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Abstract 
We introduce a new efficient minimization method for functions described by many 

(up to millions) product terms. The algorithm is based on processing a newly proposed efficient 
representation of a set of product terms – a ternary tree. The minimization procedure is based on a 
fast application of basic Boolean operations upon the ternary tree, combined with algorithms used 
in the Espresso minimizer. Minimization of incompletely specified functions is supported as well. 
The minimization method was tested on randomly generated large sums-of-products and collapsed 
ISCAS benchmark circuits. The performance of the proposed algorithm was compared with 
Espresso.  

1 Introduction 
Logic functions described by a sum-of-products (SOP) form frequently appear in the logic synthesis 
process. Even though “more efficient” function representations, like binary decision diagrams (BDDs) 
[1] or and-invert-graphs (AIGs) [2] were proposed and are widely used in logic synthesis tools, SOP 
forms still remain an ultimate solution to representing logic functions, mainly due to the fact that most 
of logic synthesis algorithms are based on processing SOPs. SOPs are usually a starting point for 
decomposition and technology mapping algorithms [3], [4]. 

The need for minimization of the number of terms of the SOP form is apparent. Starting with the 
basis of minimization algorithms stated in 1950’s by Quine and McCluskey [5], many different 
minimizers have been developed [6][7][8][9][10]. All these methods suffer from their specific 
drawbacks when solving problems of different kinds. For example, Espresso [7] lacks in quality and 
runtime for functions with a large number of inputs (>100). BOOM [10] solves this problem 
efficiently, but, on the other hand, it needs to have the function’s off-set specified explicitly, which 
limits its usability in cases of functions specified by their on-sets only. 

In many logic synthesis processes, there often appear functions described by SOPs with an 
extremely large number of product terms (up to millions). For example, it is often advantageous 
to collapse a multi-level circuit network into a two-level representation, to obscure the original 
circuit’s structure to the subsequent synthesis process [11], in hope of obtaining better results. In order 
to accomplish such a process, large SOPs often cannot be avoided. As a second example, there is often 
a need to compute a complement of a logic function described by a SOP [7]. The resulting SOP size 
grows exponentially with the number of input variables. 

For these reasons, there is a crucial need for a memory-efficient compact representation of SOPs 
with many terms, as well as for a fast and efficient minimization algorithm for such function 
representation. As for the efficient representation of SOPs, zero-suppressed BDDs (ZDDs) were 
proposed [12]. However, no efficient minimization algorithms built upon ZDDs are known. 

We propose a SOP representation based on a “ternary tree”. The ternary tree concept was firstly 
proposed in [13], as an efficient storage of terms in SOP. Compared to BDDs where the size can grow 
exponentially with the number of input variables, size of ternary tree grows only linearly with the 
number of inputs in the worst case. The first simple ternary tree minimization algorithms were 
proposed in [16], [17]. Ternary trees most closely resemble SOP ternary decision diagrams (TDDs), 
briefly described in [14] and term trees [15]. We basically extend the SOP TDDs notion by introducing 
new operations and their new application areas. 

In this paper we propose a ternary tree based minimization algorithm for incompletely specified 
functions described by SOPs. We show that the ternary tree representation of SOPs having many 



product terms benefits from a lower computational complexity, compared to the standard tabular SOP 
representation. 

2 Preliminaries & Problem Statement 
Let us have a single-output Boolean function of n input variables. The input variables will be denoted 
as xi, 0 ≤ i < n. Output values of the on-set terms (both minterms and product terms of higher 
dimensions may be used) are defined by a truth table. The function may be incompletely specified, i.e., 
some terms may be assigned to the don’t-care set.  

Thus, we have an n-variable Boolean function defined by a sum-of-product (SOP) form as an input. 
The number of product terms will be denoted as p. The cover of a function is a set of on-set terms 
implicating the whole function, possibly combined with some terms of the DC-set. Our aim is 
to minimize the size of the cover, i.e., the number of on-set terms in the result. The secondary aim 
could be the reduction of the number of literals in the terms, thus increasing the dimension of the 
terms. 

