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Abstract—In this paper we investigate iterative logic synthesis 
processes. A well known academic logic synthesis tool ABC 
incorporates many synthesis algorithms and scripts which may 
be run iteratively to possibly improve the result. When iterating 
the synthesis process, the whole network is considered. We 
propose an alternative approach to iterative synthesis – only 
properly selected parts of the circuit are submitted to resynthesis, 
which is done iteratively. We show that a significant 
improvement in the result quality may be achieved. This 
observation is rather surprising and witnesses probably a lack 
of efficiency of the ABC resynthesis control. The observations are 
documented by numerous experiments on ISCAS and IWLS’93 
benchmark circuits. 
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I.  INTRODUCTION 
The classical combinational synthesis flow established 

in the 1980's is a cascade of specialized, distinguished steps: 
minimization, decomposition, technology mapping. Any 
description of the circuit is first brought to Sum of Products 
(SOP) form, and only then the circuit structure is built 
by decomposition. The advantage of such an approach is 
greater independence of the form of input description. 
To repeat such a process, however, is nearly meaningless, as 
structural information is lost during the first step. 

The optimization processes and representations involved 
have serious and well-known scalability problems. Therefore, 
the next generation of synthesis algorithms relied on local 
transformations. As the forms of inputs and outputs of those 
processes were equal, the transformations could be iterated, 
which leads naturally to the notion of resynthesis. 

Already in SIS, which uniformly works with Boolean 
networks, there were synthesis steps recommended for 
iteration. This was continued in ABC [1]. The unified 
representation is based on And-Inverter Graphs (AIGs) [2], 
with the ability to represent alternative representations 
(chioces) added [3], [4]. Most of the ABC synthesis procedures 
are of a local nature. For example, the rewriting [5], [6] process 
is conducted on 4-feasible cuts by default. The refactoring [7] 
algorithm uses larger cuts. The resubstitution [5], [6] process 
introduces the notion of a window, which is even a larger part 
of the circuit.  

Form the point of view of combinatorial optimization, such 
complex iterative processes are impossible to analyze. Iteration 
in ABC and SIS is done at two levels: at the level of local 
transformations under an internal control and at the level 

of optimization steps. This level is controlled by synthesis 
scritps [1], which have been written by experience with series 
of benchmark circuits and which usually prescribe fixed 
sequences of optimizations. This seems to open up an 
opportunity to employ better iteration control. But first, we 
have to understand the iterative processes, even on an 
experimental basis. During the experiments we observed an 
interesting anomalous behavior: processes that processed the 
circuits by parts gave better results and, often, in shorter time. 

This permitted us to construct an alternative iterative 
synthesis process, which we describe here and compare it with 
a standard iterative synthesis process in ABC on standard 
benchmarks. Only combinational circuits are assumed here. 

II. PRELIMINARIES 
A Boolean network N (circuit) is a structure of connected 

single-output nodes forming an acyclic graph. The network 
connections, which are naturally inputs and outputs of gates, 
will be denoted as signals. 

The network primary inputs (PIs) are signals that are driven 
by the environment; there is no node driving these signals 
in the network. The primary outputs (POs) are signals that 
drive the environment. Primary outputs may be driving 
network nodes as well. 

The size of the network, |N| is the number of its nodes. 
Primary inputs and outputs are not considered as nodes. Let 
cost(N) of the network be |N|, for purposes of this paper. 

The fan-in of a node is the number of its inputs. Since each 
input must be driven by exactly one node in the network, the 
fan-in term will be used interchangeably for gates driving the 
respective node. The fan-out of a node is the set of nodes it 
drives. The transitive fan-in of a node is a set of nodes that 
drive the node. The transitive fan-out is a set of nodes that are 
driven by the node. 

The distance of two network nodes is the number of signals 
the one needs to pass to reach the other one. The level of a 
node is its maximum distance from any of the primary inputs. 
Primary inputs have the level equal to 0. 

A window is a connected subcircuit Nw of a circuit 
(network) N. Formally, it is a Boolean network Nw, Nw ⊆ N, 
whereas for every node ni ∈ Nw there exists a path to every 
node nj ∈ Nw, i ≠ j. In the text, terms window and part will be 
used interchangeably, since they have the same meaning in the 
formal sense. 



