
A SOP Minimizer for Logic Functions Described by
Many Product Terms Based on Ternary Trees

David Toman, Petr Fišer
Czech Technical University in Prague

email: tomandav@fel.cvut.cz, fiserp@fit.cvut.cz

Abstract
We introduce a new efficient minimization method for functions described by many

(up to millions) product terms. The algorithm is based on processing a newly proposed efficient
representation of a set of product terms – a ternary tree. The minimization procedure is based on a
fast application of basic Boolean operations upon the ternary tree, combined with algorithms used
in the Espresso minimizer. Minimization of incompletely specified functions is supported as well.
The minimization method was tested on randomly generated large sums-of-products and collapsed
ISCAS benchmark circuits. The performance of the proposed algorithm was compared with
Espresso.

1 Introduction
Logic functions described by a sum-of-products (SOP) form frequently appear in the logic synthesis
process. Even though “more efficient” function representations, like binary decision diagrams (BDDs)
[1] or and-invert-graphs (AIGs) [2] were proposed and are widely used in logic synthesis tools, SOP
forms still remain an ultimate solution to representing logic functions, mainly due to the fact that most
of logic synthesis algorithms are based on processing SOPs. SOPs are usually a starting point for
decomposition and technology mapping algorithms [3], [4].

The need for minimization of the number of terms of the SOP form is apparent. Starting with the
basis of minimization algorithms stated in 1950’s by Quine and McCluskey [5], many different
minimizers have been developed [6][7][8][9][10]. All these methods suffer from their specific
drawbacks when solving problems of different kinds. For example, Espresso [7] lacks in quality and
runtime for functions with a large number of inputs (>100). BOOM [10] solves this problem
efficiently, but, on the other hand, it needs to have the function’s off-set specified explicitly, which
limits its usability in cases of functions specified by their on-sets only.

In many logic synthesis processes, there often appear functions described by SOPs with an
extremely large number of product terms (up to millions). For example, it is often advantageous
to collapse a multi-level circuit network into a two-level representation, to obscure the original
circuit’s structure to the subsequent synthesis process [11], in hope of obtaining better results. In order
to accomplish such a process, large SOPs often cannot be avoided. As a second example, there is often
a need to compute a complement of a logic function described by a SOP [7]. The resulting SOP size
grows exponentially with the number of input variables.

For these reasons, there is a crucial need for a memory-efficient compact representation of SOPs
with many terms, as well as for a fast and efficient minimization algorithm for such function
representation. As for the efficient representation of SOPs, zero-suppressed BDDs (ZDDs) were
proposed [12]. However, no efficient minimization algorithms built upon ZDDs are known.

We propose a SOP representation based on a “ternary tree”. The ternary tree concept was firstly
proposed in [13], as an efficient storage of terms in SOP. Compared to BDDs where the size can grow
exponentially with the number of input variables, size of ternary tree grows only linearly with the
number of inputs in the worst case. The first simple ternary tree minimization algorithms were
proposed in [16], [17]. Ternary trees most closely resemble SOP ternary decision diagrams (TDDs),
briefly described in [14] and term trees [15]. We basically extend the SOP TDDs notion by introducing
new operations and their new application areas.

In this paper we propose a ternary tree based minimization algorithm for incompletely specified
functions described by SOPs. We show that the ternary tree representation of SOPs having many

product terms benefits from a lower computational complexity, compared to the standard tabular SOP
representation.

2 Preliminaries & Problem Statement
Let us have a single-output Boolean function of n input variables. The input variables will be denoted
as xi, 0 ≤ i < n. Output values of the on-set terms (both minterms and product terms of higher
dimensions may be used) are defined by a truth table. The function may be incompletely specified, i.e.,
some terms may be assigned to the don’t-care set.

Thus, we have an n-variable Boolean function defined by a sum-of-product (SOP) form as an input.
The number of product terms will be denoted as p. The cover of a function is a set of on-set terms
implicating the whole function, possibly combined with some terms of the DC-set. Our aim is
to minimize the size of the cover, i.e., the number of on-set terms in the result. The secondary aim
could be the reduction of the number of literals in the terms, thus increasing the dimension of the
terms.