3 Ternary Tree 
The ternary tree, proposed in [13], is a structure used for storing of product terms. This is in contrast 
to, e.g., BDDs, which describe the function, but not its representation. Like in the case of BDDs the 
ordering of variables can have big impact on the ternary tree size (if a variable that appears in many 
terms is placed on the top of the tree, its size will be smaller than if the variable is placed to the 
bottom). 

An example of a ternary tree for a 3-input function is shown in Figure 1. Three terms are contained 
in the tree, particularly (001), (-1-) and (10-). Each non-terminal node u may have three potential 
children, lo(u), dc(u), hi(u). In our example, lo(u) is the left child, dc(u) the middle one and hi(u) the 
right one. 

When inserting a term into the tree, at the i-th level of the tree a branch is chosen according to the 
polarity (0, -, 1) of the i-th variable in the term. If the corresponding branch is present, we follow it, if 
not, the branch is newly created. The tree is thus gradually being constructed by appending product 
terms. The maximum size of the ternary tree is obviously O(3n), since there are 3n different terms for 
an n-input function. However, the real ternary tree size is usually much less. 

Complexities of operations performed using ternary trees are usually less than those performed 
using tabular SOP representations (up to n-times speedup in the best case for most operations). 
For example, the term look-up speed time complexity is O(n), instead of O(n.p) for the tabular 
representation [16] (the time consumption of some operations for the tabular representation could be 
further reduced by factor of 32 or 64 (depending on the platform word size) using parallelism on the bit 
level, but the overall time complexity remains still the same). 
 

 

Figure 1: Ternary tree example 



4 Ternary tree minimization 
The basic ternary tree minimization algorithm was proposed in [16] for the first time, later 
improvements were published in [17]. In this paper, we extend the algorithm so it is capable of turning 
all implicants into primes and also capable of removing some of the redundant terms. 

The overall minimization algorithm comprises of two steps: first, the SOP is processed by a fast 
minimization algorithm, in order to quickly reduce the number of SOP terms by applying basic rules 
of Boolean algebra. Then, the result is further refined by applying Espresso-like minimization steps. 

4.1 Overall Minimization Algorithm 

The overall minimization algorithm can be described by the following pseudo code: 

Minimize (F,D,R) 
{ 
  on_set = Create_TernaryTree(F); // create ternary trees 
  if (D) dc_set = Create_TernaryTree(D); 
  if (R) off_set = Create_TernaryTree(R); 
   
  for (i = 0; i < n; i++) // perform the fast minimization 
  { 
    // n is the number of inputs 
     
    on_set->Merge_Leaves(); 
    on_set->Rotate(); 
     
    dc_set->Merge_Leaves(); 
    dc_set->Rotate(); 
     
    off_set->Merge_Leaves(); 
    off_set->Rotate(); 
  } 
   
  on_set = on_set->Absorb_Terms(); 
  dc_set = dc_set->Absorb_Terms(); 
  off_set = off_set->Absorb_Terms(); 
   
  fd_set = on_set->Absorb_Into(dc_set); // absorb additional variables 
  fd_set = fd_set->Redundancy_Check_1(); // perform basic redundancy check 
   
  if (!R) off_set = Get_Complement(on_set,dc_set); // extract the off-set 
  
  fd_set = fd_set->Expand_Cover(off_set); // perform expansion 
  fd_set = fd_set->Redundancy_Check_2(); // perform deeper redundancy check 
  fd_set = fd_set->Reduce_Cover(); // perform reduction 
  fd_set = fd_set->Expand_Cover(off_set); // perform the final expansion 
   
  FD_min = fd_set->Dump_TernaryTree(); 
  return FD_min; 
} 

Algorithm 1: The overall minimization algorithm 

 
First, ternary trees representing the on-set, don’t care set and off-set (if defined) are constructed 

from the PLA description of the source function. 
Then, the fast minimization algorithm is applied (see Subsection 4.2) to the on- and DC-set trees. 

This procedure substantially reduces the size of the trees, before they are processed further. The reason 
for processing the on-set and DC-set separately is in preventing of merging on- and DC-terms, that 
could result in redundancy. 