III. MOTIVATION 
Let us suppose an iterative resynthesis process, i.e., process 

by which the solution could be improved when it is run several 
times consecutively. Let a network N1 be obtained by running a 
resynthesis process P on N0, i.e., N1 = P(N0). Subsequent 
iterations of this process produce different networks, 
Ni = P(Ni-1). In an ideal case, cost(Ni) ≤ cost(Ni-1) for each i. 
However, this may be not true in practice, depending on the 
process. For purposes of illustration of the problem, let us 
consider dividing the network N0 into two disjoint parts: 
N0 = N0

A ∪ N0
B, N0

A ∩ N0
B = ∅, nothing is said about |N0

A| and 
|N0

B|. Now let’s run the resynthesis process on N0
A and N0

B 
separately, yielding N1

A = P(N0
A) and N1

B = P(N0
B). 

By composing the obtained network back, we obtain 
N1

AB = N1
A ∪ N1

B. Obviously, networks N0, N1 and N1
AB are 

functionally equivalent. 
In our experiments we have found rather surprising cases, 

where cost(N1) > cost(N1
AB). Informally, a run of the 

resynthesis on parts of the circuit, rather on the whole circuit, 
could yield better results, in terms of the total circuit area 
(number of gates). In particular, we have divided the e64 
IWLS’93 circuit [10] into two parts, resynthesized them 
separately and merged again. The resulting circuit had 522 
gates, whereas the resynthesis of the whole circuit yielded 530 
gates. Moreover, the total runtime of this resynthesis was 2.33 
seconds, while the total time of the resynthesis of the circuit 
halves (including the time needed for the circuit division) was 
1.73 seconds. 

This is apparently wrong; there must exist a case (sequence 
of cut/window selections), where the resynthesis of N0 would 
be conducted in the same way, as for the separated N0

A and N0
B 

parts. Moreover, global information is lost in the latter case, 
thus it theoretically should produce worse results in general. 
Even the overall resynthesis runtime may be affected; usually 
the runtime of the resynthesis processes grows faster than 
linearly, thus resynthesis by parts takes less time. 

For this reason, we have investigated possibilities 
of resynthesizing circuits by parts more thoroughly, with a 
hope of discovering reasons for the above-mentioned strange 
behavior of the synthesis and proposing a better synthesis 
process. 

IV. ITERATIVE SYNTHESIS IN ABC 

A. Selection of the ABC  Synthesis Process 

First of all, a “good” synthesis process that is to be iterated 
must be found, to be a basis of our experiments. The required 
synthesis process should be universal, in the sense of result 
quality and runtime. In other words, it should be able 
to produce good results in an acceptable time, independently 
of the circuit processed. 

All of the experiments were conducted using a mix of 228 
ISCAS’85 [8], ISCAS’89 [9] and IWLS’93 [10] benchmark 
circuits. The circuits were mapped onto arbitrary 2-input gates. 
For this purpose, the MCNC library restricted to 2-input gates 
was used, the circuit was mapped by the ABC map command 
and finally redundant buffers and inverters were removed 
by the sweep command. 

We have compared several ABC synthesis processes, 
described below. The results, in terms of the sum of the 
number of gates of the 228 synthesized circuits, are shown 
in Table I.  

The most naive synthesis process in ABC is a mere 
technology mapping, using the map command. In fact, no real 
synthesis is involved here, the network AIG is just mapped 
onto technology. However, results obtained by this process can 
serve as a baseline (Table I.  “map” row). 

The results may be improved by running the basic 
resynthesis script resyn prior to the mapping (row 2). A more 
advanced script resyn2 interleaving rewriting [2] and 
refactoring [7] produces yet better results (row 3). The choice 
script incorporates these two scripts, together with using 
of “choices” [3], [4] (row 4). Even better results produced the 
resyn2rs script (row 5) and the share script (row 6). This brings 
us to the idea of combining these scripts in a way of the choice 
script, yielding a new script, superchoice, see Figure 1. Other 
resynthesis scripts were tested as well, however they did not 
produce better results, even when used with other scripts 
(combined by choices), or the runtime was “too high”. Let us 
note here, that a script producing results of almost any quality 
could be generated this way, by combining numerous different 
synthesis scripts by using “choices” [3] together with the 
FRAIG package [4]. However, this will induce a longer 
runtime of a single script. Here naturally arises a question 
where is the “usability limit” of a particular process: when 
repeated application of a “fast” script will yield better results 
in the same time? This issue will be a part of further 
investigation. 

