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Abstract 

We propose a method to efficiently design a “parity 
generator”, which is a stand-alone block producing 
multiple parity bits of a given circuit. The parity 
generator is designed by duplicating the original 
circuit, by XOR-ing given groups of its outputs and 
resynthesizing the whole circuit. The resulting circuitry 
is smaller than the original circuit in most of cases. 
The major task to be solved is to properly select the 
groups of outputs to be XORed to obtain multiple 
parity bits and maximally reduce the generator size. 
A method based on principles of the FC-Min minimizer 
is proposed in this paper. The parity generator can be 
exploited in on-line diagnostics, to design self-checking 
circuits. In our solution the self-checking circuits are 
basic blocks of the modified duplex system architecture 
used for increasing dependability parameters of a 
reliable design based on FPGAs. The method is tested 
on standard MCNC benchmark circuits and its 
efficiency is evaluated. 

Track area: Fault Tolerance in Digital System 
Design 

Topic: on-line BIST 
Keywords: BIST, parity generator, on-line testing, 

Boolean minimization 

1. Introduction 

Systems realized by Field Programmable Gate 
Arrays (FPGAs) are more and more popular and 
widely used in more and more applications due 
to several advantages, like their high flexibility 
in achieving multiple requirements such as cost, 
performance and turnaround time and the possibility 
of reconfiguration and later changes of the 
implemented circuit, e.g., only via wireless 
connections. 

The FPGA circuits can be used in mission critical 
applications such as aviation, medicine, space 
missions, and railway applications as well [1, 2, 3]. 

Many FPGAs are based on SRAM memories 
sensitive to Single Even Upsets (SEUs), therefore a 
simple usage of FPGA circuits in mission critical 
applications without using any method of error 
detection (and possibly correction) is impossible.  

A change of one bit in the configuration memory 
leads to a change of a circuit function, often drastically. 
The Concurrent Error Detection (CED) techniques 
allow a faster detection of soft errors (errors which can 
be corrected by reconfiguration) caused by SEUs [4, 5, 
6]. SEUs can change also the content of the embedded 
memory, Look-up Tables (LUTs) and other 
configuration bits. These changes are not detectable 
by off-line tests, therefore CED techniques have to be 
used. The probability of a SEU occurrence in the 
SRAM is described in [7]. 

The self-checking (SC) circuit (a method based on a 
CED technique) is used to detect an occurrence of a 
fault in the tested circuit. Only one copy of the SC 
circuit is not sufficient to increase dependability 
parameters. Thus, we use the Modified Duplex System 
(MDS) architecture [8].  

This paper presents a parity generator design 
method based on parity bits grouping. The parity 
groups are generated from the original circuit’s 
outputs. The self checking circuit quality is determined 
by an area overhead and the number of undetectable 
faults while keeping dependability parameters. The 
“dependability” is currently used to express the ability 
of a system or of its component to correctly perform its 
function, or “mission” over time [9]. 

Previously we have proposed an output grouping 
method based on evaluating a “similarity” of the 
functions [10]. Now we propose a method based on the 
principles of the FC-Min minimizer [11, 12, 13]. Here 
we exploit principles of sharing group implicants 
among two or more outputs of the function. The groups 
of outputs to be XORed are derived from the numbers 
of group implicants they share.  

The paper is structured as follows: the principles of 
the parity generator and the dependable architecture 
based on a modified duplex system are described 
in Section 2. The dependability analysis is presented 
in Section 3. Then the FC-Min algorithm used 
to generate groups of parity bits is described 
in Section 4, the principles of the grouping of the 
outputs are stated in Section 5. Section 6 contains the 
experimental results and Section 7 concludes the paper. 

2. The Parity Generator 

The self-checking circuit is constructed 
by duplicating the original circuit and XORing the 



outputs of the duplicate circuit, to obtain parity bits. 
The code words obtained by the original circuit and the 
parity generator are then compared in the Checker, see 
Fig. 1. 