In the next step,   all terms of the on-set tree than can be merged are merged with the DC-set (based 
on the negation absorption and complement rules), further expanding the cover - for example if an on-
set term is adjacent to a DC-term and one of the rules can be applied on the on-set term, then the 
expansion is performed. The result of this operation yields the fd-set. The fd-set is then composed of 



all terms of the on-set and possibly some terms of the DC-set (when a variable of an on-set term is 
absorbed into a DC-term, then the resulting term contains minterms from both on-set and DC-set).  

After these steps a basic redundancy check is performed upon the fd-set to simplify it even more, 
without having a significant impact on the time consumption. 

The following step lies in extraction of the off-set (if the off-set is not known already) 
by exploitation of the complementation algorithm, because the knowledge of off-set is necessary 
to perform the expansion step efficiently. 

Once the off-set is known, an expansion can be performed upon the fd-set, to obtain a prime cover. 
After the expansion, another (deeper) redundancy check is performed upon the fd-set, capable of 

removing more redundant terms, but also taking more time than the basic redundancy check. The depth 
of this redundancy check can be selected by the user (this parameter influences the quality of the result 
and time complexity of the operation).  

To move from the locally optimal solution in search for a global optimum, next step – the reduction 
follows. 

The final step of the minimization is again an expansion, to find another local optimum and make 
the result as sparse as possible. 

The reason why the reduction-expansion step is not performed iteratively (like in Espresso) is that 
the reduction still isn’t that fast and efficient and it would take too long without yielding much 
improvement. 

The individual minimization steps will be described into detail in the following subsection. 

4.2 Fast Minimization 

The first part of the fast minimization algorithm is based on applying basic absorption and complement 
property rules of Boolean algebra, targeting a reduction of the number of the ternary tree terminal 
nodes (leaves). This is achieved by the leaf merging and tree rotation. The method itself consists of 
iterative cutting of the root node and moving it to the bottom of the tree, where the leaves can then be 
merged, reducing size of the tree. Details of this method are further described in [17]. Example of this 
algorithm is shown in Figure 2 and Figure 3. 
The two rules mentioned above can be expressed in the following way: 

 
The one-variable absorption rule: a + ab = a (1) 

  

The complement property rule: ab + ab’ = a (2) 
  

The minimization process can be iterated several times. We have found experimentally, that 
iterating n-times yields satisfactory results. Additional iterations usually do not bring a significant 
improvement. The asymptotic worst case time complexity of this algorithm is O(n2.p) (O(n.p) in the 
best case scenario).  

 

 

Figure 2: Ternary tree before leaf merging 

 

Figure 3: Ternary tree after leaf merging 

 
After that we apply general absorption and negation absorption rules, to remove all the terms that 

are subsets of other terms and to absorb variables in terms that differ in more than one variable. 
 

The general absorption rule: a + abcd = a (3) 
  

The general negation absorption rule: a + a’bcd = a + bcd (4) 
 
The worst case time complexity of this algorithm is O(n.p2). However, for dense trees, it is much 

less in practice (O(p2) in the best case, when p ≈ 3n). It is also difficult to estimate the absorption time 



complexity as a function of the number of the ternary tree nodes, since it heavily depends on the tree 
structure. 

The overall worst case time complexity of these two steps combined together is then O(n2.p + n.p2). 
For details of this algorithm see [17]. 

4.3 Complementation 

Knowledge of the off-set allows performing the expansion step in much shorter time. If the off-set is 
not explicitly given in the source file, it is computed as a complement of the union of the on-set and 
DC-set.  

Similarly like in Espresso [7], the Shannon expansion theorem was used for this purpose. The 
complement is obtained by a recursive application of (5), until a trivial solution (complementation of a 
single variable) is reached. The worst case time complexity of the complementation algorithm is O(2n). 
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The whole complementation process is carried out in the following way: 

1. Perform the Fast minimization upon the cover (which is the union of the on- and DC-set) 

2. If the cover is tautology return empty complement (emerges at 5. from the recursion) 

3. If the cover is non-satisfiable  (i.e. if the tree is empty) return a term containing only DCs 

(emerges at 5. from the recursion) 

4. Perform the recursive split with the variable that appears the most in the cover based on the 

Shannon expansion theorem (creates two new recursion branches starting at 1.) 

