How to Measure Dependability Parameters
of Programmable Digital Circuits — A Survey

Jaroslav Borecky, Martin Kohlik, and Hana Kubatova

Department of Digital Design
Czech Technical University in Prague
Prague, Czech Republic
{borecjar; kohlimar; hana.kubatova}@fit.cvut.cz

Abstract. Our aim is to create a methodology for FPGA industrial ap-
plications with respect to area, speed, power consumption and reliability
optimizations (both fail safe and fault-tolerant). We take into account
different types of faults, the way they affect the circuit (Single Event Up-
set, Single Event Latchup, Delay faults etc.) and their injection into de-
sign (insertion into bitstream, edif, behavioral description or saboteur
method). We need to create formal dependability models that are able
to model mentioned faults and reconfiguration ability of FPGAs. We use
well-known Markov Chains and Stochastic Petri nets. The usage of both
types of models is similar and they are mutually convertible. This pa-
per describes the main problems how to obtain relevant and comparable
results.

1 Introduction

During the last decade, systems realized by programmable hardware like Field
Programmable Gate Arrays (FPGAs) are more and more popular and widely
used in more and more applications due to their capability of implementing com-
plex circuitry within a very short development time, together with the potential
for easy reconfiguration or for other actual changes of the implemented circuit.
Different types of faults (Single Event Upset, Single Event Latchup, Delay fault
etc.) can arise in these FPGAs and if we would use these FPGAs in mission
critical application, we must secure design implemented inside.

This paper presents our actual problem: how to design really dependable
system based on programmable and reconfigurable hardware (FPGA).

This means not only the design methodology but moreover: how to perform
relevant experiments, how to model obtained results by good (and compound)
model of reliability, structure and function and how to obtain relevant and com-
parable results and how to compute relevant dependability parameters on the re-
quested level of preciseness.

Therefore the paper presents our solution of following compound problems:
description of possible faults in FPGA, their relevant models and the possible
impact to whole design according their classification, the possible methods how
to inject these faults into our design and how to obtain relevant values to model

2 Jaroslav Borecky, Martin Kohlik, and Hana Kubdtova

and compute dependability parameters. Main aim of this paper is to summa-
rize our actual problem — how to obtain relevant results and how to compare
them with others and finally how to construct a good and usable methodology
for dependable design for FPGA based systems.

The paper is structured as follows: Fault classification is in Section 2. Sec-
tion 3 contains the overview of the methods of faults injection into design. Sec-
tion 4 shows problems that may occur when results from different authors are
being compared. Section 5 provides some recommendations how to define unified
conditions for reliability calculations that will be necessary to compare results
among different research groups.

2 Faults in FPGA

A fault changes a bit in the programming memory of the FPGA. The meaning
of this bit depends on the set of the resources of the FPGA and it is deter-
mined only by the FPGA architecture. However, the distribution of the faults
into following fault groups is defined in the process of the design.

Every fault belongs to one fault group. The fault bit is placed in Used, Unused
or Unknown group in the first approximation.

1. The unused bits are outside the design area. Neither static nor dynamic
changes of design behavior are expected.

2. Used bits are primary created by the design. Any bit from this group in-
fluences an active part of this design. A change can lead to the change
of the design function. A detailed distinction according to the used category
follows:

(a) Open: represents a wire interruption.

(b) Alternate: bits alter the design without any conflict on the bus.

(c) Conflict: is defined by connecting of two or more driven wires. This con-
flict leads to a short. The conflict can be separated into 2 subcategories:

— ?F-F” (Function—Function), where conflict is between two
non-constant functions

— "0-F” (Zero-Function), where any function conflicts with constant
» O”

(d) Unpredictable: A special case of open, where the change of a bit leads
to a change of a selector (transfer gate or mux) from a constant logic
value (”1” or 70”) to an unconnected wire (7Z”).

(e) Antenna: an unused wire is connected to the data path. This fault leads
to worse delays on wires.

