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Abstract: We propose a simple and fast two-level minimization 
algorithm for completely specified functions in this paper. The 
algorithm is based on processing ternary trees. A ternary tree is 
proposed as a structure enabling a very compact representation 
of completely specified Boolean functions. It is efficient especially 
for functions having many on-set terms.  The minimization 
algorithm is thus most suited for functions described by many 
on-set terms. Such functions emerge as a result of many 
algorithms used in logic synthesis process, e.g., multi-level 
network collapsing, algebraic manipulation with logic functions, 
etc. When these functions are to be minimized, most of the state-
of-the-art minimizers (Espresso) need prohibitively long time 
to process them, or they are even completely unusable, due 
to their very high memory consumption. Our algorithm is able 
to minimize such functions in a reasonable time, though the 
result quality does not reach the quality of other minimizers. 
Here our minimizer found its application as a pre-processor that, 
when run prior to, e.g., Espresso, significantly reduces total 
minimization time, while fully retaining the result quality. 

I. INTRODUCTION 

The two-level Boolean minimization problem occurs 
in many areas of the logic design [1], in the built-in self-test 
(BIST) design [2], in a design of control systems, etc. Starting 
with the basis of minimization algorithms stated in 50’s 
by Quine and McCluskey [3], many different minimizers have 
been developed (MINI [4]), ending up in Espresso [5] with its 
later improvements [6, 7]. Lately, two two-level Boolean 
minimizers Boom [8, 9] and FC-Min [10] have been 
developed, which were afterwards combined together, into 
BOOM-II [11, 12]. 

All these methods suffer from their own specific drawbacks 
when solving problems of different kinds. For example, 
Espresso cannot solve functions with a large number of inputs 
(>100) in a reasonable time. Moreover, functions having a 
large portion of don’t cares (i.e., heavily incompletely 
specified functions) make troubles here as well. BOOM (-II) 
solves these problems efficiently, but, on the other hand, it 
needs to have the function’s off-set specified explicitly, which 
limits its usability in some cases. 

During our research in the area of logic synthesis, namely 
the collapsing of multi-level networks, i.e., deriving their 
two-level description, the need of a minimization 
of completely specified two-level functions emerged. These 
functions are specified by their on-set only, in the 
sum-of-products (SOP) form. The number of terms defining 

the on-set is extremely high (up to millions). Thus, there was a 
need of a compact representation of two-level descriptions 
of these functions that consumes low memory and, 
simultaneously, retains the structure of the product terms. The 
ternary tree, firstly proposed in [9, 13] as a “tree buffer”, has 
been found to be a very good choice. The principles and 
properties of the ternary tree structure are described in this 
paper into detail. 

Similar tree-like structures, like binary decision diagrams 
(BDDs) [17], ternary decision diagrams (TDDs) [18], 
modified decision diagrams MDDs [19] or term trees [20] are 
not suitable for our purposes, since they do not retain the 
structure of the product terms they have been constructed of. 
Moreover, their size heavily depends on the nature of the 
function and the variable ordering in the tree. On the contrary, 
the size of the proposed ternary tree grows only with the 
number of product terms stored in it. 

A minimization method Pupik, based on a reduction of the 
ternary tree, is proposed in this paper. It is based on merging 
terms neighboring in the Boolean space. However, it can be 
further augmented to support more Boolean manipulations. 
The comparison of results obtained by Espresso, the proposed 
method and by their combination is presented. 

The paper is structured as follows: after the introduction, 
the problem statement is given. Section III describes the 
ternary tree structure and its properties. The ternary tree based 
minimization method is described in Section IV, the 
minimization results are shown in Section V. Section VI 
concludes the paper.  

II. PROBLEM STATEMENT 

Let us have a single-output Boolean function of n input 
variables. The input variables will be denoted as xi, 0 ≤ i < n. 
Output values of the on-set terms (both minterms and product 
terms of higher dimensions may be used) are defined by a 
truth table. The function is completely specified, thus values 
of minterms that are not contained in terms in the truth table 
are assigned to zero. 

Thus, we have an n-variable Boolean function defined by a 
sum-of-product (SOP) form as an input. The number 
of product terms will be denoted as p. Our aim is to minimize 
the number of terms (p). The secondary aim could be the 
reduction of the number of literals in the terms, thus increasing 
the dimension of the terms. 