The number of used parity bits (check bits) 
significantly influences the area overhead, together 
with the dependability parameters [14]. Thus, proper 
number of parity bits has to be chosen, so that the 
overall logic would be minimized and the 
dependability of the circuit maximized. 
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Figure 1: The self-checking circuit design 

2.1. MDS architecture 

When self-testing and self-checking parameters are 
satisfied to 100%, also the totally self checking (TSC) 
parameter is satisfied to 100% [9]. Our previously 
obtained results show that to fulfill the TSC property 
to reach 100% is difficult [15], so we are using a 
modified duplex system (MDS) architecture [9] based 
on two FPGAs, see Fig. 2. 
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Figure 2. The MDS architecture 

Each FPGA has its primary inputs, primary outputs 
and two pairs of checking signals OK/FAIL. The 
probability of the information correctness depends 
on the Fault Security (FS) property. When the FS 
property is satisfied only to 75%, the correctness of the 
checking information is also 75%. It means that the 
signal “OK” give a correct information for 75% 

of occurred errors (the same probabilities for both 
signals “OK” and “FAIL”). 

3. Dependability Analysis 

To evaluate the influence of a sequence of the SEUs 
faults, a more precise definition of “a single fault” is 
needed. Availability computations for dependability 
analysis are used. In the following text we will assume 
that a “single data damaging” is defined as follows: 

• It will occur at a single time event that is 
arbitrarily located at the time axis. 

• The fault can change a data item located within the 
FPGA configuration memory. Both FPGAs can 
be affected with the same probability. We 
assume that a single fault changes only one bit 
of the FPGA configuration memory. Each bit 
in the FPGA configuration memory can be 
attacked with the same probability. 

• The time between any two single faults is 
sufficient enough to enable a single fault to be 
successfully detected and corrected. If not, a 
multiple fault occurs. 

 
Some basic rules are defined to calculate the 

availability parameters. We assume that: 
• There is at least one input vector occurring 

between two SEUs which cause an output 
to differ from the normal operation. 

• SEUs occurring in an unused logic do not change 
the function of the used part, therefore these 
faults are hidden. 

• The comparator and the checker fully satisfy TSC 
property. 

• The area overhead of the comparator and the 
checker is negligible. 

• The reconfiguration unit loads correct 
configuration data after the fault being detected. 

• The time needed to reconfigure the faulty part 
depends on the configuration data size. 

• The fault occurred in the unused logic does not 
cause the damage of the whole FPGA. 

 
The Markov model shown in Fig. 3 describes our 

architecture. 
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Figure 3. Model of our modified duplex system 

There are three states (O, F, H). The O state 
(operational) represents the regular fault-free state 
of the system, where both FPGAs operate correctly. It 



means that the malfunction function is signalized 
neither by the TSC circuit, nor by the comparator. 

There is a transition from O to F state (one FPGA is 
faulty) corresponding to the situation when a fault 
occurs in one FPGA and this fault is detected by one 
of the TSC circuits. The system enters this state with a 
probability FS. �  is the failure rate for one bit of a 
configuration memory and s is the size of a 
configuration memory. The number 2 in the 2λsFS 
expression means that one of two FPGAs can be 
affected by SEUs. The reconfiguration process is 
initiated only for the faulty FPGA. The repair rate is 
represented by � . The second FPGA is running 
correctly, and therefore performs the function of the 
system.  

Some faults are not detected, when the output vector 
is an incorrect codeword. The probability that the 
occurred fault causes an incorrect codeword is equal 
to 1-FS. In this case, the system comes to the state H. 

The H state (hazard) means that the system is in the 
hazard state. The hazard state is detected (e.g., by the 
comparators), because the output vectors are not 
identical. Both FPGAs have to be reconfigured in this 
case. The repair rate is equal to � /2, because each 
FPGA is being reconfigured separately. If it is possible 
to reconfigure both FPGAs at the same time, the 
availability parameters will increase.  
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The described model introduces four parameters: 

the failure rate (� ), the repair rate (µ), the fault security 
(FS) and the configuration memory size (s). These 
parameters are discussed in the next section. Now let 
us transform the Markov model into a system 
of equations describing the steady state probabilities 
of each of the states (Equations 1). The system 
of equations is completed with a normalisation 
condition. 

