
Small but Nasty Logic Synthesis Examples

Petr Fǐser ∗, Jan Schmidt †

Abstract

A method to find hard logic synthesis examples with known upper bound is presented.
The circuits can be small and yet difficult to synthesize. Any area-related metric can be
used in finding the circuits and testing synthesis tools. The hardness of the examples is
robust with respect to the metric used and to minor alterations in the circuit.

1 Introduction

RTL description is presently the standard starting point of ASIC and FPGA industrial design.
Logic synthesis, as the first step in RTL work flow, is believed to be a matured process, giving
results reasonably close to optimum. Yet, Cong and Minkovich [1] published circuits with known
optimal implementation (LEKO) or with known upper bound (LEKU), which are very hard for
any synthesis process and causes it to yield results far from optimum; circuits obtained by the
synthesis are up to 40x larger than expected.

While working on circuits testable on-line [2][3], we met circuits with similar properties.
They are structurally different and much smaller. Both these properties permit us to try to
understand the source of their hardness and to link them with research on symmetric functions
[4].

We will briefly recapitulate the results of Cong and Minkowich, to establish a basis for com-
parison. Then, we are going to describe our LEKU circuits, with an algorithm for constructing
candidates. By giving experimental results, we will demonstrate that the hardness is robust
with respect to changes in the circuits. Finally, first hints possibly leading to understanding the
hardness will be presented.

2 LEKU Circuits of Cong and Minkovich

Logic synthesis Examples with Known Optimal (LEKO) are constructed by replicating a rela-
tively small circuit with n inputs and n outputs, given as a Boolean network with two-inputs
nodes. Optimum mapping into 4-LUTs (4-input Look-up Tables) is known. After their multiple
replication, there is a path from each input to each output. It has been proven that the optimum
mapping of the entire circuit retains the mapping of the core circuit.

The resulting Boolean network can be used to evaluate the performance of LUT mappers
against the proven optimum. The network can be also converted into a Sum-of-Product (SOP)
description and used to evaluate any synthesis process capable of producing a 4-LUT mapping
(Fig. 1). In this case, the proven mapping is only an upper bound, hence this type of evaluation
circuit is referred to as Logic synthesis Examples with Known Upper bounds (LEKU).

When these LEKU benchmarks are synthesized using either open-source or commercial LUT
mapping tools, the resulting number of LUTs is sometimes by two orders of magnitude larger
than the known lower bound [1].

3 LEKU Circuits Based on Existing Benchmarks

During our research of a design of reliable self-checking circuits [2], there was a need to design
a multiple-parity generator for a given circuit. The parity bits are produced by XOR-ing the
∗Czech Technical University in Prague, fiserp@fel.cvut.cz
†Czech Technical University in Prague, schmidt@fel.cvut.cz

replication

core circuit Boolean network

Boolean networkcircuit

circuit SOP

collapse and decompose/balance

minimum #LUT actual #LUT actual #LUT

LEKO comparison

LEKU comparison

proof

SUE

SUE

Figure 1: Circuit construction and data flow of Cong and Minkovich for a SUE (Synthesis under
evaluation)

circuit’s outputs. We initially supposed that the final parity generator logic would be smaller
compared to the original circuit. The reason for the area reduction is straightforward: there
is a chance that the appended XOR gates would be ”soaked” into the original circuit by the
synthesis, thus the logics would be reduced. However, we were rather surprised by the results;
in some cases, the resulting parity generator circuit was almost 40-times bigger than the original
circuit. Moreover, the size of the synthesized parity generator more than 25-times exceeded the
size of a parity generator designed by manually appending XOR gates to its outputs. This sorrow
fact gave us a hint for an investigation of the reason for such a failure of a standard synthesis
process. The most apparent lack of quality was observed when XOR-ing all the circuit’s outputs,
in which case only one parity bit is obtained.

Based on the above-mentioned observations, our proposed method constructs a candidate
benchmark circuit out of an arbitrary core circuit (Fig. 2) as follows:

Algorithm 1 :
1 Take any circuit with m > 1 outputs.
2 Construct a XOR tree with m inputs.
3 Connect the tree to the outputs of the core circuit.
4 Collapse the whole circuit to obtain its two-level representation

x1

core

circuit
xn

y1

ym

XOR

Figure 2: The proposed circuit construction

Collapsing the circuit with the XOR tree into its two-level representation is an essential step in
the benchmark circuit generation. This way, the original (multi-level) structure of the circuit is
completely obscured. Thus, the reconstruction (or refinement) of the former structure rests on
the synthesis process only.

The candidate circuit has then to be measured as depicted in Fig. 3 with an area-related
metric, such as the number of LUTs. Suitable circuits are distinguished by having the actual
metric considerably bigger than the upper bound.

