to one at all frequencies since that would 

make the left hand side of the equation (45) negative. It 

has been shown in [3], that no matter what signals were 

used for feedback, the tyre deflection transfer function 

must amplify road disturbances at some frequencies.  

This fact is valid even for  full state feedback used in 

the control loop. 

A similar theorem is valid for transfer functions 

where )s(O1/)s(H 2

0s
 

Theorem 4. Let )s(H  belongs to RH  and 

satisfies )s(O1/)s(H 2
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Similarly to the consequences of  theorem 3, the result 
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 from Section 1 is the case when  

)j(H 1

zw
  can not be less then or equal to one at all 

frequencies since that would make the left hand side of  

(47) negative. This fact is again valid even when full 

state feedback is introduced in the control loop. 

In such cases that were mentioned above 

designers have the only possibility ”to shift” the 

frequencies where the amplifications occur to ”more 

advantageous places” or ”to spread” the ranges where 

amplifications occur making the amplification lower the 

positive area of the Bode magnitude plot, i.e. the area 

where )j(H  is greater than one (is grater to at least 

the same extend than the negative area where )j(H  

is less than one) by choosing a proper feedback 

controller. Analogically, similar results can be derived 

for arbitrarily chosen measurements and load 

disturbances. 

 

 

7   Results 

Using a simple linear two degree-of-freedom car 

suspension system model (Fig.1) was shown that there 

still are limitations to suspension performance in the 

fully active state. It has been shown in the paper that 

there are some frequency points and frequency ranges 

where the transfer functions have modulus strictly 

greater than one i.e. where road and load disturbance 

amplification occur. On the base of the Bode integral 

theorems  it has been shown that the transfer functions 

must be greater in modulus to at least the same extend 

that it is less than one, when measured in terms of the 

area on a Bode magnitude plot. In such a case there is a 

possibility to shift frequency ranges where disturbance 

amplification occurs to a ”more advantageous place” or 

to make magnitudes lower spreading the frequency 

range. 
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