3 Ternary Tree
The ternary tree, proposed in [13], is a structure used for storing of product terms. This is in contrast
to, e.g., BDDs, which describe the function, but not its representation. Like in the case of BDDs the
ordering of variables can have big impact on the ternary tree size (if a variable that appears in many
terms is placed on the top of the tree, its size will be smaller than if the variable is placed to the
bottom).

An example of a ternary tree for a 3-input function is shown in Figure 1. Three terms are contained
in the tree, particularly (001), (-1-) and (10-). Each non-terminal node u may have three potential
children, lo(u), dc(u), hi(u). In our example, lo(u) is the left child, dc(u) the middle one and hi(u) the
right one.

When inserting a term into the tree, at the i-th level of the tree a branch is chosen according to the
polarity (0, -, 1) of the i-th variable in the term. If the corresponding branch is present, we follow it, if
not, the branch is newly created. The tree is thus gradually being constructed by appending product
terms. The maximum size of the ternary tree is obviously O(3n), since there are 3n different terms for
an n-input function. However, the real ternary tree size is usually much less.

Complexities of operations performed using ternary trees are usually less than those performed
using tabular SOP representations (up to n-times speedup in the best case for most operations).
For example, the term look-up speed time complexity is O(n), instead of O(n.p) for the tabular
representation [16] (the time consumption of some operations for the tabular representation could be
further reduced by factor of 32 or 64 (depending on the platform word size) using parallelism on the bit
level, but the overall time complexity remains still the same).

Figure 1: Ternary tree example

4 Ternary tree minimization
The basic ternary tree minimization algorithm was proposed in [16] for the first time, later
improvements were published in [17]. In this paper, we extend the algorithm so it is capable of turning
all implicants into primes and also capable of removing some of the redundant terms.

The overall minimization algorithm comprises of two steps: first, the SOP is processed by a fast
minimization algorithm, in order to quickly reduce the number of SOP terms by applying basic rules
of Boolean algebra. Then, the result is further refined by applying Espresso-like minimization steps.

4.1 Overall Minimization Algorithm

The overall minimization algorithm can be described by the following pseudo code:

Minimize (F,D,R)
{
 on_set = Create_TernaryTree(F); // create ternary trees
 if (D) dc_set = Create_TernaryTree(D);
 if (R) off_set = Create_TernaryTree(R);

 for (i = 0; i < n; i++) // perform the fast minimization
 {
 // n is the number of inputs

 on_set->Merge_Leaves();
 on_set->Rotate();

 dc_set->Merge_Leaves();
 dc_set->Rotate();

 off_set->Merge_Leaves();
 off_set->Rotate();
 }

 on_set = on_set->Absorb_Terms();
 dc_set = dc_set->Absorb_Terms();
 off_set = off_set->Absorb_Terms();

 fd_set = on_set->Absorb_Into(dc_set); // absorb additional variables
 fd_set = fd_set->Redundancy_Check_1(); // perform basic redundancy check

 if (!R) off_set = Get_Complement(on_set,dc_set); // extract the off-set

 fd_set = fd_set->Expand_Cover(off_set); // perform expansion
 fd_set = fd_set->Redundancy_Check_2(); // perform deeper redundancy check
 fd_set = fd_set->Reduce_Cover(); // perform reduction
 fd_set = fd_set->Expand_Cover(off_set); // perform the final expansion

 FD_min = fd_set->Dump_TernaryTree();
 return FD_min;
}

Algorithm 1: The overall minimization algorithm

First, ternary trees representing the on-set, don’t care set and off-set (if defined) are constructed

from the PLA description of the source function.
Then, the fast minimization algorithm is applied (see Subsection 4.2) to the on- and DC-set trees.

This procedure substantially reduces the size of the trees, before they are processed further. The reason
for processing the on-set and DC-set separately is in preventing of merging on- and DC-terms, that
could result in redundancy.