3. The unknown bits form a class for bits, whose correct class cannot be evalu-
ated. The position in the bitstream implies their usage, but their exact role
in the bitstream has not been completely analyzed. Parts of RAM, reset and
clock resources are expected to belong in this category. These bits form up
to 5% of the bitstream.

These groups are defined in [1] and they are based on the real experiments
with the bitstream of FPSLIC [2] device. Each bit of bitstream has been tested.

How to Measure Dep. Params of Programmable Digital Circuits — A Survey 3

2.1 Fault Security Calculation

Some redundancy has to be incorporated into the circuit design to improve relia-
bility parameters. We have performed experiments with online testing to obtain
Concurrent Error Detection (CED) [3]. Basic reliability criteria are: fault secu-
rity (FS), self-testing (ST), totally self-checking (TSC), availability, reliability,
testability, mean time between failures (MTBF), mean time to repair (MTTR),
etc.

To determine whether the circuit satisfies the TSC property, the possible
faults are classified and separated into four classes, A, B, C and D [4] according
to their impact on the tested circuit design in the FPGA.

Class A — hidden faults. These are faults that do not affect the circuit output
for any allowed input vector. Faults belonging to this class have no impact
to the FS property, but if this fault can occur, a circuit cannot be ST.

Class B — faults detectable by at least one input vector. They do not produce
an incorrect codeword (valid code word, but incorrect one) for other input
vectors. These faults have no negative impact to the FS and ST property.

Class C — faults that cause an incorrect codeword for at least one input vector.
They are not detectable by any other input vector. Faults from this class
cause undetectable errors. If any fault in a circuit belongs to this class,
the circuit is neither F'S, nor ST.

Class D — faults that cause an undetectable error for at least one vector and
a detectable error for at least one another vector. Although these faults
are detectable, they do not satisfy the FS property and so they are also
undesirable.

This fault classification is obtained subsequently. A fault from the fault set
is inserted into the design. If the check of an output-word code fails, the input
word is added to the ”test” group. If the comparison of the outputs fails, but
the check of the code passes, the input word is added to the "error” group. When
all input words are tested, the fault class is determined.

The classification of fault is based on the size of ”test” and ”error” groups is
described in Table 1. Each fault from the fault set is tested. F'S and ST property
is calculated from numbers of faults and after that TSC property is calculated.

Table 1. Fault Classification

Fault class ”test” group “error” group
A empty empty
B non-empty empty
C empty non-empty
D non-empty non-empty

4 Jaroslav Borecky, Martin Kohlik, and Hana Kubdtova

3 Fault injection methods

The measurement of the behavior of a real designed system or a benchmark
circuit (Design Under Test — DUT) affected by fault is required for reliability
parameters calculations. The international safety standard IEC-61508 highly
recommends fault injection techniques in all steps of the development process
in order to analyze the reaction of the system in a faulty environment. Simulated
fault injection enables an early dependability assessment that reduces the risk
of late discovery of safety related design pitfalls and enables the analysis of fault
tolerance mechanisms at each design refinement step [5].
Faults can be injected into design or FPGA chip directly.

3.1 Injection into design

Injecting faults into the DUT requires a fault simulation or emulation to obtain
the reaction of the affected design. The injection can be made in the many ways
at the different levels of description: Gate insertion, Stuck-at fault insertion,
Value change in memory parts, Bitstream change.

A fault insertion by the means of a gate insertion [6,7] changes the DUT,
but it may be the only way how to insert a fault into the design in some cases.
The fault simulation can be done by connecting one input of the inserted gate
to a primary input of the DUT that allows the change of the value of the output
of the inserted gate. The appearance of the fault is controlled by the primary
input, so no special test simulation is required.

Stuck-at fault insertion is widely used [8-10]. It can be performed at many
levels (behavioral description, RTL, netlist). This method requires the adapta-
tion of a signal carrier (wire) in all cases. The adapted signal carrier must be
able to preserve a test value ignoring any operational value of the DUT.

Memories are one of the most significant parts of each FPGA. The fault
injection into these parts flips the value of affected bit, so this method is similar
to a radiation impact effect. The faults can be injected into Flip-flops [11] or
LUTs. The direct access to the LUT memory is available when the DUT is
mapped into FPGA primitives.