 

FOSS ppA +=    (2) 

 
The value of the steady-state availability ASS is a 

sum of probabilities for all working states (Equation 2). 

4. FC-Min 

The output grouping method is based on the 
FC-Min minimizer principles [11, 12]. FC-Min has 
been developed to efficiently handle functions with a 
large number of output variables. The minimization is 
being conducted in a reverse way than the standard 
minimizers do. First, the group cover of the on-set 
of all functions is found, independently on the source 
implicants. After that the minimized implicants are 
produced by processing the source implicants, in order 
to satisfy (and validate) the cover. Thus, group 
implicants are generated directly, not like in other 
minimization methods by reducing prime implicants 
of single functions. 

This approach makes FC-Min a very fast two-level 
group minimizer, since only implicants that will be a 
part of the final solution are produced. 

The minimization process consists of two processes: 
the Find Coverage algorithm and Implicants 
Generation. 

4.1. The Find Coverage Algorithm 

The Find Coverage algorithm is the essential phase 
of FC-Min. The whole cover of the on-set of the 
multi-output function is found, using the output part 
of the source function only. The algorithm tries to find 
a cover of the on-set by finding a rectangle cover [16] 
of all the “1” values in the output matrix (description 
of the function’s on-set), and then it generates 
implicants having the properties given by this cover. 

An example of such a cover is shown in Fig. 3. 
There is shown a 5-input and 5-output function defined 
by 10 terms, in a form of a truth table. The rest out 
of the total 32 terms is assigned as don’t cares. The 
result of the Find Coverage algorithm is a cover 
consisting of six coverage elements, t1 – t6. A coverage 
element is a Cartesian product of two sets, the 
coverage set C(ti) and the coverage mask M(ti). The 
coverage set describes the rows that are covered by ti, 
the coverage mask gives the output variables covered 
by ti. Our example coverage elements are shown 
in Tab. 1. 

Each coverage element describes a potential 
implicant. For example, the group term (implicant) t1 
covers “1”s of the fourth and fifth output variable (y3 
and y4) in vectors 4, 6 and 8. Let us note that the 
structure of the terms is not known yet; only the set 
of covered “1”s is known. Now it is apparent, that if 
we succeed in finding the implicants having the 
properties of t1 – t6 (i.e., the terms cover the appropriate 
“1”s), the solution will consist of six implicants. 
To solve the coverage finding problem we use a greedy 
heuristic, since it is NP-hard, see [12] for details. 
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Figure 4: Cover of the output matrix 

Table 1: Coverage elements from Fig. 4 

Implicant C(ti) M(ti) 
t1 { 4, 6, 8} { y3, y4} ≡ 00011 
t2 {1, 2, 7} { y1, y2} ≡ 01100 
t3 {8, 9} { y0, y2} ≡ 10100 
t4 {3} { y1, y3} ≡ 01010 
t5 {0, 1} { y0, y1} ≡ 10000 
t6 {4, 7} { y2, y4} ≡ 00101 

4.2. Implicant Generation 

After each coverage element is produced, it has 
to be validated, i.e., we must verify, whether there exist 
an implicant covering the “1”s in C(ti) × M(ti). This is 
done by directly generating the respective implicant. 
If this process fails, the coverage element is discarded 
and another one is computed. 

Considering the conditions described above, 
particularly the definition of the rows each cover 
element should cover (C(ti)), a simple rule the 
implicants have to satisfy can be derived: the minimum 
implicant satisfying the particular cover can be 
constructed as a minimum supercube of all the input 
vectors corresponding to the rows of the cover of ti. 
Moreover, this supercube must not intersect any term 
that is not included in the particular cover C(ti), since it 
would cover some zeros then. In our example, a 
minimum implicant t1 would be (-01--), because of: 
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5. The Output Grouping 

The idea of grouping the multiple-output function’s 
outputs to form multiple parity bits is straightforward: 
we try to group together outputs having many common 
group implicants. Such outputs will more likely share 
some terms, thus grouping them together would be 

advantageous for a two-level minimization of the 
source multi-output function. We have found 
experimentally that the same effect can be observed for 
a multi-level synthesis as well; the outputs sharing 
many group implicants share a lot of logics in the 
multi-level implementation of the function as well 
[13]. When these outputs are connected by a XOR gate 
to form a parity bit, the overall logic could be 
furthermore reduced, since only one output needs to be 
produced then. 

