
Fast Boolean Minimizer for Completely Specified
Functions

Petr Fiser1, Premysl Rucky1, Irena Vanova2

1 Dept. of Computer Science and Engineering, Czech Technical University, Karlovo nam. 13, CZ-121 35 Prague 2
2 UTIA, CAS, Pod Vodarenskou vezi 4, CZ-182 08, Prague 8

e-mail: fiserp@fel.cvut.cz, ruckyp@fel.cvut.cz, vanovai@utia.cas.cz

Abstract: We propose a simple and fast two-level minimization
algorithm for completely specified functions in this paper. The
algorithm is based on processing ternary trees. A ternary tree is
proposed as a structure enabling a very compact representation
of completely specified Boolean functions. It is efficient especially
for functions having many on-set terms. The minimization
algorithm is thus most suited for functions described by many
on-set terms. Such functions emerge as a result of many
algorithms used in logic synthesis process, e.g., multi-level
network collapsing, algebraic manipulation with logic functions,
etc. When these functions are to be minimized, most of the state-
of-the-art minimizers (Espresso) need prohibitively long time
to process them, or they are even completely unusable, due
to their very high memory consumption. Our algorithm is able
to minimize such functions in a reasonable time, though the
result quality does not reach the quality of other minimizers.
Here our minimizer found its application as a pre-processor that,
when run prior to, e.g., Espresso, significantly reduces total
minimization time, while fully retaining the result quality.

I. INTRODUCTION

The two-level Boolean minimization problem occurs
in many areas of the logic design [1], in the built-in self-test
(BIST) design [2], in a design of control systems, etc. Starting
with the basis of minimization algorithms stated in 50’s
by Quine and McCluskey [3], many different minimizers have
been developed (MINI [4]), ending up in Espresso [5] with its
later improvements [6, 7]. Lately, two two-level Boolean
minimizers Boom [8, 9] and FC-Min [10] have been
developed, which were afterwards combined together, into
BOOM-II [11, 12].

All these methods suffer from their own specific drawbacks
when solving problems of different kinds. For example,
Espresso cannot solve functions with a large number of inputs
(>100) in a reasonable time. Moreover, functions having a
large portion of don’t cares (i.e., heavily incompletely
specified functions) make troubles here as well. BOOM (-II)
solves these problems efficiently, but, on the other hand, it
needs to have the function’s off-set specified explicitly, which
limits its usability in some cases.

During our research in the area of logic synthesis, namely
the collapsing of multi-level networks, i.e., deriving their
two-level description, the need of a minimization
of completely specified two-level functions emerged. These
functions are specified by their on-set only, in the
sum-of-products (SOP) form. The number of terms defining

the on-set is extremely high (up to millions). Thus, there was a
need of a compact representation of two-level descriptions
of these functions that consumes low memory and,
simultaneously, retains the structure of the product terms. The
ternary tree, firstly proposed in [9, 13] as a “tree buffer”, has
been found to be a very good choice. The principles and
properties of the ternary tree structure are described in this
paper into detail.

Similar tree-like structures, like binary decision diagrams
(BDDs) [17], ternary decision diagrams (TDDs) [18],
modified decision diagrams MDDs [19] or term trees [20] are
not suitable for our purposes, since they do not retain the
structure of the product terms they have been constructed of.
Moreover, their size heavily depends on the nature of the
function and the variable ordering in the tree. On the contrary,
the size of the proposed ternary tree grows only with the
number of product terms stored in it.

A minimization method Pupik, based on a reduction of the
ternary tree, is proposed in this paper. It is based on merging
terms neighboring in the Boolean space. However, it can be
further augmented to support more Boolean manipulations.
The comparison of results obtained by Espresso, the proposed
method and by their combination is presented.

The paper is structured as follows: after the introduction,
the problem statement is given. Section III describes the
ternary tree structure and its properties. The ternary tree based
minimization method is described in Section IV, the
minimization results are shown in Section V. Section VI
concludes the paper.

II. PROBLEM STATEMENT

Let us have a single-output Boolean function of n input
variables. The input variables will be denoted as xi, 0 ≤ i < n.
Output values of the on-set terms (both minterms and product
terms of higher dimensions may be used) are defined by a
truth table. The function is completely specified, thus values
of minterms that are not contained in terms in the truth table
are assigned to zero.