Bitstream change method is the most close to radiation effects, but the struc-
ture of the bitstream used to program the FPGA is unfortunately mostly un-
known. The blind test of each bit may be dangerous because it may cause short-
circuit inside the FPGA. The bitstreams of some FPGAs have been partially
decoded, so the fault injection into the decoded parts can be done [12-14].

3.2 Injection into FPGA chip

These methods suppose to use a real FPGA with the DUT implemented inside.
It is necessary to measure the impacts of injected faults. The measurement has
to be done by external equipment and/or by an unaffected part of the FPGA.

The injection of the faults into the FPGA can be done by Radiation or Laser
beam exposition.

How to Measure Dep. Params of Programmable Digital Circuits — A Survey 5

The exposition of the FPGA to radiation effects is the only possibility to
obtain the real data based on the negative effects of environment [15,16]. This
kind of experiments can be done e.g. on the orbit or in an ionising chamber. These
enviroments are not commonly available, so experiments are hard to perform.
Another drawback of these methods is the limited control over the experiment.

The physics of an optical pulsed beam are different from the high-energy
radiation, but both effects are similar [17]. A short laser beam burst is able to
cause the SEU effect in the same way as a natural radiation. The laser beam can
be controlled more precisely than the radiation, therefore it is possible to control
the location and the time point of the injected fault. This method of injection
requires a chip package to be opened in order to minimize the diffusion of a laser
light.

4 Difficulties with experiments comparison

Many papers show experimental results in the area of the dependable design, but
there are problems with the comparison of obtained results. Many authors use
standard ISCAS benchmarks that are provided in a bench format. The bench
format is close to a netlist representation, but the benchmarks are available
also in VHDL or Verilog formats. There are no rules about processing these
benchmarks. Published results are difficult not only to compare but also to
verify.

Important processing options influencing the concrete system design are
listed below:

— Synthesis tool

Synthesis options and optimization
Target architecture

— Place and route options

4.1 Synthesis tool, its options and optimization

Many papers do not specify, which benchmark format is used. Mostly it cannot
be determined, whether a synthesis step has been even executed or not. There
is no doubt that the different synthesis tools create different results (e.g. results
in [18]).

The usage of the same tool does not guarantee the same result. Differ-
ent optimization techniques (FSM encoding, area, speed etc.) cause the signif-
icant changes of the results. Different versions of the same tool may also cause
the changes of the results.

4.2 Target architecture

The selected target device has a major impact on the result design, too. Vendors
improve their devices all the time and each new family of devices comes with new

6 Jaroslav Borecky, Martin Kohlik, and Hana Kubatova

capabilities. The number of LUT inputs is changed, the modifications of basic
blocks are made and new specialized cores are added. These improvements may
lead to the changes of the tested circuit at the netlist level (e.g. results in [19]).

The process technology is also an important attribute. It does not change
the tested circuit at the netlist level, but it has a significant influence to the sen-
sitivity to the radiation effects, so it must be taken into account in the depend-
ability model and the reliability parameters calculations [20].

4.3 Place and route

The fault insertion into a bitstream requires the Place and Route (P&R) step to
be done. The parameters of the P&R (optimization goal, effort level, constrains
etc.) can influence the post-P&R design (e.g. results in [21]).

Moreover, a random algorithm is used, therefore the results cannot be re-
peated even with the same settings. The results of the research previously made
in our department show that the multiple runs of the P&R with the same settings
provide different results [14].

4.4 Dependability modeling

Formal dependability models are necessary to calculate the level of reliability
of a modeled system. Markov chains [22] are well-known and widely used for re-
liability calculations, but there are more models available.

Markov chains were originally proposed by the Russian mathematician Markov
in 1907. Over the many decades since, they have been extensively applied to prob-
lems in social science, economics and finance, Computer science,
computer-generated music, and other fields.

The availability parameter of the modeled system can be calculated as
the steady-state distribution of the probabilities of Markov chain. This distribu-
tion can be obtained as the solution of the system of linear equations.