Synthesis procedures like collapsing (collapse) and 
disjoint-support decomposition (dsd) [11] sometimes produce 
good results (sometimes they are essential [12]). They 
completely abandon the circuit structure by converting it into a 
SOP or by using global BDDs, but this also forms a scalability 
obstacle. Therefore, these processes cannot be used in general, 
even as parts of a synthesis script based on choices. 

For the above mentioned reasons, the superchoice script 
followed by technology mapping was chosen as a good 
“universal” synthesis script.  

For details on the scripts, readers are referred to the abc.rc 
configuration file [1]. 

TABLE I. ABC SYNTHESIS PROCESSES 

# Process Total gates 
1 map; sweep 168,279 
2 resyn; map; sweep 143,308 
3 resyn2; map; sweep 136,669 
4 choice; map; sweep 135,245 
5 resyn2rs; map; sweep 131,637 
6 share; map; sweep 128,442 
7 superchoice; map; sweep 126,131 
8 20x (superchoice;  map; sweep) 113,479 
9 1000x (superchoice;  map; sweep) 106,216 

 



fraig_store; resyn 
fraig_store; resyn2 
fraig_store; resyn2rs 
fraig_store; share 
fraig_store; fraig_restore 
 

Figure 1. The “superchoice” script 

B. Iterating the Synthesis in ABC 

Assuming that every ABC synthesis script is composed 
of several subsequent basic synthesis procedures and that the 
script will not likely deteriorate the network, the result may be 
effectively improved by iterating the script several times. This 
is even more emphasized when choices [3] are used, since 
many different network representations are stored 
simultaneously. Also authors of ABC claim that repeating the 
“choice; map” sequence several times improves the result [1]. 
We have studied this issue more into detail. The proposed 
superchoice script was used for testing purposes. 

Results obtained from iterating the superchoice script 
followed by map and sweep 20-times are shown in Table I. 
row 8. The script was then iterated 1000-times to show “border 
limits” of ABC capabilities (Table I. row 9). Iterating the 
synthesis process 20-times improves the total area by 10%, 
iterating 1000-times yields 13.6% improvement. Iterating the 
synthesis more times mostly does not bring any more 
improvement. 

To further justify the above-mentioned claims, we have 
tracked the progress of the iterative resynthesis for all 228 
circuits with 1000 applications of the superchoice script. The 
results are shown in Table II. 85% circuits converged to a 
stable cost value in less than 20 iterations, only 3 circuits 
needed more than 500 iterations to converge. Therefore, we 
have set 1000 iterations as a basis for our experiments. Even 
though such a number is rather high, it ensures that ABC itself 
will (almost) never produce better results, when run longer. 

We have also observed that the convergence does not 
depend on the circuit size. Even though the problematic circuits 
shown in Table II belong to the larger ones, much bigger 
circuits converged faster. 

TABLE II. THE SUPERCHOICE SCRIPT CONVERGENCE 

Iterations to converge # of cases 
< 20 194 
20 – 100 27 
100 – 500 4 
500 – 1000 1 (t481) 
> 1000 2 (seq, too_large) 

V. CIRCUIT RESYNTHESIS BY PARTS 
In contrast to iterative resynthesis of the whole circuit, we 

propose submitting only selected parts (windows) of the circuit 
to the ABC resynthesis. The motivation for this was presented 
in Section III. 

The overall synthesis process and window selection 
algorithms are presented in this section.  

A.  The Synthesis Process 

The basic and general principles of the proposed 
resynthesis process are described in Figure 2.  

 
Resynthesize(Network N, opt) { 

do { 
(W, NR)  = Extract_Window(N, opt); 
W’ = resynthesize_by_ABC(W); 
N’ = NR ∪ W’; 
if (cost(N’) ≤ cost(N)) N = N’; 

} while (!end()); 
} 

Figure 2. The resynthesis by parts algorithm 

At the beginning of each iteration, a part W of the network 
(window) is selected and extracted from the original network 
N. NR is then the remainder of the original network, nodes 
included in W are not present in NR. Primary inputs and outputs 
of N are retained, primary inputs and outputs of W are 
constructed as follows (see an example in Figure 3): 

(1) Gate inputs that are not driven by any gate in W are 
assigned as W primary inputs (PI1-PI5 in the figure). 

(2) Gate outputs that do not drive any gate in W are 
assigned as W primary outputs (PO1, PO2). 

(3) Gate outputs that drive some gate in NR are assigned 
as W primary outputs (PO3). 

(4) Gate outputs that are primary outputs of N are 
assigned primary outputs of W (PO4). 