Thus, we have an n-variable Boolean function defined by a
sum-of-product (SOP) form as an input. The number
of product terms will be denoted as p. Our aim is to minimize
the number of terms (p). The secondary aim could be the
reduction of the number of literals in the terms, thus increasing
the dimension of the terms.

III. TERNARY TREE

The proposed minimization algorithm is based
on processing of a ternary tree structure. The ternary tree has
been proposed for the first time in [13] as a tree buffer. The
ternary tree structure was used to store and, more importantly,
quickly look up product terms. The main implementation
requirement for the buffer was its high look-up speed.
However, all the capabilities of the structure were not
discovered at that time.

The ternary tree depth is equal to the number of inputs
of the function (n). The tree is gradually constructed by adding
product terms into it. Let us define a total ordering < over the
set of input variables, the function var(i) gives the input
variable of the function in the i-th order. Each level of the
ternary tree corresponds to one variable, according to the
ordering. Each non-terminal node in a level i corresponds to a
“partial” product term, where values of only var(0)…var(i-1)
variables are defined. Terminal nodes correspond
to completely described terms.

An example of a ternary tree for a 3-input function is
shown in Fig. 1. Three terms are contained in the tree, namely
0-0, 10- and 11-. Each non-terminal node u may have three
potential children, lo(u), dc(u), hi(u). In our example in Fig. 1,
lo(u) is the left child, dc(u) the middle one and hi(u) the right
one.

When inserting a term into the tree, at the i-th level of the
tree the branch is chosen according to the polarity (0, -, 1)
of the i-th variable in the term. If the corresponding branch is
present, we follow it, when not, the branch is newly created.

Checking for a presence of a term is of a complexity O(n),
however, if the term is not present in the tree, the search
terminates in less than n steps. If, e.g., term 011 being is
looked for, the search will fail in the node ‘0’ where no path
leading to ‘01’ is present.

Figure 1. Ternary tree example

A. Comparison with Other Representations
The ternary tree buffer was primarily designed to store

product terms and quickly look-up them. Thus, there has been
put a big emphasis on its lookup speed. Since the depth of the
tree is equal to the number of variables, the maximum number
of steps needed to find out if a particular term is present in the
tree is n. This happens in a case when the term is present in the
tree, thus the tree has to be traversed up to the leaf. On the
other hand, the minimum number of comparisons needed
to find the presence of an implicant in the tabular
representation is n. This happens when the searched term is
the first one in the table of terms. The minimum and
maximum look-up speeds for both representations are
summarized in Table I. We can see that the maximum look-up

speed for the tabular representation is n.p, while the maximum
look-up speed of ternary tree is always n.

TABLE I
 COMPARISON OF LOOK-UP SPEEDS

 on success on failure
Ternary tree n 1 … (n-1)
Truth table n … n.p n.p

Let us note that inserting a term into the tree always takes n

steps as well. Here the ternary tree brings another advantage
w.r.t. a standard truth table: there is no chance for duplicate
terms to occur. If a term that is already present in the tree is
being inserted, it is found during the insertion process. This
cannot be done in the tabular representation, unless the term is
looked up first, i.e., the with a complexity of O(n.p).

Similar tree-like structures, like BDDs [17], MDDs [19],
TDDs [18] or term trees [20] cannot be used for our purposes,
since they have different properties than ternary trees.
Generally, these structures are used as a representation of a
function, not as a storage of terms. Their size heavily varies
with the nature of the function they are describing and the
variable ordering [17]. The size of the ternary tree changes
with the number of stored terms only. Moreover, BDDs, etc.,
do not retain the structure of product terms they were
constructed of – the original terms cannot be reconstructed.
Term trees [20], on the other hand, do not have a fixed
variable ordering, which is required for the minimization
algorithm proposed below. All these competitive tree
structures suffer from one common drawback: an operation
of extension of the function by one product term usually
involves a sometimes time-consuming resynthesis of the
whole tree. Addition of a term into our ternary tree always
takes n steps. For all these reasons, any comparison with these
other tree structures becomes irrelevant.

The ternary trees most closely resemble SOP TDDs, briefly
described in [17]. We basically extend the SOP TDDs notion
by introducing new operations and their new application areas.