In the next step, all terms of the on-set tree than can be merged are merged with the DC-set (based
on the negation absorption and complement rules), further expanding the cover - for example if an on-
set term is adjacent to a DC-term and one of the rules can be applied on the on-set term, then the
expansion is performed. The result of this operation yields the fd-set. The fd-set is then composed of

all terms of the on-set and possibly some terms of the DC-set (when a variable of an on-set term is
absorbed into a DC-term, then the resulting term contains minterms from both on-set and DC-set).

After these steps a basic redundancy check is performed upon the fd-set to simplify it even more,
without having a significant impact on the time consumption.

The following step lies in extraction of the off-set (if the off-set is not known already)
by exploitation of the complementation algorithm, because the knowledge of off-set is necessary
to perform the expansion step efficiently.

Once the off-set is known, an expansion can be performed upon the fd-set, to obtain a prime cover.
After the expansion, another (deeper) redundancy check is performed upon the fd-set, capable of

removing more redundant terms, but also taking more time than the basic redundancy check. The depth
of this redundancy check can be selected by the user (this parameter influences the quality of the result
and time complexity of the operation).

To move from the locally optimal solution in search for a global optimum, next step – the reduction
follows.

The final step of the minimization is again an expansion, to find another local optimum and make
the result as sparse as possible.

The reason why the reduction-expansion step is not performed iteratively (like in Espresso) is that
the reduction still isn’t that fast and efficient and it would take too long without yielding much
improvement.

The individual minimization steps will be described into detail in the following subsection.

4.2 Fast Minimization

The first part of the fast minimization algorithm is based on applying basic absorption and complement
property rules of Boolean algebra, targeting a reduction of the number of the ternary tree terminal
nodes (leaves). This is achieved by the leaf merging and tree rotation. The method itself consists of
iterative cutting of the root node and moving it to the bottom of the tree, where the leaves can then be
merged, reducing size of the tree. Details of this method are further described in [17]. Example of this
algorithm is shown in Figure 2 and Figure 3.
The two rules mentioned above can be expressed in the following way:

The one-variable absorption rule: a + ab = a (1)

The complement property rule: ab + ab’ = a (2)

The minimization process can be iterated several times. We have found experimentally, that
iterating n-times yields satisfactory results. Additional iterations usually do not bring a significant
improvement. The asymptotic worst case time complexity of this algorithm is O(n2.p) (O(n.p) in the
best case scenario).

Figure 2: Ternary tree before leaf merging

Figure 3: Ternary tree after leaf merging

After that we apply general absorption and negation absorption rules, to remove all the terms that

are subsets of other terms and to absorb variables in terms that differ in more than one variable.

The general absorption rule: a + abcd = a (3)

The general negation absorption rule: a + a’bcd = a + bcd (4)

The worst case time complexity of this algorithm is O(n.p2). However, for dense trees, it is much

less in practice (O(p2) in the best case, when p ≈ 3n). It is also difficult to estimate the absorption time

complexity as a function of the number of the ternary tree nodes, since it heavily depends on the tree
structure.

The overall worst case time complexity of these two steps combined together is then O(n2.p + n.p2).
For details of this algorithm see [17].

4.3 Complementation

Knowledge of the off-set allows performing the expansion step in much shorter time. If the off-set is
not explicitly given in the source file, it is computed as a complement of the union of the on-set and
DC-set.

Similarly like in Espresso [7], the Shannon expansion theorem was used for this purpose. The
complement is obtained by a recursive application of (5), until a trivial solution (complementation of a
single variable) is reached. The worst case time complexity of the complementation algorithm is O(2n).

)()(.

jj
xjxj fxfxf += (5)

The whole complementation process is carried out in the following way:

1. Perform the Fast minimization upon the cover (which is the union of the on- and DC-set)

2. If the cover is tautology return empty complement (emerges at 5. from the recursion)

3. If the cover is non-satisfiable (i.e. if the tree is empty) return a term containing only DCs

(emerges at 5. from the recursion)

4. Perform the recursive split with the variable that appears the most in the cover based on the

Shannon expansion theorem (creates two new recursion branches starting at 1.)

5. Merge the results obtained from both recursion branches

6. Minimize the merged results using the Fast minimization algorithm

7. Return the merged and minimized results

4.4 Cover Expansion

The cover expansion is capable of turning all implicants in the given set into primes and is therefore
one the most fundamental steps of the algorithm.