 

PI1

PI2

PI5

PI4

PI3

PO1

PO3
PO2

PO4

W

 
Figure 3. Window selection 

The Extract_Window procedure is the pivotal step in the 
proposed resynthesis. Methods of part extraction will be 
described in detail later in this section. 

The extracted window W is submitted to ABC synthesis. 
Any synthesis process may be used in general. In experiments 
presented in this paper we use one iteration of the superchoice 
script (Figure 1). 

The resynthesized network W’ is then “put back” into the 
network, by merging these two networks by their signals and 
primary input and output names. If the resynthesis brought any 
improvement, i.e., the network cost is reduced with respect 
to the original network, the old network is discarded and the 
new one is considered for the next iteration. Thus, the 



resynthesis is greedy in the “first improvement” manner; 
non-improving iterations are discarded. 

The whole procedure is iterated, until some stopping 
condition is satisfied. In experiments presented in this paper, 
we use a fixed number of iterations, for purposes 
of comparison. However, more sophisticated stopping criteria 
should be applied in practice. 

B. Part Selection Methods 

We have implemented six algorithms of window selection, 
equipped with a mechanism to control window size. 

Method 0 – Random selection  
Random_Select(Network N, size) { 

n = random_node(N); 
W = {n}; 
Nr = N – {n}; 
while (|W| < size) { 

n = random_node(Nr); 
if (isConnected(n, W)) { 

W = W ∪ {n}; 
Nr = Nr – {n}; 

} 
} 
return (W, Nr); 

} 

Figure 4. Random window selection algorithm 

This trivial algorithm (Figure 4) forms a basis of the three 
latter ones. The algorithm is parametrized by the number 
of gates of the extracted network. The window is constructed 
greedily and purely at random, only the condition of connected 
network must be satisfied. 

Method 1 – MinimizePIs 
MinimizePIs_Select(Network N, size) { 
 n = random_node(N); 
 W = {n}; 
 Nr = N – {n}; 
 while (|W| < size ) { 
  candidate = N/A; 
  for_each(n∈Nr) { 
   if (isConnected(n, W)) && 
    FaninIncrease(n, N) <   
     FaninIncrease(candidate, N)  )  
     candidate = n; 

  } 
W = W ∪ {candidate}; 
Nr = Nr – {candidate}; 

} 
 return (W, Nr); 
} 

Figure 5. “MinimizeFanin” window selection algorithm 

The second method locally minimizes the number of the 
window primary inputs. This could be beneficial for 
resynthesis procedures whose complexity depends on the 
number of inputs rather than the number of gates; this was not 
the case of presented experiments. 

The asymptotic complexity increased |N|-times compared 
to Method 0. In each step of the main loop, every node 

connected to W is a candidate for selection and its cost function 
has to be evaluated.  

FaninIncrease is the essential procedure here. It 
enumerates the number of primary inputs that have to be added 
to W, if a particular node was appended to P. Each primary 
input of the candidate node is checked, if it is driven by any W 
network node. If not, it induces an additional PI, by the rule (1) 
in Subsection V.A, and adds a penalty point for the candidate 
node. Let us note that a node driving formerly non-driven node 
input will be included into W in further steps, making this input 
an internal signal of W and decreasing the number of PIs.  

Method 2 – MinimizePOs 

Minimizing the total number of primary outputs of W 
becomes an apparent candidate for investigation. The cut 
selection algorithm is similar to the one shown in Figure 5, it 
only differs in the candidate node evaluation. Only the 
procedure FaninIncrease is modified, so that nodes inducing 
additional POs are penalized. The candidate node output is 
checked for conditions (2)-(4) stated in Subsection V.A. If any 
of them is satisfied, the candidate node induces an additional 
output, hence it obtains a penalty point. Like in the previous 
algorithm, some non-driven N’ network nodes may be included 
into W in the node selection process, reducing W outputs. 

Method 3 – MinimizePIs+POs 

A combination of the selection criteria of Methods 1 and 2 
yields a reduction of the overall reduction of the number of the 
W network external signals, thus it implicitly forces W to be as 
compact as possible, improving the chance for finding a better 
structure of the extracted circuit. 

