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Abstract. This paper shows a way to use stochastic Petri nets as formal availability 
models instead of Markov chains. Advantages of stochastic Petri nets over Markov 
models are illustrated on example models. The ability of stochastic Petri nets to represent 
the structure of modelled design and its use in further research is introduced. 
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1 Introduction 

FPGA-based designs are sensitive to many effects that can change their programmed function. [1] 
These changes are most unwelcome when designs are used in safety-critical applications, where the 
material loss or mortality can be caused because of their failure. The improvement of the reliability of 
the design is required to minimize the impact of such effects. The availability of the system is the 
probability that the system is operating at a specified time t. 
 The definition of the availability: [2] 
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 Time tuptime corresponds to the expected value of the uptime of the system and tdowntime corresponds 
to the expected value of the downtime of the system. 
 Markov chains [3] are the common way to calculate availability parameters. Markov chains are 
easy to create and they allow calculations of the availability of the design by solving a system of linear 
equations. 
 Basic Place-Transition Petri nets with immediate transitions are not designed to calculate 
availability parameters. Stochastic Petri net [4] is a subset of timed Petri nets that add  
nondeterministic time. 
 Stochastic Petri nets (SPNs) can be created as easy as Markov chains and allow the same 
calculations. Mathematical properties, that are available for Petri Nets, can be used to analyze SPNs. 
Moreover, SPNs are not only dependability models, they are able to represent the structure of the 
design. This feature will be used in further work in our research group. 
 The paper is structured as follows: A short introduction to Markov chains, stochastic Petri nets, the 
method how to transform Markov chains to Petri nets and vice versa and basic types of FPGA faults 
and errors are in Section 2. Section 3 contains example models. The conclusion and topics for further 
research are in section 4. 



2 Background 

2.1 Markov chains 

Markov chains were originally proposed by the Russian mathematician Markov in 1907. Over the 
many decades since, they have been extensively applied to problems in social science, economics and 
finance, Computer science, computer-generated music, and other fields. 
 The steady-state distribution of probabilities of states is computed in reliability calculations. The 
distribution is the result of the system of linear equations.  
 Fig. 1 shows an example of Markov chain. It contains two states (S1 and S2) and two edges (1 
and 2). 
 

 

Figure 1: A simple Markov chain example. 

 The following system of linear equations corresponds to a previous example. The variable p(Sx) is 
the probability of the state Sx. The sum of probabilities of non-hazard states is the availability of the 
system. 
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2.2 Stochastic Petri nets and their extensions 

Stochastic Petri nets are formed from Place-Transition nets by adding the transition rate of the 
transition ti. It means that the firing time is exponentially distributed and the distribution of the random 
variable i of the firing time of transition ti is given by 

  xiexF 1  

 The average time for ti to fire is 
i

1
. 

 

 

Figure 2: A simple SPN example. 



 A simple example of SPN is illustrated in Fig. 2. This SPN contains two places (P0 and P1) and 
two transitions with an exponentially distributed firing time (T0 and T1). When transition T0 is fired, 
using the firing rule of Place-Transition nets, the token is moved from place P0 to P1. 
 Generalized Stochastic Petri nets (GSPNs) [4] have two different classes of transitions: immediate 
transitions and timed transitions. Once enabled, immediate transitions fire in zero time. Timed 
transitions fire after a random, exponentially distributed enabling time as in the case of SPNs. 
 Fig. 3 shows an example of GSPN. Transition T4 is an immediate transition. The other transitions 
are exponentially distributed. The arc heading from transition T5 to place P0 has weight set to 2 to 
ensure liveness of GSPN. 
 

 

Figure 3: A GSPN example with one immediate transition. 

 Mathematical properties, that are available for Petri Nets, can be used to analyze both SPNs and 
GSPNs as well. All example models in this paper are live, bounded and reversible. [5] 

 Boundeness: If the model is not bounded, then the set of reachable markings is infinite. The 
probability of any marking from this reachability set will approach 0. 

 Reversibility: All proposed models suppose non-destructive actions that can be undone. 
Undoing the actions will lead the model to its original state. 

 Liveness: Every transition in proposed models represents a certain action. The transaction, that 
cannot be fired, represents an impossible action. An impossible action does not need to be 
modelled. This fact along with the reversibility property implies the liveness property. 