III. TERNARY TREE 

The proposed minimization algorithm is based 
on processing of a ternary tree structure. The ternary tree has 
been proposed for the first time in [13] as a tree buffer. The 
ternary tree structure was used to store and, more importantly, 
quickly look up product terms. The main implementation 
requirement for the buffer was its high look-up speed. 
However, all the capabilities of the structure were not 
discovered at that time. 

The ternary tree depth is equal to the number of inputs 
of the function (n). The tree is gradually constructed by adding 
product terms into it. Let us define a total ordering < over the 
set of input variables, the function var(i) gives the input 
variable of the function in the i-th order. Each level of the 
ternary tree corresponds to one variable, according to the 
ordering. Each non-terminal node in a level i corresponds to a 
“partial” product term, where values of only var(0)…var(i-1) 
variables are defined. Terminal nodes correspond 
to completely described terms. 

An example of a ternary tree for a 3-input function is 
shown in Fig. 1. Three terms are contained in the tree, namely 
0-0, 10- and 11-. Each non-terminal node u may have three 
potential children, lo(u), dc(u), hi(u). In our example in Fig. 1, 
lo(u) is the left child, dc(u) the middle one and hi(u) the right 
one. 

When inserting a term into the tree, at the i-th level of the 
tree the branch is chosen according to the polarity (0, -, 1) 
of the i-th variable in the term. If the corresponding branch is 
present, we follow it, when not, the branch is newly created. 

Checking for a presence of a term is of a complexity O(n), 
however, if the term is not present in the tree, the search 
terminates in less than n steps. If, e.g., term 011 being is 
looked for, the search will fail in the node ‘0’ where no path 
leading to ‘01’ is present. 

 

 
Figure 1. Ternary tree example 

A. Comparison with Other Representations 
The ternary tree buffer was primarily designed to store 

product terms and quickly look-up them. Thus, there has been 
put a big emphasis on its lookup speed. Since the depth of the 
tree is equal to the number of variables, the maximum number 
of steps needed to find out if a particular term is present in the 
tree is n. This happens in a case when the term is present in the 
tree, thus the tree has to be traversed up to the leaf. On the 
other hand, the minimum number of comparisons needed 
to find the presence of an implicant in the tabular 
representation is n. This happens when the searched term is 
the first one in the table of terms. The minimum and 
maximum look-up speeds for both representations are 
summarized in Table I. We can see that the maximum look-up 

speed for the tabular representation is n.p, while the maximum 
look-up speed of ternary tree is always n. 

TABLE I 
 COMPARISON OF LOOK-UP SPEEDS 

 on success on failure 
Ternary tree n 1 … (n-1) 
Truth table n … n.p n.p 

 
Let us note that inserting a term into the tree always takes n 

steps as well. Here the ternary tree brings another advantage 
w.r.t. a standard truth table: there is no chance for duplicate 
terms to occur. If a term that is already present in the tree is 
being inserted, it is found during the insertion process. This 
cannot be done in the tabular representation, unless the term is 
looked up first, i.e., the with a complexity of O(n.p). 

Similar tree-like structures, like BDDs [17], MDDs [19], 
TDDs [18] or term trees [20] cannot be used for our purposes, 
since they have different properties than ternary trees. 
Generally, these structures are used as a representation of a 
function, not as a storage of terms. Their size heavily varies 
with the nature of the function they are describing and the 
variable ordering [17]. The size of the ternary tree changes 
with the number of stored terms only. Moreover, BDDs, etc., 
do not retain the structure of product terms they were 
constructed of – the original terms cannot be reconstructed. 
Term trees [20], on the other hand, do not have a fixed 
variable ordering, which is required for the minimization 
algorithm proposed below. All these competitive tree 
structures suffer from one common drawback: an operation 
of extension of the function by one product term usually 
involves a sometimes time-consuming resynthesis of the 
whole tree. Addition of a term into our ternary tree always 
takes n steps. For all these reasons, any comparison with these 
other tree structures becomes irrelevant. 

The ternary trees most closely resemble SOP TDDs, briefly 
described in [17]. We basically extend the SOP TDDs notion 
by introducing new operations and their new application areas. 

IV. THE MINIMIZATION ALGORITHM 

The minimization algorithm, named Pupik, is very simple 
and straightforward. It is based on applying absorption and 
complement property rules of Boolean algebra only, targeting 
the reduction of the number of the ternary tree terminal nodes 
(leaves). Particularly, when a non-terminal node at the (n-1)-th 
level has two successor nodes (which are thus terminals), they 
always may be merged into one DC terminal, either 
by applying the absorption rule (in a case of a 0- or 1-terminal 
together with a DC terminal) or a complement properties rule 
(in a case of a 0- and 1-terminal). 