The number of 4-input LUTs has been chosen as a circuit’s complexity metrics (also in
correspondence with [1]), so that the upper bound could be easily determined: the minimum
number of 4-LUTs needed to construct the XOR tree is d(m− 1)/3e, where m is the number of
the original circuit’s outputs. For example, the alu1 MCNC benchmark circuit having 8 outputs

may be implemented by 8 4-LUTs. Then, the upper bound of the complexity of the 1-parity
generator circuit would be 8+3 = 11 4-LUTs.

4 Experimental Results

4.1 Comprehensive Exploration

Fig. 4 summarizes the results of an extensive measurement on the MCNC91 benchmarks [5]
using the number of 4-input LUTs as a metric. It plots the ratio of the actual size to the upper
bound (the nastiness factor) as a function of circuit size, measured by its upper bound. We used
three different synthesis processes (SUEs):
• SIS [6] under the script recommended for LUT synthesis
• SIS under the script rugged script, followed by tech decomp -a 4, to obtain a network

of 4-input nodes (i.e., LUTs as well)
• the LUT synthesis in ABC [7].

Each line in the plot represents one MCNC benchmark circuit. If the nastiness factor is below
1, the circuit size is reduced when its outputs are XOR-ed. Circuits having the factor greater
than 1 are good candidates for a synthesis example. We observe the following:
There are hard-to-design circuits of all sizes. The smallest of them is alu1, which also exhibits
the greatest nastiness factor.

Σ

desired metricdesired metric

SOP

and collapse
combine

circuit

any formalism any formalism

core circuit XOR tree

LEKU comparison

desired metric

SUE or SUE,

synthesis

any other any other

synthesis,

or manual

SUE

Figure 3: Proposed circuit construction and data flow for a SUE (Synthesis under evaluation)

In this measurement, we used the average number of LUTs as our metrics, together with the
span of the number of LUTs.

4.2 “Nasty” And “Nice” Circuits

Experimental results obtained by several selected MCNC benchmarks are presented in Table 1.
The “nasty” benchmarks are shown in the upper part of the table, while the “nice” ones are
shown below.

The above-mentioned three synthesis processes have been applied to these circuits. After
the circuit name, the theoretical lower bound of the number of 4-LUTs, computed as stated
in Section 3, is shown. Then the numbers of 4-LUTs obtained by the circuit collapsing and
a subsequent synthesis by SIS (LUT synthesis script), SIS using a script rugged followed by
techdecomp -a 4 and ABC is shown in the following columns. The respective nastiness factors
are indicated in brackets. The benchmarks are sorted by their nastiness factors.

It can be seen that the “nastiest” benchmark is alu1, with almost 26-times bigger implemen-
tation after the synthesis by SIS. The second SIS optimization script script rugged followed
by techdecomp -a 4 always yields worse results than the suggested one. This gives us an im-
portant clue:

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

A
ct

ua
l s

iz
e

in
 L

U
T

s
to

 u
pp

er
 b

ou
nd

Upper bound, LUTs

Figure 4: Measured results, MCNC benchmarks, three SUE

The problem with synthesizing these benchmark circuits is not caused by poor LUT-mapping. On
the contrary, it is a general problem for any synthesis process.

Name Theoretical lower bound SIS LUTs SIS LUTs (2) ABC LUTs
alu1 11 283 (25.78) 467 (42.45) 444 (40.36)
misex3c 258 1590 (6.16) 1753 (6.79) 2182 (8.46)
alu3 33 110 (3.33) 217 (6.58) 139 (4.21)
alu2 36 94 (2.61) 255 (7.08) 113 (3.14)
b12 32 68 (2.13) 123 (3.84) 81 (2.53)
t1 73 142 (1.95) 272 (3.73) 134 (1.84)
alu4 481 929 (1.93) 1330 (2.77) 1738 (3.61)
t4 17 27 (1.59) 82 (4.82) 28 (1.65)
mp2d 40 63 (1.58) 113 (2.83) 70 (1.75)
e64 744 23 (0.03) 39 (0.05) 22 (0.03)
prom1 2010 62 (0.03) 213 (0.11) 125 (0.06)
pope 188 7 (0.04) 23 (0.12) 14 (0.07)
bw 64 3 (0.05) 7 (0.11) 6 (0.09)
mainpla 2417 118 (0.05) 310 (0.13) 142 (0.06)
lin 294 15 (0.05) 72 (0.24) 30 (0.10)
al2 93 5 (0.05) 15 (0.16) 8 (0.09)
exps 518 28 (0.05) 74 (0.14) 36 (0.70)
opa 382 24 (0.06) 68 (0.18) 27 (0.7)