 

2.3 Transformation from Markov chain to stochastic Petri net and vice versa 

Following sections briefly describe methods how to convert Markov chains into SPNs and vice versa. 
More detailed descriptions of the conversion to Markov chain are available in [4]. All examples in 
both forms (Markov chain and (G)SPN) lead to the same steady-state distribution results. 
 



2.3.1 Markov chain to SPN 

This transformation is very simple: 
 Convert every Markov chain state into SPN place 
 Convert every Markov chain edge into SPN transition (keep intensity rates) 
 Add one token to Petri net place that corresponds to the Markov chain default state 

2.3.2 SPN to Markov chain 

This transformation is not as simple as the previous one. SPNs may have more than one token and 
they may contain transitions with multiple arcs. These two facts cannot be included in Markov chains. 
 The transformation is based on the reachability graph of SPN. The reachability graph condenses 
each marking of SPN to one state and eliminates transitions with multiple arcs. 
 This transformation is made as follows: 

 Create reachability graph of SPN 
 Convert every reachability graph state into Markov chain state 
 Convert every reachability graph edge into Markov chain edge (keep intensity rates) 

2.3.3 GSPN to Markov chain 

This is the most complicated transformation. It is based on the reachability graph of GSPN, too. The 
reachability graph of GSPN contains vanishing states (states with at least one immediate transition 
enabled), that cannot be included in Markov chains. The reachability graph must be reduced and 
vanishing states removed. All edges leading to a removed vanishing state have to be connected to all 
edges starting from a removed vanishing state. The rates of edges have to be fixed as it is illustrated in 
Fig. 4. 
 

 

Figure 4: Examples showing the reduction of reachability graph. 

2.4 FPGA in-operation faults and errors 

The function of the FPGA may be changed during the operation due to many reasons. [1][6] Some of 
them are listed below: 

 Aging 
 Stress (voltage, heat …) 
 High-energy particle impact 

 
 The effect of the impact of high-energy particle can be divided into the following groups: 

 Destructive (Single Event Burnout …) 
 Non-destructive (Single Event Upset …) 



 Only non-destructive Single Event Upsets (SEUs) will be taken into account in this paper. The 
SEU can change the configuration information – FPGA bitstream. This negative effect of the SEU can 
be removed by the reconfiguration of the FPGA. During the process of the reconfiguration, the 
original bitstream is restored. Some types of the FPGA are able to reconfigure its content dynamically. 
This feature allows the partial reconfiguration of the FPGA while the rest of the FPGA can be in the 
operational mode. The reconfiguration of the whole FPGA is required when the dynamic 
reconfiguration cannot be used. Some parts of the design are not possible or proper to reconfigure 
dynamically (e.g. module interconnections, module-pin connections …). A non-reconfigurable 
overhead may have a significant effect to the availability of the design. 
 The reconfiguration of the FPGA takes about 50 ms (it depends on the size of the reconfigured part 
of the FPGA and the period of the configuration unit’s clock signal). If the design in the FPGA is not 
operational during the reconfiguration, the availability parameter of the design is decreased.  
 Both Markov chains and SPNs can be used to calculate the decrement. The availability of the 
system with a dynamically reconfigurable module is increased significantly in comparison to the 
system without a dynamic reconfiguration until the size of an overhead part does not get over critical 
size. [7] It is possible, that some design will have small overhead and will derive advantage from a 
dynamic reconfiguration. The other design will have a big overhead part and its advantage from a 
dynamic reconfiguration will be small or none. 

3 Example models 

3.1 Models conditions 

Conditions for all example formal models mentioned in this paper are defined as follows: [7][8] 
 Only a “single fault” may appear: 

o It will occur at a single time instant that is arbitrarily located at the time axis. 
o The fault can destroy a data item located within the configuration memory of the FPGA. 

The assumed “width” of the fault is one bit in a configuration memory. Every bit of the 
bitstream memory of the FPGA can be attacked with the same probability. 

o The time distance between any two successive faults is large enough to recover the system 
from the first one (otherwise it is a multiple fault). 

 
 The design is defined as follows: 

o The design contents a dynamically reconfigurable module and an overhead part that 
cannot be reconfigured dynamically. 

o The module can be divided into n (e.g. 2 or 3) fractions with identical configuration data 
size or can be left undivided (n = 1). 

o Each fraction is able to detect the SEU that impacted it on. An overhead part has the same 
ability. 

o The reconfiguration unit loads a correct configuration data after the fault is detected. The 
time needed to reconfigure a faulty part depends on the configuration data size of the 
part. The reconfiguration unit is able to reconfigure each fraction of the module 
independently. 

o SEUs impacting an unused logic do not change the function of the used part. This type of 
impact is not considered in calculations. 