The expansion itself goes as follows - we traverse the tree and heuristically choose and enter the
branches that have the highest number of DCs, because such branches also most probably contain
terms with the highest number of DCs (the biggest terms). We then try to expand each of these terms
by setting a selected variable to DC followed by checking, whether the modified term intersects the
off-set. If not, the expanded term is a valid implicant and thus the expansion is committed. The whole
process is repeated until there is no further improvement.

Selection of the term to be expanded is done based on the assumption that the biggest term has the
highest chance of covering other terms which then can be removed from the set.

The strategy of selecting the expansion direction (i.e. the variable that will be set to DC) is simple -
we always set to DC the most binate variable (greedy approach). The rationale of this choice is again
that the expanded term may cover other terms more easily, or at least we will be able to absorb some
variables in adjacent terms based on the negation absorption rule.

The worst case time complexity of this operation is only O(n.p1.p2) (where n is the number of
variables, p1 is the number of terms in the on-set and p2 the number of terms in the off-set) because in
the worst case we have to compare each term from the on-set with the whole off-set . This estimation
seems to be however overpessimistic, because even though the worst case time complexity is the same
as for the tabular representation, it is much less in the average case.

4.5 Redundancy Check

The procedure of removing redundant terms consists in computing an intersection of each term with all
other terms and minimizing the result using the Fast minimization algorithm (see Subsection 4.2). If
the minimized result is identical to the original term (which means that the original term is completely
covered by other terms), then the term can be safely removed from the cover.

The order in which the redundancy check is performed upon the tree is guided by a heuristic which
first enters the branches that have the lowest number of DCs, because such branches most probably
contain terms with the smallest dimension and such terms contribute the most to the size of the cover.

The time complexity of this operation is in this case given by two facts - we need to compute an
intersection of a term with other terms, which can be done in O(n.p2) and then continuously minimize
the result, which can be done in O(i.n.p2) (where i is the number of minimization iterations, n is the
number of variables and p the number of terms).

To control the result quality and time complexity of this operation, the i parameter can be indirectly
controlled by the user by choosing how deep should the redundancy check go in search for a term
cover (i.e. how big may the conjunction terms be). There is however no guarantee that this method will
remove all the redundant terms from the cover, even when the depth of redundancy check is set to
maximum (the number of input variables).

The worst case time complexity (when i = n) is then O(n2.p2), which is again the same as for the
tabular representation, but overall much lower in average case.

4.6 Cover Reduction

This step is very similar the redundancy check step because it uses practically the same algorithm with
only slight differences.

Like during the redundancy check we compute the intersection of the examined term with other
terms from the cover and minimize it. If the minimized result contains a term that is half of the size of
the examined term, we can reduce this term by leaving only the uncovered part of it in the set while
still covering all the minterms covered previously. By repeating the whole process over and over we
can then reduce each term in the cover to its minimum feasible dimension. Once we have the reduced
cover, the expansion step can be applied again to possibly obtain a better result.

Time complexity of this operation is the same as for the redundancy check - O(i.n.p2).

5 Experimental Results
The results of the minimization of collapsed benchmark circuits from [18], [19] and [20] are shown
in Table 1. All the functions are completely specified, single-output functions are considered only. The
benchmark name is given in the first table column, followed by the number of its inputs. The numbers
of terms and literals of the source PLAs are shown in the third column. The TT-Min and Espresso
minimization runtimes are given next. The result complexities are shown in the last two columns.
It is apparent that Espresso starts having problems minimizing the circuits where the size reaches
50,000 terms and isn’t able to deal with majority of the listed benchmarks at all, while TT-min
manages to minimize significantly all of them. The instances where Espresso manages to deal with the
benchmarks are without exception cases where the circuits are easily minimized.