Table 1: MCNC benchmarks ordered by nastiness, with LUT numbers as metrics

4.3 A Continuum between the Core and the Complete Circuit

It can be objected that the difficulty of the circuits is a result of random interaction between the
core circuit and the XOR tree and that a small change in either of them will make the circuit
ordinary. We tested this conjecture by splitting the outputs into groups and constructing a
separate XOR tree for each group. In particular, we have varied the number of parity bits from
1 (which is our benchmarks case) to m (which corresponds to an original benchmark, without

any parity XORs - the core). We have used two methods to produce the parity bits:
• A random assignment. The original circuit’s outputs are distributed among the XOR trees

at random.
• A more sophisticated technique based on the analysis of the circuit [3].
The results for four selected MCNC [5] benchmarks are shown in Fig. 5. The numbers of

parity bits are indicated on the x-axis (starting from 1 to the number of the circuit’s outputs), the
y-axis shows the number of LUTs after the synthesis by SIS. The two curves correspond to the
two grouping algorithms. Naturally the curves meet at their endpoints, where no optimization
of the output grouping can be done. The upper curves correspond to the random grouping
approach (yielding more LUTs). The values were obtained by averaging the results obtained
by 500 runs of the whole synthesis process. For all circuits tested, the sequences between these
limit points are monotonous, like as depicted in Fig. 5. Benchmarks alu1 and alu2 are typical
“nasty” circuits. Their size rapidly increases with decreasing the number of parity bits. On
the contrary, the 5xp1 and duke2 are the “nice” ones, where appending XORs to their outputs
yields less logics, as expected.
The monotonicity demonstrates that the nastiness of the circuit is robust with respect to circuit
alteration. Moreover, it opens up a way to scale the nastiness.

Figure 5: Variable number of XOR outputs

4.4 On Using Different Complexity Metrics

In previous measurement, we used the average number of LUTs as our metrics. Table 2 shows
what happens when we change it to the average factored form number of literals, a radically
different metrics. The ordering is the same by both metrics. This parallel continues – although

name nastiness by LUT# nastiness by factored form
alu1 25.78 8.12
misex3c 6.16 2.50
alu3 3.33 1.87
alu2 2.61 1.78
b12 2.13 1.03
t1 1.95 0.81

Table 2: MCNC benchmarks ordered by nastiness, with LUT number and factored form size as
metrics

not precisely – for several more benchmarks, well into the region where the nastiness factor
ceases to be interesting. We observe:
The nastiness is robust with respect to choice of size-related metrics.

5 alu1 in Detail

As we stated before, the new circuits are fairly small. This enables us to gain some insight by
reverse engineering and structure alterations of the core circuit. alu1 is one of the smallest and
yet nastiest circuits. Moreover, its name seems to suggest the presence of iterative structures and
handcrafted arithmetic circuitry. Figure 6 is a detailed schematic of one possible implementation
of the original PLA description. The core circuit is composed of four subcircuits, which all share

0
1

0
1

three identical subcircuits

in alu1, one subcircuit
has permanent ’1’
here

Figure 6: Alu1 schematic

four of the inputs. Each other input is processed by only one respective subcircuit. Three of
the four subcircuits are identical, the fourth one is simplified (in the PLA form, one term is
missing).

Figure 7 outlines our experimentation. Firstly, we tried to determine if the irregularity has
any significance. The regularized core circuit, alu1RG, showed almost identical complexity results
when augmented with the XOR tree (Table 3). This encouraged us to derive a small circuit,
alu1HFRG, with only subcircuits from Figure 6. Even this toy example was not synthesized
optimally. With circuits bigger than alu1RG, we ran into difficulties with the synthesis tools.

alu1RG

only 2 subcircuits (a half of alu1RG)

alu1HFRG

alu1TWRG
8 subcircuits

(twin alu1RG)

remove

irregularity
alu1

common inputs
made independent

alu1ITWRG

for each 4 subcircuits

alu1QDRG

16 subcircuits (quad alu1RG)

Figure 7: alu1 derivatives

Name Theoretical lower bound SIS LUTs ABC LUTs
alu1 11 283 (25.78) 444 (40.36)
alu1RG 11 280 (25.45) 491 (44.64)
alu1HFRG 5 9 (1.80) 28 (5.60)
alu1TWRG 21 fail 7826 (372,67)
alu1QDRG 43 fail fail
alu1ITWRG 21 fail 1088 (51.81)

Table 3: The nastiness of alu1 derivatives

The collapsing processes of SIS and MVSIS either produced normal forms of enormous size (up to
357 000 terms in the case of alu1TWRG and MVSIS), or failed to collapse the circuit (alu1QDRG).
It is problematic to distinguish fails caused by the intermediate form and by the nastiness of the
circuit itself. When produced, the normal form size differed greatly between SIS and MVSIS,

which usually does not occur with “nice” circuit and which had a significant impact on synthesis
results. Therefore, the results in Table 3 are obtained by “best effort”.