 
Fig. 5 shows the schematic model of an example design. Possible fractions of a reconfigurable module 
are represented by green lines. 
 



 

Figure 5: The schematic model of an example design. 

3.2 Models comparison 

An example GSPN model with a dynamically reconfigurable module undivided is illustrated in the left 
part of Fig. 6. In the right part of the same picture is corresponding Markov chain. 
 The model for an overhead part, that cannot be reconfigured dynamically, is located in the upper 
part of the left figure. SEU impact into the overhead part of the design is represented by 
Non_Rec_SEU transition. Firing this transition moves the token from Non_Rec_OK place to 
Non_Rec_Error place. All_Repair transition is enabled in a new marking. Firing this transition 
matches the end of the reconfiguration of the FPGA and moves the token from Non_Rec_Error place 
back to Non_Rec_OK place. 
 

Fig. 6: An example GSPN and Markov chain with a dynamically reconfigurable module undivided  



 The model of a dynamically reconfigurable module is located in the lower part of the left figure. 
The meaning of places and transitions is very similar to the model for an overhead part. Rec_Repair 
transition corresponds to the dynamic reconfiguration of the module in this case. 
 Two immediate transitions (Rec_Imm_Fail_a and _b) located in the middle of the figure are 
purposed for removing the token from the lower part when the reconfiguration of the whole FPGA is 
running (the token is located in Non_Rec_Error place). There is no need to calculate a SEU 
probability or the reconfiguration process of a dynamically reconfigurable module during the 
reconfiguration of the whole FPGA. A third immediate Rec_Imm_Repair transition is purposed to 
return the token to the lower part after the reconfiguration of the whole FPGA has been finished (the 
token has been returned to Non_Rec_OK place). 
 Markov chain contains three states that correspond to states of the system. Edges correspond to the 
same-named transitions of GSPN. Edges Non_Rec_SEU_0 and _1 correspond to the same event. It 
looks simpler than corresponding GSPN, but does not contain any sign of the structure of the design. 
 Fig. 7 shows an example GSPN model with a dynamically reconfigurable module divided into 2 
fractions. 
  
  

 

Fig. 7: An example GSPN chain with a dynamically reconfigurable module divided into 2 fractions. 

 This model is similar to that one shown in Fig. 6. The model of the second fraction of a 
dynamically reconfigurable module is located in the right part of the figure. It contents same places 
and transitions with same functions. The arc leading from Rec_Wait_for_All_Repair place to 
Rec_Imm_Repair transition has increased weight to ensure boundeness of the model. Both simple 
models of fractions of a dynamically reconfigurable module and the model of the overhead part of the 



design can be found in GSPN. A similar method is used to extend GSPN to create the model for 3 and 
more fractions. 
 Fig. 8 shows an example Markov chain corresponding to GSPN shown in Fig. 7. This Markov 
chain cannot be created from that one shown in Fig. 6 by adding new part, it have to be revised 
completely. 
 Markov chain for more fractions looks like an n-dimensional cube with one place corresponding to 
the error of the overhead part of the model. Each vertex of the cube represents one combination of 
error and non-error states of all fractions of a dynamically reconfigurable module. A 2D cube (square) 
can be found in Fig. 8. 
 
 

  

Fig. 8: An example Markov chain with a dynamically reconfigurable module divided into 2 fractions. 

4 Conclusion and future work 

Stochastic Petri nets and their use in reliability modelling are described in this paper. Examples 
presented in this paper have been used to calculate the availability of the system with a dynamically 
reconfigurable module and non-reconfigurable overhead. Detail results are available in [7].  
One of advantages of GSPNs over Markov chains – the ability to represent the structure of a modelled 
design – will be used in further research.  
 The reconfiguration of the FPGA is a deterministic process, but it is represented as the transition 
with non-deterministic time. This approximation may cause errors in results. The calculation of the 
relevance of this error will be the first step in research. 
 DUBs – Dependable Universal Blocks [9] – will be used to build complex designs in our research 
group. Each of these DUBs will have its own security part and GSPN model depending on its 
structure. We will try to create the method to combine models of DUBs to one model of whole 
complex design. The next goal will be the automation of the process. 
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