The principles of the reduction are illustrated by the 
following example. Let us consider a function y = x1 + x2 + x3 
described by its on-set minterms (see Table II). It is uniquely 
represented by a ternary tree shown in Fig. 2. 



TABLE II 
THE EXAMPLE FUNCTION 

minterm x1 x2 x3 y 
0 0 0 0 0 
1 0 0 1 1 
2 0 1 0 1 
3 0 1 1 1 
4 1 0 0 1 
5 1 0 1 1 
6 1 1 0 1 
7 1 1 1 1 

 

 
Figure 2. Minimization example (1) 

There are seven terminal nodes representing the on-set 
minterms 1-7. It can be easily seen that minterm couples (010, 
011), (100, 101) and (110, 111) may be merged, to obtain DC 
terminals. See Fig. 3. 

 

 
Figure 3. Minimization example (2) 

The ternary tree now represents a function described by the 
list of on-set terms shown in Tab. III. The Complement 
property rule of Boolean algebra has been applied for the 
variable x3. No other tree reduction can be performed at this 
time, thus another phase of the minimization algorithm 
follows – the tree rotation. 

TABLE III 
THE FUNCTION FROM FIG. 3 

x1 x2 x3 y 
0 0 0 0 
0 0 1 1 
0 1 - 1 
1 0 - 1 
1 1 - 1 
1 1 - 1 

A. Tree Rotation 
The algorithm proposed in the previous subsection 

considers a minimization of the number of terminal nodes 
only, i.e., only the last variable (x3) is being omitted, if 
possible. Thus, the next step to follow is obvious: the rotation 
of the tree, so that non-terminals become terminals. Then the 
terminal minimization procedure is performed again. The 
whole process is repeated n-times (where n is the number 
of input variables), so that all the variables are tried for 
removal. Moreover, the quality of the result may be improved 
by repeating the whole minimization process several times, 
i.e., running it for i iterations. See Section IV.B. 

The tree rotation is done by cutting off the root node, which 
yields three separated trees (at most). Then, the root variable is 
appended to all leaves of the trees. The rotation of the tree 
from Fig. 3 is shown in Fig. 4. The tree is split into two trees 
only, since the root of the original tress had two successors. 

 

 
Figure 4. Minimization example (3) 

Then the trees are merged together, by traversing these 
trees from the roots in parallel and merging nodes. The result 
is shown in Fig. 5. Notice that the four terminals remain 
unchanged; the rotated tree describe the same set of terms as 
in Fig. 3. 

 
Figure 5. Minimization example (4) 

Now the new terminals may me merged. Each terminal 
merging results in a removal of a particular (terminal) variable 
from a term. The tree is rotated n-times, the resulting ternary 
tree after 3 rotations is shown in Fig. 6, representing three 
terms (001, -1-, 10-), which is the minimum representation 
of the source function. 

 
Figure 6. Minimization example (5) 



The minimization method described above performs merely 
two operations of Boolean algebra: 

 The one-variable absorption rule: a+ab = a 
 The complement property: ab + ab’ = a 
It is not able to disclose more complex relations, like even 

the absorption of more than one variable. However, this can be 
solved at the end of the whole minimization process, 
by removing terms that are absorbed by any other term. Each 
term is checked against each tree terminal and, if it is absorbed 
by it, it is removed from the solution. 

The minimization procedure (merging the terminals and 
rotation) could be repeated for an arbitrary number 
of iterations, to gradually improve the result quality, see 
Subsection IV.B.  

 
The same minimization process may be performed upon the 

tabular representation of the function, nevertheless using the 
tree representation is more advantageous, in terms of the 
computational time. The leaf merging procedure corresponds 
to merging (or omitting) of rows in the truth table that differ 
in the last variable only (see Table II). Rotation of the tree 
corresponds to the rotation of the truth table columns. 

The asymptotic complexity of the algorithm is computed as 
follows: let us assume that the algorithm runs for i iterations, 
each iteration comprising of of n terminal merging operations 
and rotations. Each of these operations involve traversing the 
whole tree once, thus exploring n.p nodes at most (where n is 
the number of input variables and p the number of terms). 
Thus, the overall asymptotic complexity of the algorithm is 
O(i.n2.p).  