Table 1: Minimization results of selected benchmarks

Benchmark Time [s] Terms / Literals
Name Inputs Terms / Literals TT-min Espresso TT-min Espresso
taut1 25 5,000 / 50,015 8.24 3.76 1 / 0 1 / 0
taut2 25 50,000 / 686,138 212.32 251.88 20 / 20 20 / 20
taut3 25 100,000 / 1,623,180 2525.45 15885.35 65,567 / 886,180 -

g25_15 25 79,056 / 1,311,480 27.36 - 18,720 / 295,446 -
g25_19 25 58,968 / 950,004 26.71 - 16,785 / 261,618 -

leku-cd_15 25 79,056 / 1,311,480 36.48 - 12,114 / 189,717 -
leku-cd_19 25 58,968 / 950,004 32.96 - 12,096 / 188,172 -
s420_12 35 113,280 / 2,577,502 5.82 107.86 17 / 170 17 / 170
c432_2 36 786,562 / 19,910,685 8928.99 14842.05 109,192 / 1,211,341 -
c432_4 36 866,664 / 21,865,362 736.39 832.82 7,128 / 60,512 7,128 / 60,512

Results of minimization of randomly generated incompletely specified functions are shown in Table 2.
The meaning of the columns is the same as in the previous case, except for the second column, which
denotes the number of input/output DCs in the benchmark. It is apparent that Espresso gives better

results, but again fails to solve one of the benchmarks and it’s time consumption rises much faster with
the number of terms than for TT-min.

Table 2: Minimization of randomly generated benchmarks

Benchmark Time [s] Terms / Literals
Inputs idc / odc Terms / Literals TT-min Espresso TT-min Espresso

20 35 / 35 1,000 / 12,964 32.88 2.51 658 / 8474 658 / 8474
20 35 / 35 2,000 / 26,083 50.37 9.48 1277 / 16407 1273 / 16362
20 35 / 35 5,000 / 65,069 52.03 41.27 3039 / 37442 2941 / 36177
20 35 / 35 10,000 / 129,813 109.26 162.06 5400 / 58214 3310 / 35474
20 35 / 35 20,000 / 259,953 52.63 - 1794 / 11722 -
20 35 / 35 50,000 / 649,332 52.57 10.07 1 / 0 1 / 0

Analysis of the TT-min algorithm steps for benchmark c432_4 (the 4th output function of the
benchmark c432) is shown in the Table 3. These results show that the first two steps reduce the
function size most significantly in this case. To achieve the same result as Espresso it was necessary to
perform the expansion step however. The depth of the reduction/redundancy check was set to 3
(default value) in this case.

Table 3: Analysis of the TT-min algorithm steps

Benchmark: c432_4
Step Time [s] Terms / Literals

Rotation 15.88 384,173 / 9,106,073
Absorption 224.93 291,036 / 4,095,394

Redundancy check 1 116.78 203,393 / 2,894,997
Complementation 290.25 -

Expansion 1 6.26 7,128 / 60,512
Redundancy check 2 49.01 7,128 / 60,512

Reduction 23.20 7,128 / 60,512
Expansion 2 1.94 7,128 / 60,512

Other 8.75 -

6 Conclusions
An algorithm for an efficient minimization of logic functions described by a sum-of-products form
with many terms was proposed. The minimization method is based on processing a ternary tree, which
has been found to be a very efficient representation of a set of product terms. Espresso-like
minimization algorithms have been developed upon the ternary tree structure. As a result, the average
case complexity of many algorithms is reduced, with respect to the standard tabular SOP
representation (even though the worst case complexity is the same as for the tabular representation for
most operations).

It was experimentally shown that for benchmarks with tens of thousands of terms Espresso usually
yields the result in longer time than this method, or fails to produce any result whatsoever.

Another advantageous thing is that this method doesn’t need to know the off-set to perform the
basic operations and it could therefore find its application in cases where the complementation takes
prohibitively long.

As the future work, we expect implementation of more efficient redundancy checks and reduction
steps, which could possibly make this minimizer overall superior to Espresso even for small circuits,
where Espresso still yields much better results, because it is capable of removing all the redundant
terms from the cover.

Acknowledgement

This research has been supported by MSMT under research program MSM6840770014 and by the
grant of the Czech Technical University in Prague, SGS10/117/OHK3/1T/18.