5. Merge the results obtained from both recursion branches 

6. Minimize the merged results using the Fast minimization algorithm 

7. Return the merged and minimized results 

4.4 Cover Expansion 

The cover expansion is capable of turning all implicants in the given set into primes and is therefore 
one the most fundamental steps of the algorithm. 

The expansion itself goes as follows - we traverse the tree and heuristically choose and enter the 
branches that have the highest number of DCs, because such branches also most probably contain 
terms with the highest number of DCs (the biggest terms). We then try to expand each of these terms 
by setting a selected variable to DC followed by checking, whether the modified term intersects the 
off-set. If not, the expanded term is a valid implicant and thus the expansion is committed. The whole 
process is repeated until there is no further improvement. 

Selection of the term to be expanded is done based on the assumption that the biggest term has the 
highest chance of covering other terms which then can be removed from the set. 

The strategy of selecting the expansion direction (i.e. the variable that will be set to DC) is simple - 
we always set to DC the most binate variable (greedy approach). The rationale of this choice is again 
that the expanded term may cover other terms more easily, or at least we will be able to absorb some 
variables in adjacent terms based on the negation absorption rule. 

The worst case time complexity of this operation is only O(n.p1.p2) (where n is the number of 
variables,  p1 is the number of terms in the on-set and p2 the number of terms in the off-set ) because in 
the worst case we have to compare each term from the on-set with the whole off-set . This estimation 
seems to be however overpessimistic, because even though the worst case time complexity is the same 
as for the tabular representation, it is much less in the average case. 

4.5 Redundancy Check 

The procedure of removing redundant terms consists in computing an intersection of each term with all 
other terms and minimizing the result using the Fast minimization algorithm (see Subsection 4.2). If 
the minimized result is identical to the original term (which means that the original term is completely 
covered by other terms), then the term can be safely removed from the cover. 



The order in which the redundancy check is performed upon the tree is guided by a heuristic which 
first enters the branches that have the lowest number of DCs, because such branches most probably 
contain terms with the smallest dimension and such terms contribute the most to the size of the cover.  

The time complexity of this operation is in this case given by two facts - we need to compute an 
intersection of a term with other terms, which can be done in O(n.p2) and then continuously minimize 
the result, which can be done in O(i.n.p2) (where i is the number of minimization iterations, n is the 
number of variables and p the number of terms). 

To control the result quality and time complexity of this operation, the i parameter can be indirectly 
controlled by the user by choosing how deep should the redundancy check go in search for a term 
cover (i.e. how big may the conjunction terms be). There is however no guarantee that this method will 
remove all the redundant terms from the cover, even when the depth of redundancy check is set to 
maximum (the number of input variables). 

The worst case time complexity (when i = n) is then O(n2.p2), which is again the same as for the 
tabular representation, but overall much lower in average case. 

4.6 Cover Reduction 

This step is very similar the redundancy check step because it uses practically the same algorithm with 
only slight differences. 

Like during the redundancy check we compute the intersection of the examined term with other 
terms from the cover and minimize it. If the minimized result contains a term that is half of the size of 
the examined term, we can reduce this term by leaving only the uncovered part of it in the set while 
still covering all the minterms covered previously. By repeating the whole process over and over we 
can then reduce each term in the cover to its minimum feasible dimension. Once we have the reduced 
cover, the expansion step can be applied again to possibly obtain a better result. 

Time complexity of this operation is the same as for the redundancy check - O(i.n.p2). 

5 Experimental Results 
The results of the minimization of collapsed benchmark circuits from [18], [19] and [20] are shown 
in Table 1. All the functions are completely specified, single-output functions are considered only. The 
benchmark name is given in the first table column, followed by the number of its inputs. The numbers 
of terms and literals of the source PLAs are shown in the third column. The TT-Min and Espresso 
minimization runtimes are given next. The result complexities are shown in the last two columns. 
It is apparent that Espresso starts having problems minimizing the circuits where the size reaches 
50,000 terms and isn’t able to deal with majority of the listed benchmarks at all, while TT-min 
manages to minimize significantly all of them. The instances where Espresso manages to deal with the 
benchmarks are without exception cases where the circuits are easily minimized. 