If the tabular representation were used, merging and 
omitting the rows involves a comparison of every pair of rows, 
which takes O(n.p2) steps. This is performed for n columns 
i-times, thus the overall complexity of the minimization 
algorithm is O(i.n2.p2). The gain obtained by using the tree 
representation of the function is apparent now. The 
minimization method is advantageous especially for functions 
with many on-set terms, which it is targeted to. 

The whole minimization algorithm can be described by the 
following psudo-code: 

 
Minimize (F) { 
 t = CreateTree(F); 
 for (i = 0;i < n*iterations;i++) 

{ 
  t->Merge_leaves(F); 
  t->Divide_and_Merge(F); 
 } 
 F = Dump_Tree(t); 
 RemoveAbsorbed(F, t); 
 return F; 
} 

Algorithm 1. The minimization algorithm 

B. The Iterative Process 
In each leaf merging process one particular variable is 

removed from some terms, it is substituted by a don’t care 
value. As a consequence of this, two terms that were not 

neighboring terminals (i.e., having a common parent) may 
become neighbors after a tree rotation.  

An example of such a function is shown in Fig. 7. We can 
see that even after 2 rotations (n = 2), there are still terms 
which can be merged. 

 

Figure 7. Minimization with number of rotations > n 

Thus, rotating the tree more than n-times could improve the 
result quality. Figure 8 shows how fast the number of terms 
in the tree decreases with increasing number of rotations. The 
function shown in the figure has 36 variables (the ISCAS’85 
c432 benchmark circuit) and as we can see, the most 
significant decrease of the number of terms happen in the 
initial n (36) rotations. After that, the number of terms 
decreases only slightly. Thus, n rotations (i.e, one iteration) 
will be considered in the following experimental section. 
However, the result quality may be further improved 
by increasing the number of iterations. 

 

Figure 8. Relation between the number of rotations and the number of terms 

V. EXPERIMENTAL RESULTS 

The experimental results will be presented in this section. 
As it was stated before, the proposed minimization algorithm 
performs best in a combination with another Boolean 
minimizer, Espresso in our case. Pupik is run first, to quickly 
reduce the number of product terms. Then a more powerful 
minimizer is applied to the resulting function, to further 
reduce the number of products. 



When our minimizer is run prior to Espresso, the result 
quality remains unchanged (w.r.t. Espresso), but the total 
runtime is significantly reduced. 

A. ISCAS Benchmarks 
We will present experimental results obtained by practical 

examples, particularly by the collapsing of multi-level ISCAS 
[14, 15] benchmarks into their two level representations, each 
output forming a stand-alone function. The network collapsing 
problem is known to be one of the most computationally 
demanding problems in logic synthesis [1]. The number 
of product terms obtained by the process grows exponentially 
with the number of inputs of the circuit. Thus, any reduction 
of the number of product terms in the resulting representation 
is extremely beneficial. Here the ternary tree based minimizer 
found one of its application areas. First of all, many duplicate 
product terms have been produced during the collapsing 
process [16]. The ternary tree structure used to store these 
terms prevented an occurence of duplicities. Then, the number 
of product terms was reduced by applying the minimization 
algorithm. The results are shown in Tab. IV. The benchmark 
name is followed by the ordinal number of its output that has 
been collapsed. The size of the two-level function that is to be 
minimized is indicated in the second column (# of inputs / # of 
product terms). Then, respective number of product terms the 
computational time obtained by Espresso, Pupik and their 
combination is shown. 

The used benchmark circuits and their outputs that were 
collapsed were chosen according to the effort needed 
to collapse them. The easy-to-collapse benchmarks/outputs 
were not considered for their simplicity, as well as the very 
hard-to-collapse ones, due to extreme time and memory 
demands. 

It can be seen that our minimization method significantly 
lacks in the result quality when compared to Espresso, 
however our minimizer runtimes are always negligible. When 
Pupik and Espresso are combined, i.e., Pupik is run prior 
to Espresso as a pre-processor, the result quality is retained, 
and the total runtime is significantly reduced, especially for 
the most complex benchmark circuits. Thus, here Pupik finds 
its actual application area – to be run as a pre-processor 
to another Boolean minimizer, to reduce the total 
minimization runtime. 

The experments have been performed on PC with Athlon64 
1.8GHz CPU and 1GB RAM. 