Method 4 – RadiusSelect 

This algorithm significantly differs from the previously 
described four ones. The number of W inputs, outputs and 
nodes is not restricted. Instead, the most connected subcircuit 
of W is looked for intentionally. First, a pivot node is selected 
randomly. Then nodes reachable within a given radius from the 
pivot are moved to W. In particular, transitive fan-in and 
fan-out nodes of the pivot are selected. The pseudo-code of the 
algorithm is shown in Figure 6.  A queue q of nodes is used 
to traverse the N network. 

 
Radius_Select(Network N, radius) { 
 n = random_node(N); 
 q.enqueue(n); 
 while (!q.empty()) { 
  n = q.pop(); 
  W = W ∪ {n}; 

Nr = N – {n}; 
  for_each(m∈Nr) { 
   if (isConnected(m, W) && 
    distance(n, m) ≤ radius) 
     q.push(j); 
  } 
 } 
 Nr = N – W; 
 return (W, Nr); 
} 

Figure 6. The RadiusSelect algorithm 



Method 5 – Windowing-like Selection 

Here we were inspired by the window selection algorithm 
used in the ABC resubstitution process [5]. As in the Method 4, 
the pivot node is selected first. Then, the minimum level of its 
transitive fan-in up to a given depth is found. After that, the 
transitive fan-out of the pivot is generated, up to a given depth 
and the transitive fan-in nodes of these are moved to W. Only 
transitive fan-in nodes having the level less than the level of the 
least pivot transitive fan-in level are considered.  

VI. EXPERIMENTAL RESULTS 
Results of numerous experiments performed using a mix 

of 228 of the ISCAS’85 [8], ISCAS’89 [9] and IWLS’93 [10] 
benchmarks are presented in this section. In all the 
experiments, the superchoice script (Figure 1) followed 
by mapping into 2-input gates (map) and the sweep command 
is used for iterative resynthesis. This process was also run once 
on all the benchmarks, to obtain the initial circuits that are 
submitted to the experiments. 

If not stated otherwise, the resynthesis was iterated 
1000-times. All the experiments, where runtime is indicated, 
were run on the Ahtlon64 5600+ Dual Core CPU. 

A. Area Measurement and Application to LUT Synthesis 

The result quality measure is the number of 2-input gates 
(not AIG nodes). Look-up table (LUT) mapping can be also 
incorporated in the process. However, we do not expect better 
results than those obtained by post-synthesis LUT mapping. 
The 2-input gates offer more flexibility, due to a very low 
granularity of the design. Moreover, the complexities of gate-
based and LUT-based syntheses correlate. To justify, we have 
run the superchoice script followed by either the map or fpga 
command 1000-times iteratively for all the 228 benchmark 
circuits. Numbers of obtained LUTs as a function of the 
obtained 2-input gates are shown in Figure 7. It can be seen 
that the dependency is linear. 
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Figure 7. Gate vs. LUT synthesis 

B. Characteristics of the Benchmarks 

Since the characteristics of the resynthesis results heavily 
depend on the characteristic of the processed circuits, here we 
will present their statistics, namely concerning their sizes. 
A histogram of circuit sizes is shown in Figure 8. The numbers 
of circuit gates range from 5 to 11,210. The average circuit size 
is 600 gates, the median is 187.  
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Figure 8. Benchmark circuits sizes distribution 

Even though these circuits are relatively small, they 
represent a wide variety of parts of industrial designs. 
Conclusions derived in this section can be freely generalized 
to circuits of any size, since no dependency on the circuit size 
has been detected, in terms of the result quality. 

C. Actual Window Sizes 

To explore the nature of partial resynthesis, we need 
to control the size of the window, both in absolute terms and 
relatively to the circuit size. Methods 0-3 may lack connected 
nodes and return a window smaller than the requested size. 
In methods 4 (RadiusSelect) and 5 (Windowing-like), the 
window size is strictly given by the connectivity of the circuit 
and the selected pivot. The window size characteristics 
resemble the circuits’ characteristics given in Subsection V.B 
for all methods. Therefore, we present characteristics of only 
one circuit, s38417 [9] with 8643 2-input gates in Table III.  