Stochastic Petri nets (SPNs) [23] can be created as easy as Markov chains and
allow the same calculations. Mathematical properties, that are available for Petri
nets, can be used to analyze SPNs. Moreover, SPNs are not only dependability
models, they are able to represent the structure of the design.

Generalized Stochastic Petri nets (GSPNs) [23] have two different classes
of transitions: immediate transitions and timed transitions. Once enabled, im-
mediate transitions fire in zero time. Timed transitions fire after a random,
exponentially distributed enabling time as in the case of SPNs.

Our results with more details about models relations and comparison can be
found in [24].

5 Conclusions and recommendations

Main aim of this paper is to open the problems that we have to solve during
the development of the methodology of the dependable systems based on the pro-
grammable hardware (FPGAs) in our department. The real experimental results

How to Measure Dep. Params of Programmable Digital Circuits — A Survey 7

can be obtained by many ways so they cannot be neither replicated nor compared
among different research teams.

But there could be a solution of this problem. It is necessary to create
the database of benchmarks that will include more levels of descriptions for each
of them. Each benchmark will be available in following descriptions: Behavioral,
RTL, Netlist, Post-Map, Post-Place and Route, Bitstream.

Users will be able to choose the benchmark at the particular level, which
they need for their calculations. User made conversions among the listed levels
should be allowed only when the target level will be not available. Users will be
able to add their own modifications of a benchmark (e.g. original design with
parity check, duplicated design, different architecture implementation etc.) that
will be available to other users. The database of this type could allow the cor-
rect comparison of the different methods of the reliability modifications and/or
the reliability parameters calculations. Authors should be able to reference exact
benchmark, the used modification and level in their papers. Results presented
in future papers using this database will be easy to reproduce, verify and/or
compare using identical benchmark designs and conditions.

Acknowledgment

This research has been partially supported by the projects MSM6840770014,
GA102/09/1668 and SGS10/118/OHK3/1T/18.

References

1. Kvasnicka, J. and Kubdtova, H.: ”Emulation of SEU Effect In Bitstream of FPGA”,
In 4th Doctoral Workshop on Mathematical and Engineering Methods in Computer
Science. Brno, 2008, p. 140-147.

2. Atmel Corporation. ATMEL FPSLIC webpage.
http://www.atmel.com/dyn/products/devices.asp?family_id=627,

3. Pradhan, D.K.: ”Fault-Tolerant Computer System Design”, Prentice-Hall, Inc.,
New Jersey, 1996.

4. Kubalik, P.; Fiser, P. and Kubdatova, H.: ”"Fault Tolerant System Design Method
Based on Self-Checking Circuits”, Proc. 12th International On-Line Testing Sym-
posium 2006 (IOLTS’06), 2006.

5. Perez, J.; Azkarate-askasua, M. and Perez, A.: ”Codesign and Simulated Fault In-
jection of Safety-Critical Embedded Systems Using SystemC?”, In Proceedings
of the IEEE European Dependable Computing Conference (EDCC), 2010,

p- 221-229

6. Aftabjahani, S.A. and Navabi, Z.: ”Functional fault simulation of VHDL gate level
models”, In Proceedings of the VHDL International Users’ Forum, 1997, p. 18-23.

7. Civera, P.; Macchiarulo, L.; Rebaudengo, M.; Reorda, M.S. and Violante, M.: ”FEz-
ploiting circuit emulation for fast hardness evaluation”, IEEE Transactions on Nu-
clear Science (Part 1), 2001, p. 2210-2216.

8. Zarandi, H.R.; Miremadi, S.G.; Ejlali, A.: ”Fault injection into verilog models for de-
pendability evaluation of digital systems”, In Proceedings of the 2nd International
Symposium on Parallel and Distributed Computing (ISPDC), 2003, p. 281-287.

8 Jaroslav Borecky, Martin Kohlik, and Hana Kubatova

9. Na, J.: "A Nowel Simulation Fault Injection using Electronic Systems Level Simula-
tion Models”, IEEE Design & Test of Computers, Iss. 99, 2009.