Nevertheless, alu1TWRG had record nastiness. The scatter points in Figure 4 seem to be
contained within a convex body, which suggests that large nasty circuits may be sparse; alu1TWRG
contradicts this.

To test the influence of reconvergent fan-out, we cut the four common inputs of alu1TWRG
and gave each half of the circuit a separate set of four inputs in alu1ITWRG. Although the
normal form was bigger than that of alu1TWRG, the nastiness dropped somewhat. It is still to
be determined whether this is significant.

Replication (even partial replication) of nasty circuits can lead to bigger nasty circuits. Recon-
vergent fan-out can make the circuits harder. A better form to communicate solely the function
(not the structure) of the circuits shall be found.

6 Related Research

The paper [4] by Wang and Dietmeyer, although aimed at synthesis improvement, brings ob-
servations that are probably relevant to our circuits. They construct an evaluation circuit by a
method close to ours. They compose a MCNC benchmark, namely f51m, with the symmetrical
circuit S8

{4}. (In this notation, the XOR tree would be S8
{1,3,5,7}). The purpose of this circuit is

to demonstrate the advantages of a synthesis process that can handle near symmetry in circuits
well. They also state that common algebraic decomposition methods perform poorly not only
on symmetric functions but also on functions exhibiting near symmetry, moreover, that sym-
metry is not handled well in two-level minimization. These assertions, although intuitive, are
not supported in the paper. Nevertheless, they give a possible explanation of the phenomena
observed:
• Symmetric functions have logarithmic depth (and hence, linear circuit size).
• They are not handled well by contemporary algorithms.
• Near symmetry is in these respects similar to symmetry.
• Therefore, circuits with near symmetry tend to have small implementation, which is hard

to find by contemporary algorithms.
So far, our experiments did not confirm this hypothesis.

7 Conclusions & Future Work

We propose a novel methodology to design example circuits that are difficult to be handled by a
standard synthesis process. They are constructed by appending XOR trees to the outputs of a
given circuit. These circuits, even though they are originally small, yield excessively large area
after synthesis.

We have shown that the success of the synthesis monotonously depends on the number of
parity bits generated. We have experimentally discovered an indispensable set of “nasty” core
circuits, for which the complexity of the resulting complete circuit grows with the number of
XOR sections appended. On the other hand, other circuits behave differently; the complexity
of the XOR-ed circuit decreases with the number of its outputs (i.e. parity bits). This is the
case one would expect.

Our ultimate goal is to understand the reasons why synthesis behave so differently in the
cases described. The first conjecture to be verified is the influence of symmetry introduced into
the circuit by the appended XOR gates, as suggested in [4].

References

[1] J. Cong and K. Minkovich, ”Optimality study of logic synthesis for LUT-
based FPGAs” (2007). IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems. 26 (2), pp. 230–239. Postprint available free at:
http://repositories.cdlib.org/postprints/2376

[2] P. Kubaĺık, P. Fǐser and H. Kubátová, ”Fault Tolerant System Design Method Based on Self-
Checking Circuits”, Proc. 12th International On-Line Testing Symposium 2006 (IOLTS’06),
Lake of Como, Italy, July 10-12, 2006, pp. 185-186

[3] P. Fǐser, P. Kubaĺık and H. Kubátová, ”An Efficient Multiple-Parity Generator Design for
On-Line Testing on FPGA”, Proc. 11th Euromicro Conference on Digital Systems Design
(DSD’08), Parma (Italy), 3. - 5.9.2008 (submitted)

[4] F. Wang and D. L. Dietmeyer, ”Exploiting Near Symmetry in Multilevel Logic Synthesis”
(1998). IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
17 (9), pp. 772–781.

[5] S. Yang, ”Logic Synthesis and Optimization Benchmarks User Guide”, Technical Report
1991-IWLS-UG-Saeyang, MCNC, Research Triangle Park, NC, January, 1991

[6] E. Sentovitch, K. Singh et al., ”SIS: A System for sequential circuit synthesis”, Univ.
California, Berkeley, Tech. Rep., UCB/ERL M92/41, May 1992

[7] Berkeley Logic Synthesis and Verification Group, ”ABC: A System for Sequential Synthesis
and Verification”. [Online]. Available: http://www.eecs.berkeley.edu/ alanmi/abc/