TABLE III. WINDOW SIZE CHARACTERISTICS 

 Max. Average Median 
Method 0, 10% 864 776 805 
Method 0, 20% 1728 1552 1600 
Method 0, 30% 2592 2300 2389 
Method 1, 10% 864 758 783 
Method 1, 20% 1728 1510 1564 
Method 1, 30% 2592 2263 2345 
Method 2, 10% 864 758 788 
Method 2, 20% 1728 1266 1576 
Method 2, 30% 2592 2282 2361 
Method 3, 10% 864 751 779 
Method 3, 20% 1728 1517 1560 
Method 3, 30% 2592 2229 2336 
Method 4, radius 3 199 26 22 
Method 4, radius 4 358 50 41 
Method 4, radius 5 577 97 80 
Method 4, radius 6 914 157 131 
Method 4, radius 7 1606 261 193 
Method 4, radius 8 1850 384 313 
Method 4, radius 9 2342 552 475 
Method 5, depth 3 429 68 33 
Method 5, depth 4 720 87 53 
Method 5, depth 5 685 96 63 



 Max. Average Median 
Method 5, depth 6 982 109 69 
Method 5, depth 7 1025 111 68 
Method 5, depth 8 1017 118 74 
Method 5, depth 9 785 122 72 

 
Maximum window sizes in methods 0-3 are equal to the 

respective percentage of the size of the original circuit. 
Average window sizes slightly differ between these methods, 
since different circuits are processed in latter iterations. The 
maximum, average and median values do not differ too much. 
Conversely, the maximum, average and median values 
significantly differ in methods 4 and 5, witnessing a rather 
steady distribution of window sizes. As an example, see the 
distributions for Method 4, radius 9 in Figure 9. In Method 5, 
the depth limit influences the window size only slightly. This 
can be observed especially from the median values. 

Because of different characteristics of the window sizes, it 
is difficult to make a relevant comparison of Methods 0-3 with 
Methods 4 and 5. Therefore, we present results of these 
methods separately. 
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Figure 9. Window sizes distribution for Method 4, radius 9 

D. The Window Selection Methods 0-3 

In this subsection we experimentally evaluate effectiveness 
of the window selection methods. The comparison results, 
namely total gate counts of the synthesized 228 circuits, are 
shown in Table IV.  

TABLE IV. COMPARISON OF WINDOW SELECTION METHODS 

Size Method 0 Method 1 Method 2 Method 3 
4 126,261 126,423 125,851 125,707 
5 126,005 125,816 125,462 125,031 
6 125,655 125,160 125,135 124,378 

10% 121,628 114,058 118,463 114,471 
20% 120,190 110,308 114,905 111,014 
30% 119,067 107,883 113,575 108,860 
 
Two window size selection strategies were studied: in the 

upper part of the table, the window size was fixed to a given 
size (4, 5, 6 gates). Next, the window size was relative to the 
circuit size (10%, 20%, 30% of the circuit). In the latter case, 
the window size obviously significantly varies, depending 
on the circuit and the random pivot node selected. The study 
of actual window sizes will be presented in Subsection VI.C. 

It can be seen that the Method 0 (random window 
selection) produces worst results in all cases (in terms of the 
total). Methods 1 (minimizing the window fan-in) and 2 
(minimizing the window fan-out) produced very similar results 
for absolutely-sized windows, however Method 1 wins for 
percentage-sized windows. At any case, Method 3 (minimizing 
the sum of the window fan-in and fan-out) produces best 
results, in terms of quality. 

The runtimes of the window construction differ for the four 
methods. For illustration, total window construction runtimes 
(sum of 1000 iterations) for the s38417 ISCAS’89 circuit for 
the window size of 20% of the circuit are shown in Table V. 
The runtimes spent by the ABC synthesis are shown as well. 
Surprisingly, with more advanced window selection methods 
these runtimes grow. Most probably this is due to more 
reconvergence present in the windows. 

TABLE V. WINDOW SELECTION RUNTIMES, METHODS 0-3 

 Constr. time [s] ABC time [s] 
Method 0 51,212 796 
Method 1 93,811 970 
Method 2 91,976 1,050 
Method 3 111,536 1,084 

 
Method 3 is the slowest one, since it combines methods 1 

and 2. Still, it produces best results from these four. 
Note that the window construction and ABC runtimes 

cannot be compared, since our resynthesis tool is rather slow, 
compared to ABC. The ABC code is targeted to speed 
efficiency, while our experimental tool is written in a more 
transparent code, up to ten times slower by our measurement. 

E. The Window Selection Methods 4 and 5 

Results obtained by methods 4 and 5 are shown 
in Table VI. Total numbers of gates for the 228 benchmarks, 
together with the total window construction and ABC runtimes 
for one circuit s38417 (in sense of Table V.) are given. An 
interesting observation can be made in Method 4: the number 
of gates decreases when increasing the radius, up to the 
threshold 8. Then, the quality lacks. The same behavior can be 
seen in Table VII (see Subsection VI.F). This gives us the first 
hint of better effectiveness of the resynthesis of smaller parts 
of circuits, rather than larger ones (or the entire circuit).  