The main output grouping idea is simple: first, we 
perform a two-level minimization of the unmodified 
multi-output function. Then we identify the output 
variables to be grouped together by evaluating the 
numbers of group implicants common to the outputs, 
the outputs in each group of outputs are joined into one 
XOR gate and the whole circuit is resynthesized by SIS 
[17] to obtain a multilevel network (or LUTs) or by 
ESPRESSO [18] for a two-level implementation of the 
parity generator. 

5.1. Grouping Matrix 

As it was stated before, the grouping of the outputs 
is derived from the valid coverage of the on-set. Since 
there are often big numbers of possible group 
implicants (coverage elements) and output variables, it 
is not easy to combine the influences of the implicants. 
We have found that an efficient way to estimate the 
grouping of the outputs is by constructing a grouping 
matrix G. It is a symmetric matrix of dimensions 
[m, m], where m is the number of output variables. The 
value G[i, j] defines the “binding strength” of the two 
output variables i and j. 

The G matrix is being constructed during the 
coverage generation process. Firstly, the matrix is 
filled with zeros. After each valid coverage element is 
produced, the values in all the positions in G 
corresponding to all the couples of variables in M(ti) 
are increased by one. In our example (Fig. 4), after t1 is 
found, the cells G[3, 4] and G[4, 3] are set to one. This 
describes an increased likelihood that the outputs y3 
and y4 will be grouped together. The whole G-matrix 
computation process is shown in Fig. 5. 
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Figure 5: G-matrix construction 



It is a very simple example, however, in practice the 
G-matrix mostly contains values greater than 1. 
Greater values indicate that the respective two 
variables have more than one common implicants 
in the solution. 

5.2. Deriving the Output Grouping 

There have been no assumptions or requirements for 
the number of parity bits (i.e., groups of outputs) until 
now. The G-matrix just describes the binding strengths 
of every two function’s outputs. Now the distribution 
of the function’s outputs among the groups has to be 
found. Let us note that any number of groups (parity 
bits) can be generated by this method, according the 
designer’s needs. 

We use a simple greedy algorithm. First, we 
compute the nominal group size N, by dividing the 
number of function’s outputs by the number 
of required parity bits. This would be the average 
number of outputs forming one parity bit. Then the 
algorithm proceeds as follows: first, we find the 
maximum value in the G-matrix, let it be G[i, j]. When 
there are more possibilities for a choice, one is selected 
at random. Both the respective output variables (i, j) 
are assigned to the first group. After that we look for 
the next highest value in the i-th and j-th G-matrix 
rows, thus we find the output that “suits most” to one 
of the two selected ones. This new output is added 
to the group under construction. This process is 
repeated until N outputs are assigned to the group. 
Then we repeat the process from the beginning, 
to generate all the groups. 

6. Experimental Results 

6.1. The Overall Synthesis Process 

The overall synthesis process, i.e., the way how all 
the tests have been performed will be described in this 
subsection. 

The source functions for our experiments were the 
MCNC [19] benchmark circuits. The parity generator 
design process has been held in the following steps: 

1. First, the MCNC benchmark described as a 
PLA structure has to be pre-processed, in order 
to generate the function’s on-set and off-set, 
which is needed for FC-Min. This is done 
by ESPRESSO [18]. 

2. The circuit is then processed by FC-Min, 
to generate its group implicants. 

3. The grouping matrix and, subsequently, the 
grouping of the outputs, is derived from the 
group implicants. 

4. The obtained groups of outputs are XORed, 
to obtain the parity bits. This is done 

by converting the original circuit’s PLA into a 
BLIF [17] file by SIS [17] and appending the 
XOR gates to the outputs. 

5. The obtained parity generator is resynthesized 
by SIS, in order to obtain its PLA description 
(by collapsing the network), or to decompose it 
into LUTs. The number of literals in the SOP 
(sum-of-products) form for a PLA and the 
number of LUTs are counted then, to make an 
estimation of the size of the parity generator. 
Since the design is targeted to FPGAs, only 
4-LUTs will be considered from now on. 