IV. THE MINIMIZATION ALGORITHM

The minimization algorithm, named Pupik, is very simple
and straightforward. It is based on applying absorption and
complement property rules of Boolean algebra only, targeting
the reduction of the number of the ternary tree terminal nodes
(leaves). Particularly, when a non-terminal node at the (n-1)-th
level has two successor nodes (which are thus terminals), they
always may be merged into one DC terminal, either
by applying the absorption rule (in a case of a 0- or 1-terminal
together with a DC terminal) or a complement properties rule
(in a case of a 0- and 1-terminal).

The principles of the reduction are illustrated by the
following example. Let us consider a function y = x1 + x2 + x3
described by its on-set minterms (see Table II). It is uniquely
represented by a ternary tree shown in Fig. 2.

TABLE II
THE EXAMPLE FUNCTION

minterm x1 x2 x3 y
0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 1
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 1

Figure 2. Minimization example (1)

There are seven terminal nodes representing the on-set
minterms 1-7. It can be easily seen that minterm couples (010,
011), (100, 101) and (110, 111) may be merged, to obtain DC
terminals. See Fig. 3.

Figure 3. Minimization example (2)

The ternary tree now represents a function described by the
list of on-set terms shown in Tab. III. The Complement
property rule of Boolean algebra has been applied for the
variable x3. No other tree reduction can be performed at this
time, thus another phase of the minimization algorithm
follows – the tree rotation.

TABLE III
THE FUNCTION FROM FIG. 3

x1 x2 x3 y
0 0 0 0
0 0 1 1
0 1 - 1
1 0 - 1
1 1 - 1
1 1 - 1

A. Tree Rotation
The algorithm proposed in the previous subsection

considers a minimization of the number of terminal nodes
only, i.e., only the last variable (x3) is being omitted, if
possible. Thus, the next step to follow is obvious: the rotation
of the tree, so that non-terminals become terminals. Then the
terminal minimization procedure is performed again. The
whole process is repeated n-times (where n is the number
of input variables), so that all the variables are tried for
removal. Moreover, the quality of the result may be improved
by repeating the whole minimization process several times,
i.e., running it for i iterations. See Section IV.B.

The tree rotation is done by cutting off the root node, which
yields three separated trees (at most). Then, the root variable is
appended to all leaves of the trees. The rotation of the tree
from Fig. 3 is shown in Fig. 4. The tree is split into two trees
only, since the root of the original tress had two successors.

Figure 4. Minimization example (3)

Then the trees are merged together, by traversing these
trees from the roots in parallel and merging nodes. The result
is shown in Fig. 5. Notice that the four terminals remain
unchanged; the rotated tree describe the same set of terms as
in Fig. 3.

Figure 5. Minimization example (4)

Now the new terminals may me merged. Each terminal
merging results in a removal of a particular (terminal) variable
from a term. The tree is rotated n-times, the resulting ternary
tree after 3 rotations is shown in Fig. 6, representing three
terms (001, -1-, 10-), which is the minimum representation
of the source function.

Figure 6. Minimization example (5)

The minimization method described above performs merely
two operations of Boolean algebra:

 The one-variable absorption rule: a+ab = a
 The complement property: ab + ab’ = a
It is not able to disclose more complex relations, like even

the absorption of more than one variable. However, this can be
solved at the end of the whole minimization process,
by removing terms that are absorbed by any other term. Each
term is checked against each tree terminal and, if it is absorbed
by it, it is removed from the solution.

The minimization procedure (merging the terminals and
rotation) could be repeated for an arbitrary number
of iterations, to gradually improve the result quality, see
Subsection IV.B.

The same minimization process may be performed upon the

tabular representation of the function, nevertheless using the
tree representation is more advantageous, in terms of the
computational time. The leaf merging procedure corresponds
to merging (or omitting) of rows in the truth table that differ
in the last variable only (see Table II). Rotation of the tree
corresponds to the rotation of the truth table columns.

The asymptotic complexity of the algorithm is computed as
follows: let us assume that the algorithm runs for i iterations,
each iteration comprising of of n terminal merging operations
and rotations. Each of these operations involve traversing the
whole tree once, thus exploring n.p nodes at most (where n is
the number of input variables and p the number of terms).
Thus, the overall asymptotic complexity of the algorithm is
O(i.n2.p).