Even though a fully relevant direct comparison of the six 
window selection methods is not possible, comparison 
of results shown in Tables III - VI clearly show the winner. 
Methods 0-3 are extremely slow, in comparison to Methods 4 
and 5. This is due to a large search space of methods 0-3 to be 
explored; the number of candidate node for evaluation in each 
selection algorithm step is rather high. The complexity of the 
algorithm is O(n2), where n is the number of network nodes. 
Conversely, Methods 4 and 5 proceed in a straightforward way; 
once the pivot node is selected, the window creation process is 
fully deterministic. Complexities of the methods are O(n). 

Regarding the result quality, Method 4, radius 8 produced 
the best result, out of all six methods. The lack of efficiency 
of Method 5 is apparent from TABLE III. The size of the 



window increases only slightly with increasing the depth 
parameter. 

TABLE VI. WINDOW SELECTION METHODS 4 AND 5 

 Gates Constr. time [s] ABC time [s] 
M. 4, radius 3 122,165 1,281 418 
M. 4, radius 4 116,981 1,254 433 
M. 4, radius 5 110,325 1,317 465 
M. 4, radius 6 104,330 1,801 544 
M. 4, radius 7 101,182 2,801 748 
M. 4, radius 8 100,929 6,142 859 
M. 4, radius 9 101,633 13,487 996 
M. 5, depth 3 116,971 1,674 619 
M. 5, depth 4 114,259 1,772 612 
M. 5, depth 5 112,283 1,807 635 
M. 5, depth 6 111,063 1,827 638 
M. 5, depth 7 109,145 1,799 632 
M. 5, depth 8 108,815 1,906 659 
M. 5, depth 9 109,581 1,995 670 

F. Comparison with ABC 

A comparison of the performance of the proposed 
alternative resynthesis methods with ABC resynthesis run 
on the whole circuits is presented in TABLE VII. The 
reference quality value is the total number of gates of the 
original benchmark circuits. Average and maximum percentage 
improvements reached by the different resynthesis processes, 
with respect to this value are shown in the table.  

The ABC superchoice script, when run 1000-times on the 
original circuit, reduces the total number of gates by 19.97% 
in average. The maximum improvement obtained by this 
process was 83.78% (particularly for z4ml, which has 111 gates 
originally and 18 gates after minimization). 

TABLE VII. COMPARISON WITH ABC 

Method Average impr. Maximum impr. 
ABC 19.97% 83.78% 
Method 0, const 5 11.79% 34.38% 
Method 0, const 6 12.62% 37.63% 
Method 0, 10% 14.62% 47.12% 
Method 0, 20% 16.94% 54.80% 
Method 0, 30% 18.21% 63.20% 
Method 1, const 5 12.82% 41.02% 
Method 1, const 6 13.77% 41.36% 
Method 1, 10% 17.98% 51.19% 
Method 1, 20% 21.84% 83.62% 
Method 1, 30% 23.86% 91.06% 
Method 2, const 5 12.66% 34.92% 
Method 2, const 6 13.21% 36.61% 
Method 2, 10% 16.24% 47.12% 
Method 2, 20% 19.89% 72.40% 
Method 2, 30% 21.29% 74.00% 
Method 3, const 5 13.66% 43.73% 
Method 3, const 6 14.55% 39.66% 

Method Average impr. Maximum impr. 
Method 3, 10% 18.48% 62.40% 
Method 3, 20% 22.10% 89.79% 
Method 3, 30% 23.63% 85.96% 
Method 4, radius 3 15.59% 41.44% 
Method 4, radius 4 19.92% 88.72% 
Method 4, radius 5 23.19% 91.49% 
Method 4, radius 6 24.85% 90.21% 
Method 4, radius 7 25.55% 91.06% 
Method 4, radius 8 25.20% 89.79% 
Method 4, radius 9 24.25% 89.57% 
Method 5, depth 3 18.81% 84.68% 
Method 5, depth 4 19.83% 82.88% 
Method 5, depth 5 20.53% 90.64% 
Method 5, depth 6 20.65% 82.88% 
Method 5, depth 7 21.01% 90.85% 
Method 5, depth 8 20.82% 82.88% 
Method 5, depth 9 20.52% 82.88% 
 
Shadowed cells in the table indicate cases, where 

an improvement w.r.t. ABC resynthesis run 1000-times on the 
whole circuit was reached. Methods 0-3 having constant 
window sizes up to 6 gates naturally do not overcome the ABC 
resynthesis of the whole circuit. However, when the circuits are 
iteratively resynthesized by, e.g., by halves, better results are 
reached in general. The Method 4 clearly justifies claims 
presented in Section III. There is an apparent minimum for the 
radius equal to 7. Increasing the window size involves a growth 
in the resulting circuit size. The influence of the size of the 
window on the result quality is discussed in the following 
subsection. 