References
[1] S. B. Akers, “Binary decision diagrams”, IEEE Trans. on Computers, Vol. C-27. No. 6, June

1978, pp. 509-516

[2] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG rewriting - a fresh look at
combinational logic synthesis”. In Proceedings of the 43rd Annual Conference on Design
Automation, San Francisco, CA, USA, July 24 - 28, 2006, pp. 532-535

[3] S. Hassoun and T. Sasao, “Logic Synthesis and Verification”, Boston, MA, Kluwer Academic
Publishers, 2002, 454 pp.

[4] E.M. Sentovich et al. SIS: A System for Sequential Circuit Synthesis, Electronics Research
Laboratory Memorandum No. UCB/ERL M92/41, University of California, Berkeley, CA 94720,
1992.

[5] E.J. McCluskey, “Minimization of Boolean functions”, The Bell System Technical Journal, 35,
No. 5, Nov. 1956, pp. 1417-1444

[6] S.J. Hong, R.G. Cain and D.L. Ostapko, “MINI: A heuristic approach for logic minimization”,
IBM Journal of Res. & Dev., Sept. 1974, pp.443-458

[7] R.K. Brayton et al., “Logic minimization algorithms for VLSI synthesis”, Boston, MA, Kluwer
Academic Publishers, 1984, 192 pp.

[8] R.L. Rudell and A.L. Sangiovanni-Vincentelli, “Multiple-valued minimization for PLA
optimization”, IEEE Trans. on CAD, 6(5): 725-750, Sept.1987

[9] P. McGeer et al., “ESPRESSO-SIGNATURE: A new exact minimizer for logic functions”, Proc.
DAC’93

[10] J. Hlavička and P. Fišer, „BOOM - a Heuristic Boolean Minimizer”, Proc. ICCAD-2001, San
Jose, Cal. (USA), 4.-8.11.2001, 439-442

[11] P. Fišer and J. Schmidt, “Small but Nasty Logic Synthesis Examples”, Proc. 8th Int. Workshop on
Boolean Problems (IWSBP'08), Freiberg, Germany, 18.-19.9.2008, pp. 183-190

[12] S. Minato, “Zero-suppressed BDDs for set manipulation in combinatorial problems”. In
Proceedings of the 30th international Conference on Design Automation (DAC), Dallas, Texas,
USA, June 14 - 18, 1993, pp. 272-277

[13] P. Fišer and J. Hlavička, Implicant Expansion Method used in the BOOM Minimizer. Proc. IEEE
Design and Diagnostics of Electronic Circuits and Systems Workshop (DDECS'01), Gyor
(Hungary), 18.-20.4.2001, pp. 291-298

[14] T. Sasao, “Ternary Decision Diagrams - A Survey”, Proc. of IEEE International Symposium on
Multiple-Valued Logic, pp. 241-250, Nova Scotia, May 1997

[15] L. Jozwiak, A. Slusarczyk and M. Perkowski, “Term Trees in Application to an Effective and
Efficient ATPG for AND-EXOR and AND-OR Circuits” , VLSI Design, Vol. 14, No 1, January
2002 , pp. 107-122

[16] P. Fišer, P. Rucký, and I. Váňová, “Fast Boolean Minimizer for Completely Specified Functions”,
Proc. 11th IEEE Design and Diagnostics of Electronic Circuits and Systems Workshop 2008
(DDECS'08), Bratislava, SK, pp. 122-127

[17] Petr Fišer, David Toman, “A Fast SOP Minimizer for Logic Functions Described by Many
Product Terms”, Proceedings of 12th Euromicro Conference on Digital System Design (DSD’09),
Patras, Greece, 27.8. – 29.8. pp. 757-764

[18] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational Benchmark Circuits and a
Target Translator in Fortan”, Proc. of ISCAS 1985, pp. 663-698

[19] F. Brglez, D. Bryan and K. Kozminski, „Combinational Profiles of Sequential Benchmark
Circuits“, Proc. of ISCAS, pp. 1929-1934, 1989

[20] J. Cong and K. Minkovich: Optimality study of logic synthesis for LUT-based FPGAs, IEEE
Trans. on CAD, vol. 26, pp. 230–239, Feb. 2007.