If the tabular representation were used, merging and
omitting the rows involves a comparison of every pair of rows,
which takes O(n.p2) steps. This is performed for n columns
i-times, thus the overall complexity of the minimization
algorithm is O(i.n2.p2). The gain obtained by using the tree
representation of the function is apparent now. The
minimization method is advantageous especially for functions
with many on-set terms, which it is targeted to.

The whole minimization algorithm can be described by the
following psudo-code:

Minimize (F) {
 t = CreateTree(F);
 for (i = 0;i < n*iterations;i++)

{
 t->Merge_leaves(F);
 t->Divide_and_Merge(F);
 }
 F = Dump_Tree(t);
 RemoveAbsorbed(F, t);
 return F;
}

Algorithm 1. The minimization algorithm

B. The Iterative Process
In each leaf merging process one particular variable is

removed from some terms, it is substituted by a don’t care
value. As a consequence of this, two terms that were not

neighboring terminals (i.e., having a common parent) may
become neighbors after a tree rotation.

An example of such a function is shown in Fig. 7. We can
see that even after 2 rotations (n = 2), there are still terms
which can be merged.

Figure 7. Minimization with number of rotations > n

Thus, rotating the tree more than n-times could improve the
result quality. Figure 8 shows how fast the number of terms
in the tree decreases with increasing number of rotations. The
function shown in the figure has 36 variables (the ISCAS’85
c432 benchmark circuit) and as we can see, the most
significant decrease of the number of terms happen in the
initial n (36) rotations. After that, the number of terms
decreases only slightly. Thus, n rotations (i.e, one iteration)
will be considered in the following experimental section.
However, the result quality may be further improved
by increasing the number of iterations.

Figure 8. Relation between the number of rotations and the number of terms

V. EXPERIMENTAL RESULTS

The experimental results will be presented in this section.
As it was stated before, the proposed minimization algorithm
performs best in a combination with another Boolean
minimizer, Espresso in our case. Pupik is run first, to quickly
reduce the number of product terms. Then a more powerful
minimizer is applied to the resulting function, to further
reduce the number of products.

When our minimizer is run prior to Espresso, the result
quality remains unchanged (w.r.t. Espresso), but the total
runtime is significantly reduced.

A. ISCAS Benchmarks
We will present experimental results obtained by practical

examples, particularly by the collapsing of multi-level ISCAS
[14, 15] benchmarks into their two level representations, each
output forming a stand-alone function. The network collapsing
problem is known to be one of the most computationally
demanding problems in logic synthesis [1]. The number
of product terms obtained by the process grows exponentially
with the number of inputs of the circuit. Thus, any reduction
of the number of product terms in the resulting representation
is extremely beneficial. Here the ternary tree based minimizer
found one of its application areas. First of all, many duplicate
product terms have been produced during the collapsing
process [16]. The ternary tree structure used to store these
terms prevented an occurence of duplicities. Then, the number
of product terms was reduced by applying the minimization
algorithm. The results are shown in Tab. IV. The benchmark
name is followed by the ordinal number of its output that has
been collapsed. The size of the two-level function that is to be
minimized is indicated in the second column (# of inputs / # of
product terms). Then, respective number of product terms the
computational time obtained by Espresso, Pupik and their
combination is shown.

The used benchmark circuits and their outputs that were
collapsed were chosen according to the effort needed
to collapse them. The easy-to-collapse benchmarks/outputs
were not considered for their simplicity, as well as the very
hard-to-collapse ones, due to extreme time and memory
demands.

It can be seen that our minimization method significantly
lacks in the result quality when compared to Espresso,
however our minimizer runtimes are always negligible. When
Pupik and Espresso are combined, i.e., Pupik is run prior
to Espresso as a pre-processor, the result quality is retained,
and the total runtime is significantly reduced, especially for
the most complex benchmark circuits. Thus, here Pupik finds
its actual application area – to be run as a pre-processor
to another Boolean minimizer, to reduce the total
minimization runtime.

The experments have been performed on PC with Athlon64
1.8GHz CPU and 1GB RAM.