G. Influence of the Window Size 

The negative impact of large window sizes led us to the 
following experiment: for a selected circuit and window 
selection method, we have run the iterative resynthesis with 
window sizes varied from 4 up to the full circuit size. Thus, the 
latter border case represents the case where the whole circuit is 
resynthesized in each iteration. The window selection method 0 
(Random selection) was chosen for this experiment. The 
number of iterations of each fixed-sized window resynthesis 
process was 1000. First, we selected the e64 IWLS’93 circuit 
[10], as a representative of circuits for which the resynthesis 
by parts brought the highest improvement. The resulting graph 
is shown in Figure 10. For small window sizes, the results 
naturally lack in quality. There is an apparent minimum around 
the window size 180. This is less than 28% of the original 
circuit size. With increasing the window size, the result area 
grows. This behavior corroborates our theory: resynthesis 
by parts is better than resynthesis of the whole circuit. 

Next, we have done the same experiment with the clip 
circuit [10], a representative of circuits for which resynthesis 
by parts failed (particularly, 1000 iterations of ABC have 
reduced its 343 gates to 155, 1000 iterations of 50% Method 0 
yielded 245 gates, which is a -37% difference). The graph is 
shown in Figure 10. It can be observed, that for windows larger 
than approx. 50%, the results substantially vary (ranging from 



200 to 350), and have mostly random nature. Here it seems that 
the failure of 50% resynthesis was caused by “a bad chance”, 
or better, the 100% resynthesis process just hit the right 
solution. 

Graphs for other circuits and window selection methods are 
similar in character to those in Figure 10.  
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Figure 10. Varying window sizes 

The convergence curves of the iterative resynthesis of the 
whole circuit and resynthesis by 50% parts, for the example 
e64 and clip circuits, are shown in Figure 11. Here the reason 
for the clip failure is apparent. In both cases, the 100% circuit 
resynthesis process converges very quickly, while 50% 
resynthesis process convergence is much slower. In the e64 
case, 1000 iterations were enough for the latter process to reach 
a better solution. Moreover, the convergence curve indicates 
that the 50% resynthesis solution could be yet improved 
in further iterations. For the clip benchmark, the curves are 
much similar. ABC just converged to a “good” solution too 
quickly. 
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Figure 11. Convergence curves for e64 and clip 

VII. DISCUSSION 
The convergence curves shown in Figure 11 indicate that 

the resynthesis by parts is a process quite different from the 
resynthesis of the whole circuit. The convergence is much 
slower, which sometimes leads to local minima avoidance and 
better results. ABC aims at practical speed and must converge 
much faster. 

Even though the slow convergence of the proposed 
resynthesis method could be a problem in practice, it offers a 
way of improving the synthesis limits. For example, we have 
found examples very difficult for scalable iterative synthesis, 
including ABC [12]. One class of these examples consists 
of ordinary circuits transformed into a really poor structure 
[13]. The only working remedy is to use a canonical structure, 
with all the scalability problems it brings. The presented 
process can be seen as an attempt at a scalable solution for the 
problem. 

With this in mind, we can conjecture that partial resynthesis 
performs better – even in terms of time – because splitting 
of the circuit shields the optimization from a misleading 
structure. 

There is an important point in interpreting Figure 10: do the 
curves indicate optimum absolute window size (which would 
lead to a scalable process) or a relative one? Table VI suggests 
that at least for Method 4 (Radius select), the size is absolute, 
but more data are needed to confirm this hypothesis. 

VIII. CONCLUSIONS 
We have tested the iterative behavior of ABC synthesis 

beyond the numbers employed by synthesis scripts. It appears 
that doing the resynthesis by parts of the circuit slows the 
convergence down, which, along with other phenomena, leads 
to better results. A process can be constructed along these lines 
that can be potentially more time-consuming but also much 
more resistant to difficult examples. 
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