10. Boue, J.; Petillon, P. and Crouzet, Y.: "MEFISTO-L: A VHDL-based fault injec-
tion tool for the experimental assessment of fault tolerance”,

In Proceedings of the 28th Annual International Symposium on Fault-Tolerant Com-
puting, Digest of Papers, 1998, p. 168-173.

11. Espinosa-Duran, J.M.; Trujillo-Olaya, V.; Velasco-Medina, J. and Velazco, R.:
” Bit-flip injection strategies for FSMs modeled in VHDL behavioral level”, In Pro-
ceedings of the 11th Latin American Test Workshop (LATW), 2010, p. 1-5

12. Sterpone, L.; Violante, M. and Sterpone, L.: ”A New Partial Reconfiguration-Based
Fault-Injection System to Fvaluate SEU Effects in SRAM-Based FPGAs”, I1EEE
Transactions on Nuclear Science, Part 2, 2007, p. 965-970.

13. Legat, U.; Biasizzo, A. and Novak, F.: ”Automated SEU fault emulation using par-
tial FPGA reconfiguration”, In Proceedings of the IEEE 13th International Sym-
posium on Design and Diagnostics of Electronic Circuits and Systems (DDECS),
2010, p. 24-27.

14. Kvasnicka, J. and Kubdtova, H.: ”Single Event Upset Tolerant FPGA Design”,
In Proceedings of the Work in Progress Session SEAA 2009 and DSD 2009, 2009,
p. 37-38.

15. Karlsson, J.; Liden, P.; Dahlgren, P.; Johansson, R. and Gunneflo, U.: ”Using
heavy-ion radiation to validate fault-handling mechanisms”, IEEE Micro, Vol. 14,
Iss. 1, 1994, p. 8-23.

16. Ceschia, M.; Bellato, M. and Paccagnella, A.: ”"Heavy Ion Induced See in Sram
Based FPGAs”, Fault Injection Techniques and Tools for Embedded Systems
Reliability Evaluation, book from Frontiers in Electronic Testing series, Vol. 23,
Part 2, 2003, p. 95-107.

17. Ceschia, M.; Bellato, M. and Paccagnella, A.: ”Investigation of SEU sensitiv-
ity of Xilinx Virtex II FPGA by pulsed laser fault injections”, In Proceedings
of the 15th European Symposium on Reliability of Electron Devices, Failure Physics
and Analysis, Vol. 44, Iss. 9-11, 2004, p. 1709-1714.

18. Czajkowski, T.S. and Brown, S.D.: ”Functionally Linear Decomposition and Syn-
thesis of Logic Circuits for FPGAs”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 27, Iss. 12, 2008, p. 2236—2249

19. Mishchenko, A.; Chatterjee, S. and Brayton, R.: "DAG-aware AIG rewril-
ing: a fresh look at combinational logic synthesis”, In Proceedings
of the 43rd ACM/IEEE Design Automation Conference, 2006, p. 535-535.

20. Ohlsson, M.; Dyreklev, P.; Johansson, K. and Alfke, P.. ”Neutron SEU
In SRAM-Based FPGAs”, Xilinx Appnotes
www.xilinx.com/appnotes/FPGA_NSREC98.pdf

21. Sterpone, L. and Violante, M.: A New Reliability-Oriented Place and Route Al-
gorithm for SRAM-Based FPGAs”, IEEE Transactions on Computers, Vol. 55,
Iss. 6, 2006, p. 732-744.

22. 7Empirical Techniques in Finance — Chapter: Basic Probability Theory and Markov
Chains”, Springer Berlin Heidelberg, 2006, p. 5-17.

23. Bause, F. and Kritzinger, P.: ”Stochastic Petri Nets” An Introduction to the The-
ory (2nd edition). Vieweg Verlag, Germany.

24. Kohlik, M.: ”Dependability models based on Petri nets and Markov chains”,
In Pocitacové architektury & diagnostika. Solan: Universita Toméase Bati ve Zliné,
2009, p. 95-103.