B. Randomly Generated Functions
In order to estimate the limits of usability of our minimizer

and Espresso, we have tested these two minimizers
on randomly generated function, with a very high number
of on-set terms. Different extreme-case benchmarks were
randomly generated, for different numbers of input variables
and on-set terms. The percentages of don’t care states in the
terms varied linearly from 0 to 90% for each circuit. This
often makes the circuit hard to minimize, moreover such
functions resemble real circuits.

The results are shown in Table V. The number of input
variables and defined care terms is given in the “Benchmark”

column. Next, the results obtained by Espresso and Pupik are
shown (number of terms in the result, computational time).
We can see that the computational time of Pupik is negligible
for these functions, while Espresso times are usually
prohibitively large, for most of functions it did not produce
any result after one day of computation. Even though the
results obtained by Pupik are far from optimum, any reduction
of the number of terms is beneficial, when other minimizers
fail.

VI. CONCLUSIONS

A novel two-level minimization method for single-output
Boolean functions is presented. It is based on a reduction of a
ternary tree, which we propose as an internal representation
of a Boolean function, or, more precisely, of its on-set terms.
The minimization process significantly reduces the number
of product terms in the sum-of-product form, however it does
not reach the qualities of Espresso. On the other hand, the
method significantly outperforms Espresso in a runtime. For
some randomly generated problems, Espresso was not able
to even produce any result. The proposed minimization
method has found its most beneficial application as a
pre-processor of functions specified by a very large number
of product terms (up to millions). When Espresso is used
afterwards to minimize the function, a big total minimization
time reduction is obtained, while the result quality remains the
same, as if only Espresso was run.

The ternary tree structure with its properties is described
into detail in this paper. It is a very compact and flexible
representation of a completely specified Boolean function
described by an SOP form. It offers many additional benefits
with respect to the tabular form representation, namely in the
linear-time searching capabilities. Since the ternary tree
structure implicitly avoids duplicities, it could be
advantageously used in applications where many duplicate
product terms are gradually generated, such as multi-level
Boolean network collapsing, algebraic manipulations with
Boolean functions, etc.

The minimization method was tested on random and
standard ISCAS benchmarks and the results compared.

Further research will be directed towards implementing

several additional operations upon the ternary tree, namely a
more sophisticated support for Boolean absorption. The
method still does not produce an irredundant cover; redundant
terms cannot be identified. Introduction of techniques
removing redundancies will be beneficial too.

The method should be then extended to support multi-
output and incompletely specified functions.

ACKNOWLEDGMENT

This research has been supported by MSMT under research
program MSM6840770014.

REFERENCES
[1] S. Hassoun and T. Sasao, „Logic Synthesis and Verification", Boston,

MA, Kluwer Academic Publishers, 2002, 454 pp.
[2] Agarwal, Kime, Saluja: “A tutorial on BIST, part 1: Principles”. IEEE

Design & Test of Computers, vol. 10, No.1 March 1993, pp.73-83, part
2: Applications, No.2 June 1993, pp.69-77

[3] E.J. McCluskey, “Minimization of Boolean functions”, The Bell System
Technical Journal, 35, No. 5, Nov. 1956, pp. 1417-1444

[4] S.J. Hong, R.G. Cain and D.L. Ostapko, “MINI: A heuristic approach
for logic minimization”, IBM Journal of Res. & Dev., Sept. 1974,
pp.443-458

[5] R.K. Brayton et al., “Logic minimization algorithms for VLSI
synthesis”, Boston, MA, Kluwer Academic Publishers, 1984, 192 pp.

[6] R.L. Rudell and A.L. Sangiovanni-Vincentelli, “Multiple-valued
minimization for PLA optimization”, IEEE Trans. on CAD, 6(5): 725-
750, Sept.1987

[7] P. McGeer et al., “ESPRESSO-SIGNATURE: A new exact minimizer
for logic functions”, Proc. DAC’93

[8] J. Hlavička, P. Fišer, „BOOM - a Heuristic Boolean Minimizer”, Proc.
ICCAD 2001, San Jose, Cal. (USA), 4.-8.11.2001, 439-442

[9] P. Fišer, J. Hlavička, „BOOM - A Heuristic Boolean Minimizer“,
Computers and Informatics, Vol. 22, 2003, No. 1, pp. 19-51