6.2. The Efficiency of the Method 

In order to evaluate the efficiency of the proposed 
method, we have compared the FC-Min based parity 
bits grouping with a purely random grouping. We have 
tested the method on standard MCNC benchmark 
circuits [19]. We have varied the number of parity bits 
from one to the number of the circuit’s outputs. One 
limit, the 1-parity bit case, involves XORing all of the 
circuit’s outputs, thus any “smart” output grouping 
method cannot come into effect. The second limit case, 
i.e., the number of parity bits equal to the number 
of outputs, corresponds to the original circuit (no 
XORs). 

For each benchmark circuit and a given number 
of parity bits, 500 random and 500 FC-Min based 
output groupings have been generated and the average 
of each was taken. 

A typical growth of the number of look-up tables 
(LUTs) for the FPGA realization obtained by SIS [17] 
is shown in Fig. 6 for a sqr6 MCNC [19] benchmark 
circuit. The size of the circuit grows with the number 
of parity bits here. It can be concluded that by XORing 
the circuit’s output its size is reduced after resynthesis; 
producing the parity bits only is advantageous, with 
respect to the total area. 

On the other hand, Fig. 7 shows the alu2 benchmark 
results. Here the number of LUTs increases with 
decreasing the number of the parity bits, thus adding 
XORs to the circuit inputs involves the circuit size 
growth, even after the resynthesis. Such benchmarks 
typically are hard-to-synthesize functions with many 
XOR gates, like ALUs. Adding XOR gates to their 
output just increases their complexity and, moreover, 
standard synthesis tools, like SIS [17] and ESPRESSO 
[18] are not able to handle such circuits efficiently 
[20]. Fortunately, such cases are quite rare, see Tab. 2. 

Two curves are shown in figures 6 and 7. One curve 
corresponds to the FC-Min based output grouping, one 
to a random grouping. We can see that the FC-Min 
grouping always produced a circuit having fewer 
literals. Of course, the curves meet at the two limit 



cases (no parity and 1-parity bit), since no grouping is 
involved in these cases. 
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Figure 6: The sqr6 MCNC example 
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Figure 7: The alu2 MCNC example 

The summary results obtained from several MCNC 
benchmarks [19] are shown in Tab. 2. The “Bench” 
column shows the benchmark name, the number of its 
outputs follows (m). The ratio of the size of a 1-parity 
generator to the original circuit is shown in the next 
column (“Ratio”). 100% means no difference, circuits 
having the ratio less than 100% correspond to the 
Fig. 6 case (i.e., the area is reduced by XORing the 
circuit’s outputs), ratios higher than 100% correspond 
to the Fig. 7 case. It can be seen that the area of some 
benchmarks is rapidly reduced after XORing the 
outputs (newbyte, p82, t3, tms), however, for some 
benchmarks, the area is drastically increased (for alu1 
almost 40x!). As we have stated before, this is due to a 
fact that the added XOR gate complicates the logic 
after resynthesis to such extend, so that standard 
synthesis tools are not able to handle these functions 
efficiently [see 20]. 

The average and maximum improvement obtained 
by our output grouping method, with respect to the 
random grouping is shown in the next two columns, 
in terms of the number of LUTs, obtained by SIS [17]. 
The number of parity bits, where the maximum 

improvement was reached is indicated in the 
parentheses in the “Max. impr.“ column. 
Measurements equal to these made to obtain figures 6 
and 7 have been performed for all the benchmark 
circuits. All the respective dependency curves were 
similar to these shown in figures 6 and 7, the FC-Min 
based grouping method always gave better or 
approximately equal results than the random based 
approach. 

It can be seen that the FC-Min based output 
grouping method yields a substantial improvement 
with respect to the random method, so we can say it is 
efficient. However, for some benchmark circuits, the 
average improvement is negligible or even negative 
(e.g., ex1010, f51m, inc, in0, newpla, t3). These are 
probably mostly symmetric functions, where any 
“smart” output grouping method cannot help. 