B. Randomly Generated Functions 
In order to estimate the limits of usability of our minimizer 

and Espresso, we have tested these two minimizers 
on randomly generated function, with a very high number 
of on-set terms. Different extreme-case benchmarks were 
randomly generated, for different numbers of input variables 
and on-set terms. The percentages of don’t care states in the 
terms varied linearly from 0 to 90% for each circuit. This 
often makes the circuit hard to minimize, moreover such 
functions resemble real circuits. 

The results are shown in Table V. The number of input 
variables and defined care terms is given in the “Benchmark” 

column. Next, the results obtained by Espresso and Pupik are 
shown (number of terms in the result, computational time). 
We can see that the computational time of Pupik is negligible 
for these functions, while Espresso times are usually 
prohibitively large, for most of functions it did not produce 
any result after one day of computation. Even though the 
results obtained by Pupik are far from optimum, any reduction 
of the number of terms is beneficial, when other minimizers 
fail. 

VI. CONCLUSIONS 

A novel two-level minimization method for single-output 
Boolean functions is presented. It is based on a reduction of a 
ternary tree, which we propose as an internal representation 
of a Boolean function, or, more precisely, of its on-set terms. 
The minimization process significantly reduces the number 
of product terms in the sum-of-product form, however it does 
not reach the qualities of Espresso. On the other hand, the 
method significantly outperforms Espresso in a runtime. For 
some randomly generated problems, Espresso was not able 
to even produce any result. The proposed minimization 
method has found its most beneficial application as a 
pre-processor of functions specified by a very large number 
of product terms (up to millions). When Espresso is used 
afterwards to minimize the function, a big total minimization 
time reduction is obtained, while the result quality remains the 
same, as if only Espresso was run. 

The ternary tree structure with its properties is described 
into detail in this paper. It is a very compact and flexible 
representation of a completely specified Boolean function 
described by an SOP form. It offers many additional benefits 
with respect to the tabular form representation, namely in the 
linear-time searching capabilities. Since the ternary tree 
structure implicitly avoids duplicities, it could be 
advantageously used in applications where many duplicate 
product terms are gradually generated, such as multi-level 
Boolean network collapsing, algebraic manipulations with 
Boolean functions, etc. 

The minimization method was tested on random and 
standard ISCAS benchmarks and the results compared. 

 
Further research will be directed towards implementing 

several additional operations upon the ternary tree, namely a 
more sophisticated support for Boolean absorption. The 
method still does not produce an irredundant cover; redundant 
terms cannot be identified. Introduction of techniques 
removing redundancies will be beneficial too. 

The method should be then extended to support multi-
output and incompletely specified functions. 
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TABLE IV 
 ISCAS BENCHMARKS 

Espresso Pupik Pupik + Espresso Benchmark Size (n / p) 
Terms Time [s] Terms Time [s] Terms Time [s] 

c880_3 60 / 212290 15673 470 57853 23.11 15673 305 
c880_4 60 / 67136 440 37 12046 6.44 439 8.5 
c1908_4 33 / 32768 7040 20 20990 1.1 7040 17 
c1908_5 33 / 6464 2144 1 4640 0.19 2144 2 
c1908_6 33 / 13700 3200 4 8704 0.41 3200 4.5 
c3540_1 50 / 403298 32455 4740 101512 32.9 32396 1569 
c3540_2 50 / 42568 10202 254 19620 4.2 10065 193 
c3540_3 50 / 4464 1022 2 2112 0.34 1022 2.5 
c3540_4 50 / 1912 184 0.1 459 0.07 184 0.1 
c3540_5 50 / 6657 1516 5 3654 0.62 1522 4.5 
c3540_6 50 / 159920 14397 900 43442 9.09 14397 382 
c3540_7 50 / 6933 611 1 2360 0.37 611 1 

TABLE V 
 RANDOM BENCHMARKS 

Espresso PupikBenchmark 
Terms Time [s] Terms Time [s] 

30 / 5000 35 17.82 1004 0.63 
35 / 5000 1169 1306.34 1719 1.01 
35 / 8000 200 400.98 3703 2.41 
40 / 5000 - > 24 h 3033 5.5 

40 / 10000 - > 24 h 5054 7.0 
40 / 20000 - > 24 h 6606 13.72 
50 / 30000 - > 24 h 13232 33.6 
60 / 50000 - > 24 h 38203 94.9 

 