[10] P. Fišer, H. Kubátová, “Boolean Minimizer FC-Min: Coverage Finding
Process”, Proc. 30th Euromicro Symposium on Digital Systems Design
(DSD'04), Rennes (FR), 31.8. - 3.9.04, pp. 152-159

[11] P. Fišer, H. Kubátová, “Two-Level Boolean Minimizer BOOM-II”,
Proc. 6th Int. Workshop on Boolean Problems (IWSBP'04), Freiberg,
Germany, 23.-24.9.2004, pp. 221-228

[12] P. Fišer, H. Kubátová, “Flexible Two-Level Boolean Minimizer BOOM
II and Its Applications”, Proc. 9th Euromicro Conference on Digital
Systems Design (DSD'06), Cavtat, (Croatia), 30.8. - 1.9.2006, pp. 369-
376

[13] P. Fišer, J. Hlavička, “Implicant Expansion Method used in the BOOM
Minimizer”. Proc. IEEE Design and Diagnostics of Electronic Circuits
and Systems Workshop (DDECS'01), Gyor (Hungary), 18.-20.4.2001,
pp. 291-298

[14] F. Brglez and H. Fujiwara, „A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortan“, Proc. of ISCAS
1985, pp. 663-698

[15] F. Brglez, D. Bryan and K. Kozminski, „Combinational Profiles of
Sequential Benchmark Circuits“, Proc. of ISCAS, pp. 1929-1934, 1989

[16] P. Rucký, “Multi-level Logical Circuit Collapsing Using Binary
Decision Diagrams (BDDs)”, MSc. Thesis, Czech Technical University
in Prague, 2007, 57 pp.

[17] S. B. Akers, “Binary decision diagrams”, IEEE Trans.on Computers,
Vol. C-27. No. 6, June 1978, pp. 509-516.

[18] T. Sasao, “Ternary Decision Diagrams - A Survey”, Proc. of IEEE
International Symposium on Multiple-Valued Logic, pp. 241-250, Nova
Scotia, May 1997

[19] R. P. Jacobi, “A Study of the Aplication of Binary Decision Diagrams to
Multi-level Logic Synthesis”. Nível de doutorado, Universitá Catholique
de Louvain, Bélgica, 1993.

[20] L. Jozwiak, A. Slusarczyk and M. Perkowski,.”Term Trees in
Application to an Effective and Efficient ATPG for AND-EXOR and
AND-OR Circuits” , VLSI Design, Volume 14, Number 1, 1 January
2002 , pp. 107-122

TABLE IV
 ISCAS BENCHMARKS

Espresso Pupik Pupik + Espresso Benchmark Size (n / p)
Terms Time [s] Terms Time [s] Terms Time [s]

c880_3 60 / 212290 15673 470 57853 23.11 15673 305
c880_4 60 / 67136 440 37 12046 6.44 439 8.5
c1908_4 33 / 32768 7040 20 20990 1.1 7040 17
c1908_5 33 / 6464 2144 1 4640 0.19 2144 2
c1908_6 33 / 13700 3200 4 8704 0.41 3200 4.5
c3540_1 50 / 403298 32455 4740 101512 32.9 32396 1569
c3540_2 50 / 42568 10202 254 19620 4.2 10065 193
c3540_3 50 / 4464 1022 2 2112 0.34 1022 2.5
c3540_4 50 / 1912 184 0.1 459 0.07 184 0.1
c3540_5 50 / 6657 1516 5 3654 0.62 1522 4.5
c3540_6 50 / 159920 14397 900 43442 9.09 14397 382
c3540_7 50 / 6933 611 1 2360 0.37 611 1

TABLE V
 RANDOM BENCHMARKS

Espresso PupikBenchmark
Terms Time [s] Terms Time [s]

30 / 5000 35 17.82 1004 0.63
35 / 5000 1169 1306.34 1719 1.01
35 / 8000 200 400.98 3703 2.41
40 / 5000 - > 24 h 3033 5.5

40 / 10000 - > 24 h 5054 7.0
40 / 20000 - > 24 h 6606 13.72
50 / 30000 - > 24 h 13232 33.6
60 / 50000 - > 24 h 38203 94.9