Table 1: Minimization results of selected benchmarks 

Benchmark Time [s] Terms / Literals 
Name Inputs Terms / Literals TT-min Espresso TT-min Espresso 
taut1 25 5,000 / 50,015 8.24 3.76  1 / 0  1 / 0 
taut2 25 50,000 / 686,138 212.32 251.88  20 / 20 20 / 20 
taut3 25 100,000 / 1,623,180 2525.45 15885.35 65,567 / 886,180 - 

g25_15 25 79,056 / 1,311,480 27.36 - 18,720 / 295,446 - 
g25_19 25 58,968 / 950,004 26.71 - 16,785 / 261,618 - 

leku-cd_15 25 79,056 / 1,311,480 36.48 - 12,114 / 189,717 - 
leku-cd_19 25 58,968 / 950,004 32.96 - 12,096 / 188,172 - 
s420_12 35  113,280 / 2,577,502 5.82 107.86 17 / 170 17 / 170 
c432_2 36 786,562 / 19,910,685 8928.99 14842.05 109,192 / 1,211,341 - 
c432_4 36 866,664 / 21,865,362 736.39 832.82 7,128 / 60,512 7,128 / 60,512 

 

Results of minimization of randomly generated incompletely specified functions are shown in Table 2. 
The meaning of the columns is the same as in the previous case, except for the second column, which 
denotes the number of input/output DCs in the benchmark. It is apparent that Espresso gives better 



results, but again fails to solve one of the benchmarks and it’s time consumption rises much faster with 
the number of terms than for TT-min. 

Table 2: Minimization of randomly generated benchmarks 

Benchmark Time [s] Terms / Literals 
Inputs idc / odc Terms / Literals TT-min Espresso TT-min Espresso 

20 35 / 35 1,000 / 12,964 32.88 2.51 658 / 8474 658 / 8474 
20 35 / 35 2,000 / 26,083 50.37 9.48 1277 / 16407 1273 / 16362 
20 35 / 35 5,000 / 65,069 52.03 41.27 3039 / 37442 2941 / 36177 
20 35 / 35 10,000 / 129,813 109.26 162.06 5400 / 58214 3310 / 35474 
20 35 / 35 20,000 / 259,953 52.63 - 1794 / 11722 - 
20 35 / 35 50,000 / 649,332 52.57 10.07 1 / 0 1 / 0 

Analysis of the TT-min algorithm steps for benchmark c432_4 (the 4th output function of the 
benchmark c432) is shown in the Table 3. These results show that the first two steps reduce the 
function size most significantly in this case. To achieve the same result as Espresso it was necessary to 
perform the expansion step however. The depth of the reduction/redundancy check was set to 3 
(default value) in this case. 

Table 3: Analysis of the TT-min algorithm steps 

Benchmark: c432_4 
Step Time [s] Terms / Literals 

Rotation 15.88 384,173 / 9,106,073 
Absorption 224.93 291,036 / 4,095,394 

Redundancy check 1 116.78 203,393 / 2,894,997 
Complementation 290.25 - 

Expansion 1 6.26 7,128 / 60,512 
Redundancy check 2 49.01 7,128 / 60,512 

Reduction 23.20 7,128 / 60,512 
Expansion 2 1.94 7,128 / 60,512 

Other 8.75 - 

6 Conclusions 
An algorithm for an efficient minimization of logic functions described by a sum-of-products form 
with many terms was proposed. The minimization method is based on processing a ternary tree, which 
has been found to be a very efficient representation of a set of product terms. Espresso-like 
minimization algorithms have been developed upon the ternary tree structure. As a result, the average 
case complexity of many algorithms is reduced, with respect to the standard tabular SOP 
representation (even though the worst case complexity is the same as for the tabular representation for 
most operations). 

It was experimentally shown that for benchmarks with tens of thousands of terms Espresso usually 
yields the result in longer time than this method, or fails to produce any result whatsoever. 

Another advantageous thing is that this method doesn’t need to know the off-set to perform the 
basic operations and it could therefore find its application in cases where the complementation takes 
prohibitively long. 

As the future work, we expect implementation of more efficient redundancy checks and reduction 
steps, which could possibly make this minimizer overall superior to Espresso even for small circuits, 
where Espresso still yields much better results, because it is capable of removing all the redundant 
terms from the cover. 
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