Table 2: Output grouping results 

Bench m Ratio Avg. impr. Max. impr. 

alu1 8 3950.0% 11.7% 37.9% (4) 
alu2 8 284.8% 25.3% 42.9% (3) 
alu3 8 356.7% 3.5% 8.9% (4) 
apla 12 32.2% 13.8% 28.0% (4) 
b10 11 23.7% 4.7% 12.9% (8) 
b12 9 255.2% 12.7% 38.0% (2) 
bc0 11 21.8% 11.0% 24.3% (8) 
br1 8 35.9% 7.4% 18.9% (5) 
br2 8 15.7% 13.4% 36.4% (4) 
dk17 11 38.2% 7.9% 14.7% (9) 
dk27 9 50.0% 4.6% 14.3% (2) 
dk48 17 100.0% 2.4% 9.1% (5) 
ex1010 10 14.3% 0.1% 3.0% (7) 
exp 18 16.4% 10.2% 19.1% (12) 
f51m 8 51.4% -2.1% 0.0% (0) 
gary 11 21.2% 7.9% 8.4% (8) 
in0 11 21.1% 0.8% 9.0% (9) 
in2 10 33.3% 6.1% 21.3% (7) 
in5 14 77.4% 6.1% 21.3% (3) 
in7 10 86.2% 30.4% 51.5% (2) 
inc 9 16.7% -1.0% 9.1% (6) 
m1 12 11.1% 6.8% 33.3% (4) 
m2 16 13.3% 15.6% 32.4% (4) 
m3 16 13.9% 7.1% 24.5% (4) 
m4 16 16.8% 12.6% 28.9% (5) 
mlp4 8 20.0% 6.6% 26.9% (6) 
mp2d 14 151.4% 25.1% 42.0% (3) 
newapla 10 14.3% 0.1% 3.0% (7) 
newbyte 8 6.3% 11.7% 37.9% (4) 
newcpla 16 52.4% 17.4% 28.2% (6) 



Bench m Ratio Avg. impr. Max. impr. 

newcpla2 10 19.4% 29.9% 53.3% (3) 
p82 14 8.6% 4.3% 20.0% (10) 
sex 14 47.4% 23.4% 38.1% (9) 
sqr6 12 18.9% 13.9% 25.0% (9) 
t2 16 102.9% 17.4% 43.8% (2) 
t3 8 2.7% -0.9% 0.0% (0) 
t4 8 192.9% 6.8% 28.6% (4) 
tms 16 8.3% 10.1% 27.3% (10) 

6.3. The Dependability Parameters 

The parity net grouping methodology is used 
to increase the dependability of the system based 
on the MDS architecture. The availability 
computations were used to compare our modified 
duplex system with a standard duplex system and with 
TMR (Triple Modular Redundancy) system. 
Availability is a function of a time, A(t), defined as the 
probability that a system is operating correctly and is 
available to perform its functions at an instant of a time 
t. This section follows the Section 3 describing our 
modified duplex system with the Markov model and 
with dependability equations. 

Firstly, the model parameters are discussed. The 
failure rate (� ) depends on the probability that the 
impacting SEUs will change a bit in the FPGA 
configuration memory. The effect of the SEUs 
impacting on random access memory RAM is 
described in [7]. In this article authors tested many 
systems with different size and type of memory and 
calculated SEU failure rate. In our calculation we have 
taken into account results presented in [7] and we set 
the “failure rate” parameter to: 

 

][8.1 15 −−= heλ    (3) 

 
We assume more than one device with embedded 

RAM, therefore the failure rate parameter was 
increased. 

The repair rate (µ) depends on the time needed for 
the reconfiguration of an FPGA. The clock frequency 
was set to 25 MHz. The configuration memory size s 
(needed for each benchmark) was calculated as a 
product of the configuration memory size for 
AT94K40 ATMEL FPSLIC and the circuit area 
overhead (AO[%]). 

 
][233 bitsAOks ⋅=    (4) 

 
Dependability calculations are processed firstly for 

a single parity and then for a multiple parity. In the 
multiple parity case 2 or 3 parity nets were selected. 

Our results of improved availability parameters are 
shown in Tab. 3. Here “Bench” is the name of the 
benchmark circuit, “AO” is the area overhead, “FS” is 
the probability that a fault is detected by a code word, 
“ASS” is the steady-state availability and “Impr. ASS” 
indicates the improvement of ASS against single parity 
when multiple parity is used. 

The availability of the original duplex system is 
0,999978249. The availability parameter is the same as 
for the triplex system in the case when FS property is 
100%. 

Our results show that area overhead is higher in a 
case when we use multiple parities. Due to more parity 
nets increase observability of the tested benchmark the 
FS parameter is higher.  The value of the FS parameter 
depends on the used algorithm to create parity nets. 

7. Conclusions 

We have proposed an efficient method to design a 
multiple parity generator for on-line BIST. The method 
is based on properly choosing the original circuit’s 
outputs to be XORed to obtain respective parity bits. 
The choice is being done by determining outputs that 
share many group implicants in the two-level 
representation of the multi-output function. These 
outputs share a lot of combinational logic and, most 
likely, the amount of the overall logic would be 
decreased when these outputs would be joined together 
by a XOR gate. 

The availability parameters of the MDS architecture 
based on self-checking circuits have been calculated. 
The results show that using the multiple parity bits 
increase the availability parameters at the price of a 
higher area overhead, with respect to the single parity 
case. 

The efficiency of the method has been approved 
by an experimental evaluation on standard MCNC 
benchmark circuits. 
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Table 3: Improved availability parameters 

Single parity Multiple parity Bench. 
AO FS ASS AO FS ASS 

Impr. 
ASS 

alu1 3337.5% 100.0% 1 275.00% 100.00% 1 0.0% 
apla 40.5% 74.3% 0.999988965 76.19% 87.21% 0.999991356 18.2% 
b10 26,7% 92,6% 0,999997416 44,40% 95,83% 0,999998095 3,4% 
b12 95.8% 95.9% 0.999996581 179.17% 98.08% 0.999996779 1.1% 
dk17 41.9% 84.9% 0.999993387 100.00% 95.23% 0.999995824 13.9% 
dk48 96.7% 88.7% 0.99999049 103.33% 91.91% 0.999992718 15.4% 
ex1010 7.3% 81.7% 0.999995417 19.47% 89.59% 0.99999677 7.3% 
ex7 246,2% 97,6% 0,999993744 328,21% 98,84% 0,999995215 8,7% 
f51m 50.0% 87.2% 0.999993736 72.22% 88.48% 0.999992583 -7.4% 
gary 25.3% 90.6% 0.99999679 54.36% 94.94% 0.999997356 3.0% 
inc 15,9% 86,2% 0,999995968 43,18% 93,05% 0,999996922 5,1% 
m1 9.7% 84.0% 0.999995812 29.03% 97.44% 0.999999059 15.6% 
m3 33,3% 93,7% 0,999997565 60,32% 97,41% 0,999998547 4,8% 
mp2d 61.3% 88.2% 0.999993322 87.10% 92.96% 0.99999467 8.2% 
mlp4 17,8% 94,5% 0,99999834 49,50% 97,64% 0,999998833 2,4% 
newapla 43.8% 85.3% 0.999993388 75.00% 92.81% 0.999995204 10.7% 
newbyte 11.1% 100.0% 1 33.33% 100.00% 1 0.0% 
newcpla1 54.3% 90.3% 0.999994977 47.83% 94.94% 0.999997577 13.5% 
newcpla2 25.0% 75.7% 0.999991741 58.33% 86.96% 0.999992914 8.0% 
p82 14.7% 85.3% 0.999995793 20.59% 90.33% 0.999996931 6.1% 
sex 57.9% 83.6% 0.999991106 84.21% 92.35% 0.999994391 20.4% 
sqr6 14.3% 94.9% 0.999998551 45.24% 96.87% 0.999998578 0.1% 
t2 56,3% 91,1% 0,999995271 81,25% 92,69% 0,999994781 -2,9% 
tms 8,1% 84,9% 0,999996162 23,23% 91,32% 0,999997128 5,1% 

 


